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ABSTRACT  
 
The inverse kinematics (IK) problem for the six degrees of freedom (DoF) full-
articulated manipulator is solved either analytically through closed form solutions, or 
numerically through iterative algorithms. Analytical solutions are in general, if exist, 
yield redundant solutions at an affordable and reliable computational cost. Numerical 
solutions that employ iterative algorithms could yield an accurate single convergent 
solution that depends upon the picked initial guess, but at relatively higher 
computational cost. In this paper, an efficient numerical solution that employs an 
innovative implicit iterative algorithm is applied to the decoupled wrist and shoulder 
DoF, with the relevant jacobians approximated by first-order finite difference 
schemes. The presented numerical solution has been applied to the HUBO 
humanoid robot arm to solve for the IK of a single point in the workspace, and also 
for trajectory tracking problems. The results for both cases have demonstrated high 
accuracy at an appropriate computational cost suitable for real-time applications such 
as IK-based walking of humanoid robots.  
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NOMENCLATURE 
 
The nomenclature is spottily declared the first time mentioned within the paper. 
 
Abbreviations 
CPU  Central Processing Unit. 
D-H               The Denavit-Hartenberg Frame Convention [1] 
DoF  Degrees-of-Freedom. 
IK  Inverse Kinematics. 
GB  Giga Byte. 
GHz  Giga Hertz. 
L.H.S  Left Hand Side. 
RAM  Random Access Memory. 
R.H.S  Right Hand Side. 
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INTRODUCTION 
 
Six DoF fully articulated manipulators are widely utilized in both industry, and 
extensively, in humanoid robots as well. While the end-effector trajectory is 
commonly planned and constructed in the workspace frame of reference, control of 
robot is done in the joints frame of reference. This requires the development of 
efficient methods to solve the problem of finding the value of joint variables that finally 
locate the end-effector at the desired position and orientation, which is commonly 
known in robotics as the problem of inverse kinematics (IK). 
 
Unfortunately, the problem of IK for a 6-DoF fully articulated manipulator is very 
complex due to the inherent redundancy of the trigonometric functions encountered 
in the solution. The solution is developed either analytically or numerically, and the 
inherent redundancy of the solution is treated by imposing constraints on the joints 
movements or the planned trajectory. Numerical solutions were particularly avoided 
in the control of manipulators that requires the control processor to be embedded 
(such as humanoids) due to its relatively associated computational cost. 

 
The existence of the closed-form solution depends on the kinematic structure of the 
arm. Pieper [2] and Thanhtam [3] showed that the 6-DOF manipulator with a 
spherical wrist has a closed-form solution. Many researchers have obtained closed-
form solutions for inverse kinematics of 6-DOF manipulators including Lee et. al. [4], 
Kang [5] and others [6-8] for 6-DOF PUMA robots, and Schilling [9] for a 6-DOF 
Intelledex 660T robot. However, these solutions are ones for industrial manipulators 
that are different in configuration from the human-like arm shown in Fig. 1 that needs 
a computationally efficient solver appropriate for running on embedded platforms. 

 

 
 

Fig. 1. Picture of the robot arm and its coordinate frames [3]. 
 

Ali et. al. [11] presented a closed-form solution for the inverse kinematics of the limbs 
of the HUBO2+ robot platform. They used a reverse decoupling mechanism method 
by viewing the kinematic chain of a limb in reverse order and decoupling the position 
and orientation. O’Flaherty et. al. [10] then used the inverse transform method to 
compute eight possible solutions for each limb. The correct solution was selected 
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Fig. 2. The HUBO-II humanoid robot with its coordinate frames and joints [10]. 

 
 

based on joint limits and constraints. In working through the solution developed by 
[11], discrepancies were found in the calculations [10]. A corrected version of the 
solution was formulated for the IK of the entire four limbs of the HUBO2+ humanoid 
[10]. 
 
In this paper, the problem of inverse kinematics of the humanoid robot is revisited to 
present through a full numerical solution at a reasonable computational cost that 
made it appropriate for real time applications on modern fast embedded controllers. 
The numerical algorithm is applicable for any 6 DoF full-articulated arm, and was 
specifically applied to the HUBO-II arm [11]. The presented algorithm can be 
successfully applied to the entire humanoid robot, where the two arms and legs are 
each of 6 DoF and fully-articulated, leaving the head and torso, which are almost 
trivial. The numerical solution of IK was found very efficient in trajectory tracking 
problems, where the solution at any time step would be a nice initial guess for the 
next time step, leading to unique solution with few iterations or lower computational 
cost. This feature is very useful in developing IK-based walking algorithms, especially 
for this class of humanoids, where a bi-bed mechanism is adopted for the foot [12]. 
 
 
KINEMATICAL MODELING OF THE HUBO-II HUMANOID ROBOT 
 
The HUBO-II humanoid robot, shown in Fig. 2, consists of 27 joints that could be 
broken up into six parts. These parts consist of the two arms (six joints each), the two 
legs (six joints each), the torso (1 joint), and the head (2 joints).  
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The D-H table and link parameters for the arm are given in Table-1. Note that a 
positive lA1 refers to the left arm, while negative lA1 refers to the right arm. 
 

Table 1. D-H table for the left arm and the value for link parameters [10]. 

 
Solution of the IK Using Full-Numerical Iterative Algorithm 
 
The algorithm will be applied to the inverse kinematics (IK) of the left Arm, which has 
similar configuration as for the right arm, and also the left & right legs. The arm 
consists of 6 revolute joints, three for the shoulder that controlling the position of the 
end-effector (the hand), and the other three joints are for the wrist controlling the 
orientation of the end-effector.  
 

Solving the IK problem is to find the values of the 6 joint variables, namely: θ1, θ2, 

……, and θ6 that corresponding to an arbitrary position & orientation of the end-
effector that is given as follows: 
 � � � � ��� �� 	�   
�0 0 0   1 
 = �� � �   
0 0 0   1
    (1) 

 
where 0T6 is the homogeneous transformation matrix from the hand frame (frame 6) 
to the first shoulder joint (frame 0), x6, y6, and z6 describe the orientation of the hand 
coordinate frame relative to the shoulder coordinate frame, p6 is the position vector 
describing the location of the hand relative to the shoulder, n, s, a, and p represent 
the normal, sliding, approach, and position vectors of the hand, respectively. 
 
The forward kinematics transformation matrix from the end-effector to the Neck is 
given by: 
 

NTE = NT0 
0T6 

6TE 
 

where NTE is the transformation matrix from the end-effector to the neck, NT0 is the 
transformation matrix from the first shoulder joint to the neck and 6TE is the 
transformation matrix from the end-effector to the hand frame (frame#6). 
 

N
T0 = �  0 0  1 ��� 1 0 0 0  0 1 0 00 0   0 1 � 

 
Fortunately, reversing the kinematical chain to start from the hand to the shoulder 

decouples the wrist degrees of freedom (DoF), namely θ4, θ5, and θ6, from the 
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shoulder DoF, namely θ1, θ2, and θ3. By doing this, the IK problem could be split into 
two sub-problems, the shoulder & wrist IK problems.  
 
The transformation matrix from the shoulder to the hand is obtained by taking the 
inverse of both sides of equation (1), which yields: 
 � � � �  ���� � � �� � ���� ��� 	��   
��0 0 0       1 
     (2) 

 
Solution of the IK for the Wrist 
Multiply both sides of (2) by � � �: 
 

⇒          � � � � � � = � � ��θ�� ���� ��� 	��   
��0 0 0       1 
      (3) 

 

Assume the joint variables vector, θ = [θ1 θ2 θ3 θ4 θ5 θ6]
T 

 
Rewrite equation (3) in the following form: 
 

            � � ��θ� = � � ��θ��        (4) 

where: 

   � � ��θ�� � � � ��θ�� ���� ��� 	��   
��0 0 0       1 
    

 
Equate the position vector of the frame origin for both sides (the 4th column) of (4) 
yields to the following: 
 � � ��θ�, θ�� =   � ��θ��       (5) 
 
 

Approximate both sides of (4) to a first-order approximate backward difference, which 
yields the following finite-difference equation: 
 � � �!"��θ�, θ�� + �$ % & '$θ(  $ % & '$θ& 
!"� [∆θ� ∆θ�]+ �   � �!"��θ�� + $ , & '$θ- 

!"�
∆θ�      (6) 

 
Rearrange (6) to put in the following form: 
 �$ % & '$θ(  $ % & '$θ&  "$ , & '$θ- 
!"� [∆θ� ∆θ� ∆θ�]+ � $ , & '$θ- 

!"�
∆θ� − � � �!"��θ�, θ��      (7) 

 

or          /0!"� ∆10 �  ∆20!"� 

 

 ⇒  ∆10! � 3/0!"�4"�∆20!"�       (8) 

 
where: 

θw = [θ4  θ5  θ6]
T …….The wrist variables. /0!"� is the wrist Jacobean, and is defined as follows: 
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/0!"� � 
56
666
678 � � �98θ� 8 � � �98θ� −8   � �98θ�8 � � �:8θ� 8 � � �:8θ� −8   � �:8θ�8 � � �;8θ� 8 � � �;8θ� −8   � �;8θ� <=

===
=>
!"�

 

 

∆10! � [∆1�! ∆1�!  ∆1�!]+ 
 

∆20!"� �   � �!"� − � � �!"� 
 
And hence, 
 10! � 10!"� + ∆10!        (9) 
 
All partial derivatives at (i-1) are approximated by first-order forward differencing: 
 8�     �!"�81? � @�     �! − �     �!"�A∆1? + C�∆1?� 
where: 
The index (i) denotes the iteration step. 
The index (j) denotes the joint variable number (j = 1,2…………,6). 
 
Repeat the above iterative solution until the difference between two successive 

solutions for wrist variables, ∆10!, reaches an appropriate value according to the 
specified accuracy. 
 

Analysis for the selection of (∆∆∆∆θθθθj) 

In a conservative way, the most effective value of ∆θj in the position accuracy of the 

end-effector is for j=2 or ∆θ2. The accuracy in the end-effector position, P6, (∆S =  

[∆X6  ∆Y6   ∆Z6]
T) is given by the maximum absolute value, |∆Smax|, which is 

correlated with the accuracy in the solution of joint variables, ∆θ2, as follows: 

(l2+l3+l4) ∆θ2 ≤ |∆Smax|, given that θ3, θ4, θ5, and θ6 are zeros (the extended arm 
configuration as shown in Fig. 3). 
 

⇒ ∆θ2 ≤ 
∆DEFGHIJHKJH( 

 
Where l2, l3, l4 are the arm link lengths. 
 
                                                                                                      
 
 
 
       

Fig. 3. Extended Arm configuration.   
 
Solution for the IK of the Shoulder 
Multiply both sides of (2) by � L � � � L � � � � � � �: 
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⇒          � L � � � � = � L ��θ0� ���� ��� 	��   
��0 0 0       1 
 
⇒          � L ��θD� = �L�θ0�         (10)  

where 
 

θS = [θ1  θ2  θ3]
T …….The shoulder variables. 

 
Equate the matrix elements of column #3 in both sides of equation (10), yields: 
 M3θD!4 = N3θ0!4       (11) 

where 

M � O � L ��1,3�� L ��2,3�� L ��3,3�R, and N � O�L�1,3��L�2,3��L�3,3�R 
 
Note that: 

By solving the wrist equation, the wrist variables (θw
i) at the current iteration step, i, 

are known and hence the R.H.S of (11), H(θw
i), is known too. 

 M3θD!4 is approximated by a first-order approximate backward difference, which yields 

the following equation: 
 $S$θT 

!"�  ∆θD! � N3θ0!4 −  M3θD!"�4      (12) 

 
Similarly, all partial derivatives at (i-1) are approximated by first-order forward 
differencing. 
 

or      /D!"� ∆1D! �  ∆UD!"� 

 

⇒  ∆1D! � 3/D!"�4"�∆UD!"�      (13) 

where 

/D!"� � 
56
666
678 � L ��1,3�8θ� 8 � L ��1,3�8θV 8 � L ��1,3�8θL8 � L ��2,3�8θ� 8 � L ��2,3�8θV 8 � L ��3,3�8θL8 � L ��3,3�8θ� 8 � L ��3,3�8θV 8 � L ��3,3�8θL <=

===
=>
!"�

 

 

∆1D! � [∆1�! ∆1V! ∆1L!]+ 
 

∆UD!"� �  N3θ0!4 −  M3θD!"�4 
 
And hence, 1D! � 1D!"� + ∆1D!      (14) 
 



42 RC    Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018 

 

Repeat the above numerical iteration until the difference between two successive 

solutions for the shoulder variables, ∆1D!, reaches an appropriate value according to 
the specified accuracy. 
 
The same algorithm can be applied to the right arm, and for both legs.  
 
For the case of three-dimensional trajectory tracking problems, the presented 
algorithm was slightly modified by considering the solution for the current time step 
as an initial guess for the solution at the next time step, which has significantly 
reduced the number of iterations to convergence, and hence reduced the 
computational time. 
 

q(ti+1) = q(ti) + ∆q 
 

The use of the presented algorithm in trajectory tracking applications has also the 
advantage of treating singular points by increasing the time step to pass over the 
singular point and then interpolate to find out the solution at the singular point. 
 

 
NUMERICAL RESULTS AND ANALYSIS 
 
The results and analysis presented hereafter in this section are for the left arm of the 
HUBO-II robot, and of course is applicable for any full-articulated 6-DoF arm. The 
arm is known to have two cases of singularities [10] as follows: 

1- Shoulder singularity: When θ2 = π/2 (for the left arm) or θ2 = -π/2 (for the right 

arm), joints θ1 and θ3 become collinear leading to an infinite number of 
solutions.  

2- Elbow singularity: When θ4 = 0, joints θ3 and θ5 become collinear, leading to 
an infinite number of solutions. 

 
Five configuration test cases have been developed for the purpose of validation of 
the numerical algorithm; all of the cases were selected singular-free. A known values 
for the joint variables were used to find out the end-effector position and orientation 
by solving the forward kinematics. These end-effector positions and orientations were 
used to inversely find out the corresponding joint variables using the presented 
numerical algorithm. 
 
The accuracy of the presented numerical algorithm has been determined by the 

value of maximum absolute error in joint variables, Max(|θ - θr|), where θr is the 

reference value and θ represents the solution. Also the maximum absolute error in 
end-effector position is used as another accuracy measure. Table 2 depicts the 
results for the five cases that shows maximum error in the joint variables in the order 
of (10-4 deg) and maximum error in the end-effector position in the order of (10-6 m). 
 
The numerical algorithm has been applied to solve for the IK for both an end-effector 
point in the workspace frame and for a three-dimensional trajectory as well. 
 
The maximum error in joints variables and end-effector position for the case of the 
three-dimensional space trajectory shown in Fig. 4 of arc length 0.5 [m] is in the order 
of (10-4 deg) and (10-6 m) respectively, which lays well within the physical resolution 
of most commercial joint motors. The variation of the maximum absolute error in joint 
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variables & end-effector position with number of time steps is depicted in Fig. 5, 
which shows a finite jump in the value of maximum absolute error, especially for the 
joint variables, at the16th time step. This is due to the trajectory approaches a point of 
inflection as shown for the end-effector Z-coordinate (Fig. 6) and the first–order 
accurate finite approximation used in the presented numerical algorithm. 
 

Table 2. Error in Joint Variables & End-effector Position for Different Arm 
Configurations. 

 
 θθθθ1 

[deg] 
θθθθ2 

[deg] 
θθθθ3 

[deg] 
θθθθ4 

[deg] 
θθθθ5 

[deg] 
θθθθ6 

[deg] 

Max. Error 

Max(|θθθθ - θθθθr|) 
[deg] 

Max. Error in 
end-effector 
Position [m] 

Case#1 12 18 22 32 43 50 7.4525e-006 5.6147e-008 
Case#2 7 11 21 29 37 43 1.1850e-005 8.8958e-008 

Case#3 -30 -25 45 -35 20 25 8.0691e-006 1.2025e-008 
Case#4 10  45 15 90 5 15 5.5712e-005 1.9712e-007 
Case#5 20 30 -20 -30 -10 -20 1.8403e-004 1.1083e-006 
 
 
Analysis of Computational Cost 
 
The following results have been developed on the following computational platform: 
Pentium Dual-Core CPU T4200 @ 2.00 GHz – RAM 3.00 GB 
Windows 7.0, 64-bit Operating system. 
 
The computational time is in general depends on the initial guess value, and how 
much is far from the solution. The average computational time per single point 
solution is (CPU time = 0.0624 sec). 
 
The presented algorithm was also applied to a three-dimensional space trajectory  
(Fig. 4), which has yield an average CPU time per time step of 0.0074 sec. 

 

 
Fig. 4. Three-Dimensional Space Trajectory. 
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Fig. 5. Variation of the Maximum Absolute Error in Joint Variables & End-Effector 

Position with Time. 

 
Fig. 6. Variation of the End-Effector Position with Time. 
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CONCLUSIONS AND RECOMMENDATIONS 

 
• In this paper, a full-numerical algorithm for solving the IK of a fully articulated 6 

DoF manipulator is developed and validated. The algorithm utilizes the idea of 
decoupling the wrist and shoulder DoF and based upon an iterative finite 
difference scheme. 

 

• The presented algorithm has been applied to solve the IK for two cases: the 
case of single end-effector position and orientation in the workspace frame, and 
the case of three-dimensional space trajectory. 

 

• For the case of single end-effector position and orientation in the workspace 
frame, the algorithm has been applied to five different cases. The results 
revealed minimum accuracy in the order of (10-4 deg) in joint variables, and (10-

6 m) in the end-effector position. The computational cost for this case has an 
average CPU-time of 0.0624 sec when run on the computational platform 
mentioned above. 

 

• The results for a 0.5m-length three-dimensional space trajectory case revealed 
a minimum accuracy in joints variables and end-effector position of order (10-4 
deg) and (10-6 m) respectively with an average CPU-time per time step of 
0.0074 sec. 

 

• The results for both cases have demonstrated an efficient performance for the 
presented numerical algorithm in terms of joint variables and end-effector 
position accuracy that were provided at an affordable computational cost. 

 

• The author wishes to employ the presented algorithm to simulate the IK-based 
walking in the joints space for the HUBO-II humanoid robot in future work. 
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