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Abstract  : This paper presents SfM ToAEval, a framework for evaluating different feature extraction algorithms in 

Structure from Motion (SfM) pipelines. SfM ToAEval allows automatically evaluating the effect of using different feature 

detectors and descriptors combinations on the quality of the 3D reconstruction from a given collection of image sequences. 

In addition, SfM ToAEval evaluates the 3D reconstruction without the need for ground truth. Moreover, SfM ToAEval 

is aware of the reconstruction density-accuracy trade-off, and it supports visualizing it in order to allow deciding the 

“best” reconstruction transparently. Furthermore, SfM ToAEval allows quantifying the quality of each 3D reconstruction 

compared to others. SfM ToAEval was used to evaluate 98 feature detectors and descriptors combinations on six image 

sequences, and it was able to identify four promising combinations. Experimental results comparing the proposed 

combinations with related work are presented in this research. The complete source code of the proposed framework as 

well as a minimal Jupyter Notebook demonstrating how different functionalities can be used are released under the MIT 

license. 

 

Keywords: Feature Detector; Feature Descriptor; Feature Correspondence; Structure from Motion (SfM); 3D 

Reconstruction. 

 

1. INTRODUCTION 

Recently, there has been a lot of interest in the 3D 

reconstruction of objects and scenes from 2D images due to 

its numerous practical applications [1]. Structure from 

Motion (SfM) is a widely used pipeline for reconstructing a 

sparse 3D point cloud of stationary objects and scenes from 

a given sequence of images that are taken for the object or 

scene from different viewpoints. The SfM pipeline starts with 

detecting and describing features in each image of the given 

sequence of images. The second stage is to match the detected 

features in pairs of images in order to identify corresponding 

features. In subsequent stages, the 2D location of the 

corresponding features is used for estimating the 3D location 

of the actual point in the sparse point cloud [2,3]. 

Consequently, the accuracy of the 2D location of the detected 

features (the responsibility of the feature detector) as well as 

the accuracy of the description and matching of the detected 

features (the responsibility of the feature descriptor) 

significantly affect the accuracy of the estimated 3D location. 

Therefore, a lot of attention has been paid during the past 

decade to the problem of deciding good feature detectors and 

descriptors combinations for SfM and it has become a hot 

area of research [4–12]. 

When using synthetic data (like SfM Flow does in [13]) is not 

an option, and the ground truth of the real data is not 

available, evaluation of the 3D reconstruction becomes very 

challenging as relying on the value of the reconstruction 

density (number of 3D points in the sparse point cloud) and 

accuracy (average reprojection error of the 3D points on the 

images) can be misleading [14]. 

The recent interest in the evaluation of different feature 

detectors and descriptors combinations in SfM, the challenge 

of evaluating 3D reconstruction in the absence of ground 

truth, and the increasing number of published feature 

extraction algorithms (for example, as of 2022, OpenCV 
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implements about 30 different feature extraction algorithms 

[15]) motivated the development of SfM ToAEval. 

The remaining sections of this paper are organized as 

follows: Section 0 briefly summarizes the related work. 

Section 0 provides a concise overview of different feature 

detection and feature extraction algorithms that were 

evaluated in this paper. Section 0 presents the framework 

proposed for automatically evaluating different feature 

detectors and descriptors combinations. Section 0 presents 

the experimental results obtained while section 0 discusses 

them. In Section 0, the conclusion and future work are 

reported. 

 

.2 RELATED WORK 

To the best of the authors' knowledge, SfM ToAEval is the 

only published framework that fully automates the process of 

transparently evaluating different feature detectors and 

descriptors combinations on real datasets without the need for 

ground truth. On the other hand, SfM Flow [13] allows 

evaluating 3D reconstruction on synthetic datasets. It 

supports some incremental SfM pipelines (including 

COLMAP), but it does not support using different feature 

extraction algorithms. 

In [4], Govender evaluated HCD, KLY, SIFT, and SURF. 

They reported that SIFT resulted in the minimum error. In 

[10], Urban et al. evaluated AKAZE + M-SURF, ORB, SIFT, 

SURF, and SURF + BinBoost. They reported that SURF is 

faster than other algorithms. In [6], Chien et al. evaluated 

AKAZE, ORB, SIFT, and SURF. They reported that SURF 

resulted in the largest number of features, AKAZE requires 

the smallest storage, and ORB was the fastest. In [16] Pusztai 

et al. evaluated AGAST, AKAZE, BRISK, FAST, GFTT, 

KAZE, MSER, ORB, SIFT, STAR, and SURF. They 

reported that SURF resulted in the largest number of features 

(Inliers). In [5], Schönberger et al. evaluated ConvOpt, 

DeepDesc, DSP-SIFT, LIFT, SIFT, SIFT- PCA, and TFeat. 

They reported that SIFT resulted in the minimum error, 

required the smallest storage, and was the fastest. In [8], Cao 

et al. evaluated BRISK, KAZE, ORB, SIFT, and SURF. They 

reported that SURF resulted in the minimum error (ROS) and 

BRISK was the fastest. In [9], Gao et al. evaluated AKAZE, 

DeepCompare, LF-Net, ORB, SIFT, SuperPoint, and SURF. 

They reported that SURF resulted in the denser 

reconstruction, AKAZE resulted in the minimum error, and 

ORB was the fastest. In [7], Yusefi et al. evaluated FAST, 

ORB, SIFT, STAR, and SURF. They reported that FAST 

resulted in the minimum error and STAR was the fastest. 

To the best of the authors' knowledge, the experiment 

presented in this paper is the most comprehensive published 

experiment for evaluating feature extraction algorithms in 

SfM. In this experiment, all possible combinations of seven 

feature detectors and fourteen feature descriptors (a total of 

98 combinations) were evaluated on six image sequences (a 

total of 588 3D reconstructions). 

 

.3 FEATURE DETECTORS AND DESCRIPTORS 

Feature extraction algorithms can be designed for the purpose 

of feature detection only (like AGAST [17], FAST [18], and 

STAR [19]), feature description only (like BEBLID [20], 

BRIEF [21], DAISY [22], FREAK [23], LATCH [24], 

LUCID [25], TEBLID [26], and VGG [27]), or both feature 

detection and description (like AKAZE [28], BRISK [29], 

KAZE [30], ORB [31], SIFT [32], and SURF [33]). In this 

paper, algorithms that were designed for feature detection are 

combined with algorithms that were designed for feature 

description. This allowed SfM ToAEval to evaluate 126 (9 × 

14) different combinations in the experimental work reported 

in section 0. In this paper, seventeen feature extraction 

algorithms (listed in Table 1) were evaluated. 

 

.4 PROPOSED FRAMEWORK 

In this section, SfM ToAEval, the proposed framework for 

automatically evaluating different feature detectors and 

descriptors combinations in SfM is presented. SfM ToAEval 

is a stand-alone cross-platform software that is entirely 

developed using Python 3 and can be easily used on Google 

Colab or in a Jupyter Notebook on Windows, Linux, or 

macOS. SfM ToAEval not only automates the process of 

evaluation but also employs size-error curves proposed by 

Taha et al. in [14] for visualizing the reconstruction density-

accuracy trade-off in order to allow deciding the best 

reconstruction transparently. As the visualization may 

become crowded when the number of combinations being 

evaluated grows as shown in Fig. 3, we propose quantifying 

the quality of each 3D reconstruction compared to others 

according to equation (1 and the algorithm shown in Fig. 1 

𝑆𝑖 = ∑ H(𝜀
𝑗

min(|𝑃𝐶𝑖|,|𝑃𝐶𝑗|) − 𝜀
𝑖

min(|𝑃𝐶𝑖|,|𝑃𝐶𝑗|))𝑗∈𝐴−{𝑖}  (1) 

Where: 

 𝑆𝑖 is the quality score of reconstruction 𝑖, 

 𝐴 is the set of reconstructions being evaluated, 

 𝐻(𝑥) is the unit step function, 

 |𝑃𝐶𝑖| is the size of the point cloud in reconstruction 𝑖, 

 𝜀𝑖
𝑛 is the average reprojection error of the best 𝑛 3D 

point in the point cloud in reconstruction 𝑖 

The formula is based on counting the number of size-error 

curves that are asymptotically faster than the curve 

corresponding to reconstruction 𝑖 which gives the number of 

reconstructions that reconstruction 𝑖 outperforms. 
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Table 1 Evaluated Feature Extraction Algorithms 

 Detector Descriptor Both 

AGAST [17] X   

AKAZE [28]   X 

BEBLID [20]  X  

BRIEF [21]  X  

BRISK [29]   X 

DAISY [22]  X  

FAST [18] X   

FREAK [23]  X  

KAZE [30]   X 

LATCH [24]  X  

LUCID [25]  X  

ORB [31]   X 

SIFT [32]   X 

STAR [19] X   

SURF [33]   X 

TEBLID [26]  X  

VGG [27]  X  

 

 
Fig. 1. Proposed algorithm for quantifying the quality of 3D 

reconstructions 

SfM ToAEval framework employs OpenCV [34] for feature 

detection, description, and matching (the first stage of the 

SfM pipeline). For the rest of the SfM pipeline, SfM ToAEval 

framework employs COLMAP [35,36]. The architecture of 

the proposed framework is illustrated in Fig. 2. SfM ToAEval 

provides three main functionalities: 

I. 3D Reconstruction 

3D reconstruction is automatically performed for each 

possible combination of the feature detectors and feature 

descriptors provided to the proposed framework on each 

sequence (subfolder) in the dataset folder. 

1. Feature Extraction 

Feature detection and feature description are 

automatically performed using OpenCV for all possible 

combinations of the feature detectors and feature 

descriptors provided to the proposed framework as 

illustrated in Figure 3. Out of the features detected by 

each algorithm, the subsequent stage receives only a 

fixed number in order to reduce the evaluation time and 

ensure fairness [14]. 

2. Feature Matching 

Feature extraction is automatically performed using 

OpenCV brute force matcher with cross-check enabled 

and the default norm for each feature descriptor. Out of 

the features matched by each algorithm, the subsequent 

stage receives only a fixed number in order to reduce the 

evaluation time and ensure fairness [14]. 

3. Sparse Point Cloud Reconstruction 

Sparse point clouds are automatically reconstructed 

using COLMAP command line interface with the default 

parameters. 

 

II. Analysis 

SfM ToAEval analyses the reconstructed sparse point clouds 

and generates the following statistics in an SQLite database: 

1. Total Number of Extracted Features 

2. Total Descriptors Size (in Bytes) 

3. Feature Extraction Time (in Seconds) 

4. Feature Matching Time (in Seconds) 

5. Reprojection Error (in Pixels) 

6. Point Cloud Size 

7. Data of Size-Error Curves 

8. Quality Scores 

 

III. Visualization 

SfM ToAEval currently supports two types of visualization: 

Radar charts for visualizing the point cloud size or the 

reprojection error and size-error curves for visualizing the 

trade-off between them. 

1. Radar Chart 

It is a convenient way to illustrate the relative quality of 

the reconstructed sparse point clouds (as shown in       

Fig. 6). 

2. Size-Error Curves 

They visualize the 3D reconstruction density-accuracy 

trade-off (as shown in Fig. 5). This allows transparently 

deciding the combination corresponding to the best 

reconstruction (the one with the slowest growth rate of 

reprojection error with the point cloud size). 

All extracted and matched features are stored in a single 

SQLite database. In addition, for each sequence and feature 

detector and descriptor combination, SfM ToAEval builds an 

Algorithm Quality Score Estimation (PC) 

Input : list of point clouds PC, each point cloud is 

        composed of a list of 3D points (x, y, z, e) 

        sorted in non-decreasing order of e 

Output: list of quality scores 

 

S = [ ] 

for i in range(len(PC)): 

    s = 0 

    for j in range(len(PC)): 

        if i != j: 

            m = min(len(PC[i]), len(PC[j])) 

            if (sum([p[-1] for p in PC[j][0:m]]) >  

                sum([p[-1] for p in PC[i][0:m]])): 

                s += 1 

    S.append(s) 

 

return S 
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SQLite database and passes it to COLMAP. Moreover, all 

reconstructed point clouds are analysed, and the analysis 

results are stored in a single SQLite database. SfM ToAEval 

stores all intermediate and final results to allow: 

1. Pausing and resuming the evaluation 

2. Verifying the results 

3. Performing more analysis 

4. Using the results for building machine learning or 

deep learning models 

 
Fig. 2. Architecture of the proposed framework 

5.EXPERIMENTAL WORK 

1. Dataset 

A widely used and publicly available collection of image 

sequences was used as a benchmark for evaluating different 

feature detectors and descriptors combinations in SfM. The 

collection contains six different sequences of 3072 × 2028-

pixel images that were previously corrected for radial 

distortion. More information about the dataset can be found 

in [37,38]. 

2. Setup 

A virtual machine (provided by Google Collaborate Pro) was 

used for empirically evaluating the quality of different feature 

extraction algorithms. The virtual machine is powered with a 

2 x Core Intel(R) Xeon(R) CPU @ 2.20 GHz and equipped 

with 13.00 GB of RAM. OpenCV 4.6.0 was used for feature 

detection, description, and matching. It was built with 

OPENCV_EXTRA_MODULES_PATH and 

OPENCV_ENABLE_NONFREE in order to enable 

proprietary and patented feature extraction algorithms. 

COLMAP 3.8 was used for the remaining stages of the SfM 

pipeline. It was built with the default configuration. 

3. Results 

In this experiment, 98 feature detectors and descriptors 

combinations were evaluated in constructing sparse point 

clouds from six image sequences resulting in a total of 588 

sparse point clouds. The 588 size error curves are shown in 

Fig. 3. Although the visualization may be crowded, it is clear 

that SIFT feature detector is the best for entry-P10, fountain-

P11, Herz-Jesus-P25, and Herz-Jesus-P8 image sequences 

while SURF feature detector is the best for castle-P19 and 

castle-P30 image sequences. The reprojection error and point 

cloud size of the 98 combinations are shown in Fig. 4. 

Although the radar chart may be crowded, it is clear that ORB 

feature detector resulted in the sparsest point cloud and the 

highest reprojection error. 

From this comprehensive experiment, we were able to 

identify four promising combinations that were compared 

with combinations suggested in related work. The results of 

the comparison are summarized in Table 2 which shows the 

quality score of each combination with each sequence, Fig. 5 

which shows size-error curves, and Fig. 6 which shows radar 

charts of point cloud size as well as reprojection error of each 

evaluated combination with each image sequence. It is clear 

that the four proposed combinations outperform all other 

combinations suggested in related work. 

From the size-error curves shown in Fig. 5, the 3D 

reconstruction with the slowest growth rate of reprojection 

error with the point cloud size can be identified as the best 

reconstruction regardless of the value of point cloud size and 

reprojection error even if it is not the denser (the one with the 

largest number of points in the point cloud) or not the most 

accurate (the one with the smallest reprojection error). For 

example, the 3D reconstruction of Herz-Jesus-P25 using 

SURF – VGG combination is the best. This is also confirmed 

by the quality score reported in Table 2. The quality score of 

SURF – VGG is eight which means that it outperforms the 

other eight combinations that were evaluated on Herz-Jesus-

P25 image sequence. The same applies to other sequences.  

 
Fig. 3. Reprojection error vs. the point cloud size for 98 feature 

detectors and descriptors combinations 

 

Table 2 Quality score of the proposed combinations compared to related work. 
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Chien et al.  [6] 

Gao et al.  [9] 
AKAZE - AKAZE 4 3 3 2 2 5 5 

Cao et al.  [8] BRISK - BRISK 0 0 2 1 1 1 2 

Chien et al.  [6] 

Gao et al.  [9] 
ORB - ORB 1 1 1 0 0 0 1 

Govender  [4] 

Schönberger et al. [5] 
SIFT - SIFT 6 6 4 6 6 6 6 

Cao et al.  [8] 

Gao et al.  [9] 

Pusztai et al.  [16] 

Urban et al.  [10] 

SURF - SURF 2 2 0 3 3 2 3 

Proposed 

SIFT - TEBLID 5 5 5 7 8 7 8 

SIFT - VGG 3 4 8 8 7 8 8 

SURF - TEBLID 7 8 6 5 4 4 8 

SURF - VGG 8 7 7 4 5 3 8 

Best 8 8 8 8 8 8 8 

 

 
Fig. 4. Point cloud size (on the left) and reprojection error (on the right) radar charts for 98 

feature detectors and descriptors combinations 
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Fig. 5. Reprojection error as vs the point cloud size for the proposed combinations compared to related work 

 
Fig. 6. Point cloud size (on the left) and reprojection error (on the right) radar charts for the proposed 

combinations compared to related work 

 

6.DISCUSSION 

In the Computer Vision domain, new feature extraction 

algorithms are continuously developed especially after the 

recent advances in the field of Deep Learning. SfM ToAEval 

can lead to discovering interesting feature detectors and 

descriptors combinations for 3D reconstruction and direct the 

research to improve potential combinations as shown in 

Table 2. In addition, SfM ToAEval can be used for 
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automatically generating large amounts of experimental 

results that can be used for training machine learning models 

that recommend a suitable feature detector and descriptor 

combination for a given image sequence from the sequence 

characteristics without the need to try all the combinations. 

Moreover, even larger amounts of generated experimental 

results can be used to build deep learning-based feature 

detectors and feature descriptors that are specialized in 3D 

reconstruction. That is why all experimental results are 

automatically stored in SQLite databases. 

On the other hand, SfM ToAEval can be used before applying 

3D reconstruction to large image sequences in order to 

efficiently decide a suitable feature detector and descriptor 

combination in limited reconstructions before the actual 

reconstruction. This can dramatically reduce the 

reconstruction cost without sacrificing the quality. 

 

7.CONCLUSION AND FUTURE WORK 

This paper introduced SfM ToAEval, a Python-based open-

source framework for automatically evaluating different 

feature detectors and descriptors combinations in the 3D 

reconstruction of stationary objects and scenes from a given 

sequence of images taken from different viewpoints. SfM 

ToAEval framework is aware of the reconstruction density-

accuracy trade-off, and it allows visualizing this trade-off for 

a set of reconstructions and selecting the best reconstruction 

transparently. In addition, SfM ToAEval framework allows 

quantifying the quality of each 3D reconstruction compared 

to others based on the quality score proposed in this paper. 

This can be very helpful when the number of reconstructions 

is large, and the visualization is very crowded. 

SfM ToAEval framework was used for evaluating 98 

different feature detectors and descriptors combinations. 

Based on the results of the experimental work, SfM ToAEval 

framework managed to identify four promising combinations 

that outperform other combinations suggested in related 

works. 

SfM ToAEval framework supports 100+ different feature 

detectors and descriptors combinations out of the box, and it 

can be easily extended to support any feature extraction 

algorithm implemented in OpenCV. We are currently 

allowing SfM ToAEval framework to be extended to support 

handcrafted and learned feature extraction algorithms that are 

not implemented in OpenCV. 
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