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A R T I C L E   I N F O                           A B S T R A C T  

1. Introduction   

     There are many uses for integro-differential equations, 

including modelling of spatiotemporal processes in the 

natural sciences, electrostatics, and control theory of 

industrial mathematics, engineering, and mathematics, as 

well as modelling of epidemics [1]. Integral equations do 

not have analytical solutions, or they are difficult to find. 

This has led to the development of numerous numerical 

techniques for solving integral equations.  

      As a result; we employ a variety of numerical 

techniques to roughly solve these equations. The 

differential transforms method [2], the Haar wavelets 

method [3-5], the hybrid Legendre polynomials and 

block-pulse functions approach [6, 7], the triangular 

functions [8], the single-term Walsh series method [9], 

the wavelet-Galerkin method [10], and the compact finite 

difference method [11] are a few of these methods. 
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 Mathematical modeling of real-life problems usually results in some form of 

functional equations, e.g. algebraic equations, differential equations, integral 

equations and others. The occurrence of differential equations and integral 

equations is common in many areas of the sciences and engineering. In 

particular, the conversion of boundary value problems in differential 

equations to integro-differential equations, with limits of integration, 

considered as constant, is termed Fredholm integro-differential equations In 

this study, issues involving linear Fredholm integro-differential equations are 

numerically solved using a hybrid of orthogonal functions. To solve these 

problems, a hybrid method combining improved block-pulse functions and 

Bernstein is proposed. This blended method is test by the authors in a 

previous work is of good agreement with the exact solution. To convert the 

solution of integro-differential equations to the solution of algebraic 

equations, the operational matrices of derivative for this function, together 

with the hybrid functions, are presented. To demonstrate the practicality and 

accuracy of the proposed approach in this study, we provide some test 

problems Examples are given to highlight the accuracy and effectiveness of the 

proposed method. 
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       Y. H. Youssri, A. G. Atta [12] proposed novel spectral 

algorithm utilizing Fibonacci polynomials to numerically 

solve both linear and nonlinear integro-differential 

equations with fractional-order derivatives. A. G. Atta 

and Y. H. Youssriin [13] introduced new spectral 

collocation approach is applied to obtain precise 

numerical approximation using new basis functions 

based on shifted first-kind Chebyshev polynomials for 

solving the nonlinear time-fractional partial integro-

differential equation with a weakly singular kernel. 

Moreover, Y. H. Youssri and R. M. Hafez reported a 

collocation algorithm for the numerical solution of a 

Volterra–Fredholm integral equation, using shifted 

Chebyshev collocation method, for more details, see [14]. 

      The solution to the linear Fredholm integro-

differential problem given in this study uses a hybrid 

function made up of a combination of Bernstein 

polynomials and improved block pulse functions (1.1), 

            ∑  ( ) ( )( )   ( )   ∫ (   ) ( )

 

 

  

 

   

                        (   )    

with the initial conditions  

 ( )( )                   

Where  (   ) is the kernel of the integral,  ( ) and 

  ( ) are known analytic functions,   ( )( ) is the ith 

derivative of the unknown function that will be 

determined,   is a positive integer and (    ) are 

suitable constants.  

     To make it more reader-friendly, we shall detail our 

proposed hybrid strategy in what follows.  The following 

is the structure of this paper. In Section 2, we introduce 

a hybrid approach for connecting the Bernstein and 

Improved Block-Pulse functions. In section 3, the 

suggested method for numerically approximating linear 

Fredholm Integro-differential Equations on the basis of 

HBIBP is described.  The section's numerical examples 

illustrate the accuracy and reliability of our suggested 

method for solving second-kind linear Fredholm Integro-

differential Equations. We also add our concluding 

remarks. 

 

2. Hybrid Bernstein improved block-pulse functions 

definition (HBIBPFs) [15, 25] 

       Improved Block-Pulse functions and Bernstein 

polynomials are used to create the complete orthogonal 

function            ( ) , and then this set formas 

complete orthogonal system. 

        ( )  where                           

        ( ) have two arguments   and  .  

     Order of IBPFs (Improved Block-Pulse Functions) and 

degree of BPs (Bernstein Polynomials) are represented 

by i and j, respectively.      ( ) defined as follows on 

the interval [0, 1].:  
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Thus, our new basis 

is *                               +   We can 

approximate the function to the base function, where   

is any positive integer and N

1
h 

. In the following part, 

we will specifically address the issue of approximating 

such functions. 

2.1. Function approximation 

     A function  ( ) can be expressed as follows using the 

     ( ) basis: 

      ( )  ∑ ∑             ( )

 

   

   

   

        ( )                          (   ) 

where 
              ( )  ,                               -              (   ) 

and  

                     ,                   -                         (   ) 

we have  
            ( )      ( )      ( )      ( )                  (   ) 

then 
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where 〈   〉 represents the standard inner product and L 

is an ((   )(   )  (   )(   )) matrix that 

is said the dual matrix that is 
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The function  (   )    (,   -  ,   -)  can also be 

approximated as follow: 

 (   )        ( )        ( ) 

where   is an (   )(   )  matrix that we can 

obtain as follows: 

     〈     ( ) 〈 (   )      ( )〉〉   . 

2.2. Operational matrix of product 

      Consider this    ,  
     

          
 - is an arbitrary 

  (   )(   )  matrix which   
  is   (   ) 

matrix for                then  ̂  is (   )(  

 )  (   )(   )  operational matrix of product 

whenever  
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We know  

   ( ) ( )   ( )  ̂                    

Which  ̂  is the product of the Bernstein polynomials 

shown in [20, 21], then 
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with    is (   )  (   ) matrix. 

 

2.3. Operational Integration Matrix  

     The coefficient matrix   ̅ It should be possible to 

integrate more HBIBP functions into HBIBP functions. 

Following are the formulas for the operational 

integration matrix   ̅: 

   ∫     ( )  
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where  ̅ is (   )(   ) square matrix and in Eq. 

(2.1)-(2.3),      ( ) is defined. It's simple to see 

that: 
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On the other hand we know  
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where [23] and [24] provide information on how to 

obtain this matrix, where P is the Bernstein function's 

operational integration matrix of  ( ).  
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Where  ̅   is zero matrix of (   )  (   ) 

dimension and  ̅ is a matrix that all of its elements is 

one of dimension (   )  (   ). 

The following is to how  ̅ is obtained: 
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2.4. Operational differentiation matrix  

    The following section provides the operational 

matrix for differentiation  ̅  by: 

      ( )

  
  ̅     ( ). 

 

 



                                                        Mohamed A. Ramadan et al /Egy. J. Pure & Appl. Sci. 2024; 62(2):44-51 

  

  

    We have  

  ( )

  
   ( ), 

where   is the operational differentiation matrix of 

 ( )  Information on acquiring this matrix can be 

found in [23, 24]. 
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3. Outline of solution 

    This section explains how to solve the sth-order linear 

Fredholm integro-differential equation with conditions 

(1.1) as initial condtions. 

First, an approximation of the function u(x) is derived 

using 

   ( )         ( )        ( )          (   ) 

where   is a (N+1)(M+1)-vector that is unknown and 

HBIBP is defined  in (2.1) - (2.4) . 

Second step, the functions   ( )( ) ,           are 

approximately represented using 

  ( )( )    (     ( ))( )     ̅      ( )   

                                               (   ) 

Where  ̅ is the operational derivative matrix with the 

dimensions  (   )(   )  (   )(   ) ,  ̅ is 

operational derivative matrix with power   

and   
 

  
     ( )   ̅     ( ).  

      Third step, The function  (   ) is apprximated by 

     (   )        ( )      ( )       (   ) 
where   is a (   )(   )  (   )(   )-
matrix. 

     Forth step: Substituting approximation eq. (3.1)-(3.3) 

into linear Fredholm integro-differential equation (1.1) 

produces  
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  is defined in 

Eq. (2.9). 
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We collocate Eq (3.5) in order to find   in Newton-Cotes 

nodal points (   )(    )    as 

    
    

 (   )(   )
                  (   )(   )        (   ) 

From Eq. (3.5) using collocation point (3.6) and the 

conditions, there are (   )(   )  unknowns and 

(   )(   )linear equations in our system. We can 

obtain the unknown vector by resolving the above linear 

system. U and Eq. (3.1) can be used to find the u(x) 

solution. In the expansion of the       function, see 

(3.1) 

 

4. Numerical examples  

    To demonstrate the practicality and accuracy of the 

proposed approach in this study, we provide some test 

problems this section. The MATLAB software was used 

for all calculations (R2018b). 

Example 1 

    Consider the first order integro-differential equation 

of Fredholm type [16-20] 

  ( )  (   )     ∫  ( )  

 

 

                

with initial condition  ( )     

The exact result of this problem is  ( )     . 
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     In Table 1, Comparing composite Chebyshev, CAS 

wavelet, differential transformation, improved 

homotopy perturbation, sequential, and composite 

Chebyshev methods producing absolute errors in 

solutions. Table 1 demonstrates how closely the results 

of the current methodology approach the exact 

solution. 

Example 2 

     Consider the first order integro-differential equation 

of Fredholm type [16, 17, 19 and 20] 

  ( )    
 

 
  ∫  ( )  

 

 

                

with initial condition  ( )     The exact solution to 

this problem is  ( )   . 

 

Example 3 

      Consider the Fredholm integro-differential equation 

of first order [21, 22] 

  ( )            ∫ ( )  

 

 

                

with initial condition  ( )     The exact solution to 

this problem is  ( )     . 

Similarly, Table 3 and Fig. 1 exhibit the numerical 

solution of OAFM, block pulse functions, and the 

provided technique for Example 3. together with the 

absolute errors. It is evident that, when compared to 

the other two methods, our method is more accurate. 

 

 

Table 1. Caparison of the Absolute error for present method with        .and some existing method 

 

  

Absolute errors 

 

CAS wavelet 

method 
[16]

 

 

DT method 
[17]

 

 

Improved 

homotopy 

perturbation 
[18]

 

  

Sequential Bases 

approach 
[19]

 

 

A new Schauder 

bases 
[20]
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0.2 

0.3 
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  6.34569244        

  8.97251194        

  8.30585546        

  2.92574121        

  9.08359580        

  5.81364121       

  3.69494696       

  2.93069440        

  3.47676839       

 
Table 2. Comparison of the absolute errors for Example 2 determined using the proposed methods versus a different 
method.  

 

  

Absolute errors 

 
CAS wavelet method 

[13]
 

 
DT method

[14]
 

 
The method 

[14]
 

 
Schauder bases 

[16]
 

 
A new 

Schauder bases 
[17]

 

 
Present method 

0.1 

0.2 

0.3 

0.4 

0.5 
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0.8 
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3.7900       

1.5160       

3.4110       

6.0640       

9.4750       

1.3644       

1.8571       

2.4256       

3.0699       

9.6605       

6.0920       

5.5695       

8.0930       

2.6125       

6.0030       

1.3896       

1.7810       

1.3004       
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Table 3. The numerical approximation and absolute errors for Example 3 using the proposed methods vs a different 

method. 

 

 

  

 
Exact solution 

 
method 

[21]
 

 
OAFM

[22]
 

 
Presented 

method 

Absolute errors 

method 
[21]

 OAFM 
[22]

 Presented method 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.904837418 

0.818730753 

0.740818221 

0.670320046 

0.606530660 

0.548811636 

0.496585304 

0.449328964 

0.406569660 

0.910993 

         

         

0.666636 

0.588375 

0.552766 

0.487894 

0.458378 

0.404606 

0.904837 

0.818731 

         

0.670320 

0.606530 

0.548812 

0.496585 

0.449329 

0.406570 

0.904837418 

0.818730753 

0.740818221 

0.670320046 

0.606530660 

0.548811636 

0.496585304 

0.449328964 

0.406569660 

6.15558e-03 

1.47258e-02 

1.45058e-02 

3.68405e-03 

1.81557e-02 

3.95436e-03 

8.69130e-03 

9.04904e-03 

1.96366e-03 

4.18036e-07 

2.46922e-07 

2.20682e-07 

4.60356e-08 

6.59713e-07 

3.63906e-07 

3.03791e-07 

3.58828e-08 

3.40259e-07 

              

              

              

              

              

              

              

              

              

 

 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Absolute error comparison for Example 3 with M=1,N=2 for the presented method with method 
[21]

 and OAF 
method 

[22] 
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5. Conclusion 

       This study attempts to numerically solve the linear 

Fredholm integro-differential equations using the hybrid 

Bernstein and improved block-pulse functions presented 

in [15, 25]. The proposed (HBIBPFs) are tested for accuracy 

and applicability using illustrative examples. According 

to the numerical results, the proposed hybrid 

approach's accuracy is superior to that of composite 

Chebyshev, CAS wavelet, improved homotopy 

perturbation, sequential, and composite Chebyshev 

methods and new Schauder bases. The method is 

particularly promising for handling more diversified 

nonlinear integro-differential equations that the authors 

are researching, as evidenced by the numerical findings. 
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