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Abstract 

This research introduces a new method for controlling the linear positioning of a car powered by a DC motor with 

armature control, focusing on enhancing the parameters of the controller that is used to control the position of 

the car. The study employs the ADAM (Adaptive Moment Estimation) optimization algorithm and integrates the 

Balloon effect (BE) to improve the traditional ADAM algorithm's response, particularly against external 

disturbances and changes in system parameters. The proposed method includes an objective function dependent 

on the altered controller gain values and the determined value of the motor’s open-loop transfer function. The 

system's performance with the proposed controller is evaluated under various conditions, including step load 

disturbances and variations in motor parameters. Both simulation and experimental results validate that the 

adaptive controller, utilizing the modified ADAM algorithm, significantly enhances the system’s performance, 

particularly in mitigating load disturbances and uncertainties in system parameters. 

Keywords: DC motor, ADAM optimization algorithm, Balloon Effect, Adaptive control  

Introduction  

DC motors are extensively utilized across diverse industries and applications because of their distinct qualities and 

adaptability. These motors play a crucial role in numerous devices and systems by transforming electrical energy 

into mechanical energy [1] [2]. The advantages of DC motors include Speed Control: DC motors offer excellent 

speed control capabilities. High Starting Torque: DC motors deliver high starting torque, enabling them to quickly 

accelerate heavy loads. Compact Size: DC motors are relatively compact and lightweight compared to other motor 

types Reversibility: DC motors can change their direction of rotation by simply reversing the polarity of the applied 

voltage. 

In spite of their positive electrical and mechanical qualities, DC motors fall short of being perfect machines and 

come with certain drawbacks. These include Commutator and Brushes: These components can wear out over time, 

requiring regular maintenance and potentially causing issues such as sparking and brush noise Limited Speed 

Range: While DC motors offer excellent speed control, they have a limited speed range compared to some other 

motor types Complex Control Systems: Achieving precise speed and torque control in DC motors often requires 

complex control systems [3] [4] 
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their diverse range of applications DC motors are extensively utilized in fields like Electric vehicles: DC motors 

power electric cars, buses, and bicycles, offering efficient and reliable propulsion. Industrial machinery: DC motors 

drive conveyor systems, cranes, pumps, and various types of heavy machinery. Robotics: DC motors are used in 

robotic arms, grippers, and joints, providing precise and controlled movements, industrial automation, and 

renewable energy systems[5], [6]. They are commonly found in conveyor belts, pumps, fans, and compressors. 

Their high torque capability makes them suitable for driving heavy machinery and vehicles.  

The PID controller is widely recognized and utilized in various industries due to its simplicity and effectiveness in 

enhancing both steady state and transient performance [7] PID has proven to be effective in various uses, one of 

which is its application in controlling DC motors [8],[9]. In practical operating conditions, controllers with fixed 

parameters that are designed according to typical operating conditions might not be applicable, thus requiring the 

implementation of online tuning techniques for PID (Proportional-Integral-Derivative) controllers.  

Numerous examples of online tuning for PID controllers exist, providing valuable insights and references into this 

process. These examples encompass a range of techniques and methods aimed at achieving optimal control  

Nomenclature  

Symbol                                       Variable                                                                         Symbol                                       Variable                                        
 
 𝑅                                                 random value from 0 to 1                                           𝑟𝑚𝑝                                              motor pinion radius                                                                                

 𝐽                                                  Number of designed variables                                    𝐾𝑔                                               planetary gearbox ratio 

 𝐾                                                 population size                                                              𝑇𝑎𝑖                                                armature inertial torque 
 𝐼                                                  Number of iterations                                                    𝐽𝑚                                                rotor moment of inertia 
 𝑋 (𝑆)                                          the position of the car                                                  𝐾𝑡                                                motor torque constant  
 𝑉𝑚(𝑆)                                        motor voltage                                                                 𝜁𝑚                                                 Efficiency of the motor 
 𝐼𝑚                                                 motor current                                                                𝑉𝑚                                                voltage motor                  

 𝑅𝑚                                              electric resistance of the motor                      ADAM                                  Adaptive Moment Estimation 

 𝐿𝑚                                               Inductance of the motor                                   BE                                     Balloon Effect 
 𝐸𝑒𝑚𝑓                                            back electromotive force voltage                      Go(s)                                    Nominal transfer function 

 𝐾𝑡                                                Motor torque constant 
 𝑀                                                The total mass of the car system 
 𝐹𝑎𝑖                                               armature rotational inertial force 
 𝐹𝐶                                                Car driving force produced by the motor 
 𝐵𝑒𝑞                                               equivalent viscous damping coefficient 

 𝜁
𝑔

                                                efficiency of gearbox 

 

performance for diverse systems. Here are a few prominent ones Zeigler-Nichols Method: A widely used approach 

for PID tuning involving step response analysis and relay feedback. It determines controller parameters based on 

the system's ultimate gain and oscillation period[10] atom search optimization (ASO): A controller tuning method 

focused on achieving specific performance criteria by considering process time constant and delay[11] Tyreus-

Luyben Method: An extension of the Zeigler-Nichols Method that incorporates frequency response analysis. It 

improves performance by using the integral of the absolute error criterion (IAE) instead of the traditional squared 

error (ISE) [12] enhanced Bacterial Foraging Optimization (BFO) [13], [14], have been proposed to compute optimal 

parameters for the PID controller 
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Online tuning of PID parameters is possible, as shown in [15] which utilized genetic algorithms to successfully fine-

tune PID parameters specifically for a continuous stirred tank reactor application. Additionally, neural networks 

have proved invaluable in addressing the adaptive control challenge for switched stochastic non-lower nonlinear 

triangular systems, as discussed in [16]. While these controllers have yielded favorable results, there is room for 

exploring and constructing novel algorithms to augment the effectiveness of adaptive controllers even further. 

The ADAM algorithm, short for Adaptive Moment Estimation, is a popular and powerful optimization algorithm 

commonly used in the field of deep learning. It was first introduced by Diederik Kingma and Jimmy Ba in their 2015 

ADAM combines the benefits of two other popular optimization algorithms, namely, Adaptive Gradient Algorithm 

(AdaGrad) and Root Mean Square Propagation (RMSProp). It aims to overcome their limitations while offering fast 

and efficient convergence during the training of neural networks [17]. It has been successfully applied in different 

domains, including Deep Learning: ADAM is widely employed in training deep neural networks. Its ability to handle 

large-scale datasets and intricate model architectures has made it a go-to optimization algorithm [18], Natural 

Language Processing: ADAM has been applied to various tasks in NLP, such as language modeling, machine 

translation, and sentiment analysis. Its robustness and good generalization capabilities make it a reliable choice in 

these domains [19], Computer Vision: ADAM finds extensive use in image classification, object detection, and 

image generation tasks [20], Recommender Systems: ADAM is employed for optimizing collaborative filtering and 

matrix factorization models in recommendation systems [21]  

Furthermore, BE serves the objective of augmenting the prowess of optimization algorithms when it comes to 

delicately adjusting the parameters of a controller. This, in turn, amplifies its aptitude in effectively addressing 

challenges within a system, such as handling load disturbances and uncertainties associated with system 

parameters. The incorporation of this functionality is evident in the electro-search algorithm, which is deployed 

for adaptive load frequency control (as highlighted in [22]). Additionally, the water cycle algorithm (WCA) 

supported with BE for position control of a DC motor (as elaborated upon in [23]). 

This study explores the application of a customized ADAM optimization technique to refine the gains of a position-

velocity (PV) controller for an armature-controlled DC motor used in a car. Initially, the PV gains are determined 

using a conventional ADAM algorithm. However, in order to further enhance the performance of the system, the 

ADAM technique is customized by introducing a specific objective function (OF). The goal of this objective function 

is designed to minimize rise time, overshoot and settling time, thereby improving the overall system response. 

Although the classical ADAM method shows promising results, it may not always provide the optimal response in 

the presence of external disturbances or uncertainties in internal parameters. This limitation arises from the 

utilization of a predefined nominal system transfer function Go(S) when designing the objective function. To 

overcome this issue, the Balloon Effect (BE) is incorporated to augment the algorithm's sensitivity to system 

disturbances and uncertainties The manuscript provides the following contributions: 

- The study proposes an adaptive position control method that utilizes ADAM optimization technique with support 

from BE. 

- The suggested control method demonstrates efficient handling of system problems. 
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- As far as the authors are aware, this is the initial occurrence of ADAM and BE being employed in tandem as an 

adaptable position controller for a cart propelled by a DC motor. 

2. Problem analysis  

Different optimization techniques are utilized to address adaptive control challenges in various scenarios. These 

algorithms are commonly employed for parameter tuning of neural network or fuzzy controllers, as highlighted 

in references [24] and [25]. In such cases, the objective function is based on the error value of the controlled 

variable. 

Furthermore, there have been efforts to directly apply optimization techniques for parameter tuning of adaptive 

controllers, as suggested in references [26] and [27]. However, these attempts use time response characteristics 

such as rise time, overshoot and settling time to build the objective function (e.g.,𝐽min = ∑(𝑀𝑝
 + 𝑇𝑟

 + 𝑇𝑠
 ). This 

approach has a drawback as 𝑀𝑝, 𝑇𝑠
 , and 𝑇𝑟

  are dependent on the nominal system parameter values, which poses 

challenges for time-variant systems. 

A recent solution to address this issue is the introduction of a modification called the Balloon Effect (BE), 

described in references [22] and [23]. By integrating the BE modification, the objective function gains the ability 

to engage with recently updated parameter variations and other alterations in the system. In essence, the 

incorporation of the BE modification empowers straightforward optimization algorithms to efficiently fine-tune 

control parameters across a wide range of practical and industrial domains, spanning load frequency control, 

motor control and beyond 

2. ADAM optimization algorithm (ADAM) 

The Adam optimization algorithm is a highly efficient stochastic optimization method that achieves exceptional 

performance while utilizing only first-order gradients and conserving memory. It accomplishes this by dynamically 

calculating adaptive learning rates for each parameter, relying on estimations of the first and second moments of 

the gradients. The acronym "Adam" represents adaptive moment estimation, which amalgamates the strengths of 

two renowned techniques: AdaGrad, known for its efficiency with sparse gradients, and RMSProp. In our 

explanation, we establish clear connections between Adam and these and other stochastic optimization methods. 

One prominent advantage of Adam is its ability to maintain consistent magnitudes for parameter updates, 

regardless of gradient rescaling. Moreover, its step sizes are approximately bound by the step size hyperparameter. 

Unlike some methods, Adam does not necessitate a stationary objective, allowing it to adapt flexibly to evolving 

scenarios. Additionally, it adeptly handles sparse gradients and inherently introduces a form of step size annealing. 

[17]. 

2.1. Mathematical Representation: 

ADAM maintains a set of adaptive learning rates for each parameter in the model. Let θ represent the parameters 

to be optimized, and 𝑔𝑡denotes the gradient of the objective function with respect to θ at time step t. The ADAM 

update rule can be represented as follows: 

1. Initialize each of 
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• time step t = 0. 

• the first moment vector (m) with zeros 

• the second moment vector (v) with zeros 

• the parameters to be optimized (θ). 

2. While the stopping criterion is not met, do: 

   a. Increment the time step (t). 

   b. Compute the gradients (g) of the objective function with respect to the parameters. 

   c. Update the first moment estimates: 

𝑚𝑡  =  β1 m(𝑡−1) +  (1 −  β1)  𝑔𝑡                                                                                                                                                 (1) 

   d. Update the second moment estimates: 

𝑣𝑡  =  β2  v(𝑡−1) +  (1 − β2) 𝑔𝑡
2                                                                                                                                                      (2) 

3. compensate for the bias of the initial moment estimates, ADAM applies bias correction: 

m̂ =
𝑚𝑡

1− β𝑡
1

                                                                                                                                                                                               (3) 

v̂ =
𝑣𝑡

1− β𝑡
2

                                                                                                                                                                                                 (4) 

where (t) is the current time step. These bias-corrected moment estimates are then used to update the 

parameters: 

θ =  θ – (α 
 m̂

√v+ε
)                                                                                                                                                                                 (5) 

In the above representation, α is the learning rate, β₁ and β₂ are hyperparameters controlling the exponential 
decay rates for the first and second moment estimates, respectively, ε is a small value added for numerical 
stability, g² represents element-wise squaring of the gradients 

The ADAM optimization algorithm combines adaptive learning rates with momentum to efficiently optimize 
parameters in deep learning models. By maintaining adaptive moment estimates of the gradients, ADAM adapts 
the learning rate for each parameter individually, leading to faster convergence and better generalization 
performance. Its effectiveness and widespread adoption in various domains have made ADAM a popular choice 
in the deep learning community [18]. 

The following conventional ADAM algorithm notes are taken into consideration:  

The traditional ADAM algorithm utilizes a matrix format to represent solutions. The size of the matrix is 
determined by multiplying the number of design variables by the population size. This expanded matrix enables 
the calculation of the highest and lowest solution values using the newly created solutions. To ensure stability 
during the initial stages of the system, it is recommended to initialize the values of the same design variable in 
proximity to each other. This practice mitigates excessive switching and instability issues. It’s important to note 
that a larger population size and an increased number of iterations in the ADAM algorithm can lead to slower 
performance and compromise real-time characteristics. To address this, it is advisable to impose limitations on 



 
 

( ASWJS / Volume4, issue 2 /June 2024)                                                                                                                             P a g e  125 

 

(ASWJST 2021/ printed ISSN: 2735-3087 and on-line ISSN: 2735-3095)                              https://journals.aswu.edu.eg/stjournal  
 

 

the number of iterations that may not necessarily produce the best solution but still outperform the standard 
algorithm.  

By preserving the optimal solution for future iterations, ADAM achieves improved and faster solutions. This 
strategy enhances the algorithm's capability to converge towards better solutions over time. 

ADAM is a widely utilized algorithm in adaptive control, particularly for tuning different types of controllers like 
the PID controller tuning mentioned in Reference [28]. Fig. 1 illustrates an example implementation of ADAM for 
fine-tuning gains of the controller. In this scenario, the objective function of ADAM is formulated based on the 
closed-loop system’s time response characteristics, including metrics like maximum overshoot (MP), rise time (Tr) 
and settling time (Ts). These evaluation parameters are influenced by the damping ratio (η) and natural frequency 
(ωn) which are in turn defined as functions within the initial open-loop transfer function Go(S). As depicted in Fig 
1, during each iteration, Go(S) is determined according to two key concepts:  

1) maintaining a disturbance equal to zero,  
2) and using initial system parameters.  

As a result, when using ADAM for adaptive control directly, the traditional ADAM method does not possess the 
capability to handle real-time variations in variable disturbances or system parameters. This deficiency 
represents a drawback in the conventional implementation of ADAM for adaptive control concerns. 

Fig. 1 traditional BOA system with open loop representation 

2.2. ADAM with BE 

To enhance the ADAM algorithm's capability in dealing with external disturbances or fluctuations in plant 

parameters, an additional component called BE has been introduced. The modified ADAM aims to improve its 

adaptability to external disturbances or variations in system parameters that may arise during any iteration. The 

concept of BE is illustrated in Fig. 3, while Fig. 2 showcases the depiction of the transfer function of system’s 

open loop representation used in the modified ADAM algorithm at a specific iteration (i). The adjusted ADAM 

algorithm can be defined as follows: 

1) At each iteration, the plant input 𝑈𝑖and plant output 𝑌𝑖 are used to feed the ADAM optimizer  

2) 𝑈𝑖and 𝑌𝑖 may be used to determine the on-time transfer function. 

ADAM 
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         𝐺𝑖(S) =
𝑌𝑖 

𝑈𝑖
                                                                                                                                                                                          (6)                                                                        

      3) The relation between 𝐺𝑖(S) and 𝐺𝑖−1(S) 

         𝐺𝑖(S) = 𝐴𝐿𝑖 ∗𝐺𝑖−1(S)                                                                                                                                                                       (7)        

      4)– Relation between 𝐺𝑖(S)  and 𝐺𝑜(S) can be expressed as: 

        𝐺𝑖(𝑆) = 𝐴𝐿𝑖 ∗𝐺𝑖−1(𝑆)(∏  𝑖
𝑛=1 𝐴𝐿𝑛) ∗𝐺𝑜(𝑆)                                                                                                                                     (8) 

Fig. 2 System with considering open loop representation for ADAM with BE 

The parameter 𝐴𝐿𝑖  signifies the influence of disturbances and variations in the parameters of the studded system 

during iteration (i). The shape of 𝐺𝑖(S)  is directly influenced by the value of 𝐴𝐿𝑖, which is in turn affected by the 

uncertainties and disturbances present in the system. This phenomenon can be imagined as a balloon contracting 

or expanding in response to changes in air pressure, as illustrated in Fig. 3                                                                                                                                        

 

Fig. 4 presents a flowchart outlining the utilization of ADAM with BE, an adaptive control technique suitable for a 

range of industrial applications including power system control and machine control. By referring to Eq. (8), the 

value of 𝐺𝑖(S) is determined by both 𝐺𝑜(S) and (∏  𝑖
𝑛=1 𝐴𝐿𝑛),  which encapsulates the impact of system issues. 

Consequently, the effectiveness of ADAM is influenced by the presence of system disturbances and uncertainties, 

leading to varied performance. In essence, the incorporation of BE in the control process enhances the sensitivity 

 

Fig. 3 Idea of ADAM with BE 
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of the objective function (OF) to system changes, thereby optimizing the efficiency of the control process facilitated 

by ADAM+BE for such scenarios. 

 

3. studded System  

 This manuscript zooms on a particular system illustrated in Fig. 5. It revolves around a cart maneuvered by an 

armature-controlled DC motor. The cart consists of an aluminum mass that glides along a shaft equipped with a 

linear bearing. The underlying movement is powered by a track-located DC motor, which is linked to a pinion 

mechanism aligned with a planetary gearbox [29]. 

Fig. 5 Studied cart moved by DC motor 

Fig. 4 Flowchart of Modified ADAM with BE 
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The car's system's behavior may be represented by an open loop transfer function, which is as follows: 

𝐺(𝑆) =
𝑋(𝑆)

𝑉𝑚(𝑠)
                                                                                                                                                                                            (9) 

with reference to the Newton's second law: 

 𝑀(
𝑑2

𝑑𝑡2 𝑥(𝑡)) + 𝐹𝑎𝑖(𝑡) = 𝐹𝑐(𝑡) − 𝐵𝑒𝑞(
𝑑

𝑑𝑡
𝑥(𝑡))                                                                                                                                   (10)

  

 to provide the armature inertial torque by:  

𝐹𝑎𝑖 =
𝜂𝑔𝐾𝑔𝑇𝑎𝑖

𝑟𝑚𝑝
                                                                                                                                                                                          (11) 

By utilizing Newton's second law, one can determine that: 

𝐽𝑚(
𝑑2

𝑑𝑡2 𝜃𝑚(𝑡)) = 𝑇𝑎𝑖(𝑡)                                                                                                                                                                           (12) 

The mechanical arrangement of the car's rack and pinion system can be calculated as: 

𝜃𝑚 =
𝐾𝑔𝑋

𝑟𝑚𝑝
                                                                                                                                                                                          (13) 

The motor's driving force 𝐹𝑐 can be calculated using: 

𝐹𝑐 =
𝜂𝑔𝐾𝑔𝑇𝑚

𝑟𝑚𝑝
                                                                                                                                                                                          (14) 

The DC motor's torque can be stated as follows: 

`𝑇𝑚 = 𝜂𝑚𝐾𝑡𝐼𝑚                                                                                                                                                                                          (15) 

Furthermore, the angular velocity of the motor may be written as: 

𝜔𝑚 =
𝐾𝑔(

𝑑

𝑑𝑡
𝑋(𝑡))

𝑟𝑚𝑝
                                                                                                                                                                           (16) 

Fig .6 depicts the armature circuit of a typical DC motor. This electrical circuit's use of Kirchhoff's voltage law is 

illustrated as: 

𝑉𝑚 − 𝑅𝑚𝐼𝑚 − 𝐿𝑚(
𝑑

𝑑𝑡
𝐼𝑚) − 𝐸𝑒𝑚𝑓 = 0                                                                                                                                               (17) 

Fig.6 the DC motor's armature circuit 
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By ignoring the motor's inductance, we get  𝐼m  

Table 1  studded Values of system parameters 

 

 

 

Finally, the motor's (TF) can be determined as: 

    

 

 

Fig.  presents the block diagram, providing comprehensive information about the under-study armature-controlled 

DC motor. Detailed data regarding the system components can be found in  

 [29]. Additionally,                                              Fig. 7 Block diagram showing how the employed DC motor is designed 

Table 2 displays the maximum values associated with the electrical motor.                                    

 

                                             Fig. 7 Block 

diagram showing how the employed DC 

motor is designed 

Table 2 Maximum electrical motor parameter values 

 

 

 

 

𝐼𝑚 =
𝑉𝑚 − 𝐸𝑒𝑚𝑓

𝑅𝑚

 (18) 

𝐺(𝑆) =
𝑟𝑚𝑝𝜂𝑔𝐾𝑔𝜂𝑚𝐾𝑡

(𝑅𝑚𝑀𝑟𝑚𝑝
2 + 𝑅𝑚𝜂𝑔𝐾𝑔

2𝐽𝑚)𝑆2 + (𝜂𝑔𝐾𝑔
2𝜂𝑚𝐾𝑡𝐾𝑚 + 𝐵𝑒𝑞𝑅𝑚𝑟𝑚𝑝

2 )𝑆
 (19) 

Symbol value Symbol value 

 𝑉  6 V  𝐼  1 A 

 𝐹  50 HZ Ω 628.3 rad/sec 

Symbol value Symbol value 

 𝑉  6 V  𝐼  1 A 

 𝐹  50 HZ Ω 628.3 rad/sec 

Symbol value Symbol value 

 𝜁𝑔  100%  𝑟𝑚𝑝 6.35*10−3 M 

 𝜁𝑚  100%  𝐾𝑔 3.71 

 𝐾𝑡 7.67*10−3 N.m/A  𝑅𝑚 2.6 ohm 

𝑀 0.97 Kg  𝐽𝑚 3.9*10−7 Kg. 𝑚2 

Symbol value Symbol value 

 𝑉  6 V  𝐼  1 A 

 𝐹  50 HZ Ω 628.3 rad/sec 
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4. adaptive control of the studded system using ADAM algorithm 

In Fig. 8, we can observe the structure of the PV controller, and 𝐺(𝑆) represents a schematic of the studded DC 

motor. The parameters 𝐾𝑝0 (the initial value of 𝐾𝑝)  and 𝐾𝑣0 (the initial value of 𝐾𝑣)  can be denoted as:  

𝐾𝑣0 = 5.532 V.sec/m and 𝐾𝑝0  = 274.62 V/m. These specific values have been chosen to achieve system 

parameters including 0.15 seconds rise time and a 10% overshoot. The objective of ADAM optimization is to 

precisely adjust the gains 𝐾𝑝 and  𝐾𝑣 of the PV controller. 

Fig. 8 structure of the PV controller 

4.1. Traditional ADAM for optimizing PV controller 

Fig.  depicts a position controller for the studded motor utilizing the traditional ADAM optimization method. In 

order to optimize ADAM's objective function, it is necessary to determine the closed-loop transfer function of the 

system using Equation (19) while taking into account the nominal data provided in  

. Subsequently, further steps can be undertaken :  

𝐺𝑜(S) =
2.46

𝑠2+17.13𝑠
                                                                                                                                                                                    (18) 

And the feedback transfer 

function may be expressed as 

follows, as seen in Fig .9: 

𝑋𝑖

𝑋𝑑𝑖
=

2.46∗𝐾𝑝𝑖

𝑆2+(17.13+2.46∗𝐾𝑣𝑖)𝑆+(2.46∗𝐾𝑝𝑖)
 
 

                                                                                                                                                  (19) 

Considering Eq. (21), it is worth mentioning that 𝜔𝑛𝑖, 𝜂𝑖 , 𝑇𝑟𝑖 ,𝑇𝑠𝑖 , 𝑀𝑝𝑖and  𝐽min   will solely depend on the newly 

updated values of PV controller gains 𝐾𝑝𝑖 and 𝐾𝑣𝑖 throughout all iterations. 

4.2. ADAM with BE for optimizing PV controller 

Symbol value Symbol value 

 𝑉  6 V  𝐼  1 A 

 𝐹  50 HZ Ω 628.3 rad/sec 
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In Fig .9, you can observe the implementation of the adaptive position control system using the innovative ADAM 

algorithm that incorporates BE. During each iteration, the closed-loop transfer function value of the system can 

be computed by utilizing equations (8) and (19), while referring to the configuration depicted in     Fig .9. The 

computation process is as outlined below: 

𝑋𝑖

𝑋𝑑𝑖
=

2.46∗(∏  𝑖
𝑛=1 𝐴𝐿𝑛)∗𝐾𝑝𝑖

𝑆2+(17.13+2.46∗𝐾𝑣𝑖 ∗(∏  𝑖
𝑛=1 𝐴𝐿𝑛))𝑆+(2.46∗𝐾𝑝𝑖 ∗(∏  𝑖

𝑛=1 𝐴𝐿𝑛))
 
 

                                                                                                     (20) 

Where  

 

𝜔𝑛𝑖 = √2.46 ∗ (∏  𝑖
𝑛=1 𝐴𝐿𝑛)𝐾𝑝𝑖

 
   

Fig. 9 Block schematic of the controller-equipped system 

And  

 
 

𝜂𝑖 =
(17.13 + 2.46 ∗ 𝐾𝑣𝑖

∗ (∏  𝑖
𝑛=1 𝐴𝐿𝑛))

2 ∗ 𝜔𝑛𝑖

 

The parameters 𝑀𝑝𝑖, 𝑇𝑟𝑖 and 𝑇𝑠𝑖 for the second-order closed-loop system are calculated using the values 𝜔𝑛𝑖 and 

𝜂𝑖. The minimum objective function, 𝐽min  , in ADAM+BE is influenced by 𝐾𝑝𝑖, 𝐾𝑣𝑖, and the term (∏  𝑙
𝑛=1 𝐴𝐿𝑛), which 

represents system disturbances and parameter variations. 
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The correlation between the problem and the algorithm can be understood as stated below: In each iteration, the 

ADAM algorithm with BE receives input 𝑈𝑖and the output 𝑋𝑖 from the plant. These signals are used to calculate 𝐺𝑖(𝑆)  

using Equation (2), while the previously stored value of 𝐺𝑖−1(𝑠)  is used to determine 𝐴𝐿𝑖. This value, along with 

its accumulated historical values, is used to calculate (∏  𝑙
𝑛=1 𝐴𝐿𝑛). At the same time, within the ADAM algorithm 

loops, candidate values of K_pi and K_vi are computed. These values are then combined with (∏  𝑙
𝑛=1 𝐴𝐿𝑛)to 

determine the parameters 𝑀𝑝𝑖, 𝑇𝑟𝑖  and 𝑇𝑠𝑖 for the time response. 

These parameters are used to evaluate the value of the objective function, 𝐽min  which ultimately determines the 

optimal and final values of 𝐾𝑝𝑖and 𝐾𝑣𝑖. These values are then passed to the Simulink program as part of the PV 

controller. The Simulink program generates control signals that are sent to the physical process via a Data 

Acquisition card. 

The effectiveness of the proposed control scheme relies on the specifications of the computer used, including 

factors such as the speed of the processor, cache memory, and RAM capacity. 

Simulation results 

Table 3 provides a list of the parameters for the ADAM algorithm. The selected objective function for this 

implementation is: 

𝐽min = ∑(𝑀𝑝
2 + 𝑇𝑟

2 + 𝑇𝑠
2) 

The proposed control algorithm for the DC motor system was implemented using the Simulink package in 

MATLAB, which served as the simulation environment 

Table 3 Selected parameters of ADAM 

 

 

 

 

 

beta1 ADAM hyperparameter  

beta2 ADAM hyperparameter  

m_ 𝐾 𝑝 & m_ 𝐾𝑣 First moment estimate for both  𝐾𝑝and 𝐾𝑣. 

v_ 𝐾 𝑝 & v_ 𝐾𝑣 Second moment estimate for both  𝐾𝑝and 𝐾𝑣 

Initial_ position Initial position for gradient descent  
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In this research, the physical disruption was substituted with a comparable voltage for the purpose of measuring. 

The method of combining point movement, shown in Fig 10, was employed to accomplish this. The system being 

studied underwent testing for both sudden changes in the desired input and sudden load disturbances. To evaluate 

the influence on the suggested system, an equivalent load disturbance, illustrated in Fig 11, was introduced. It 

commenced at t=3 seconds and concluded at t=5 seconds, with a value of 0.95 volts. The signal for the desired 

motor position began at 1.5 seconds, with an initial displacement of 15 mm, and ended at 6 seconds 

 

Fig. 10. The option of sum point movement 

The performance of two different systems was compared: one with a controller tuned using the classical ADAM 

algorithm, and the other with a traditional PV controller. Based on the results shown in Fig 12, it was observed that 

using the PV controller tuned by the normal ADAM algorithm reduced overshoot by approximately 30% compared 

to the fixed parameters PV controller. Another comparison was made between systems utilizing the classical ADAM 

algorithm and the modified ADAM algorithm with BE during load disturbance and step reference change, with 

corresponding results shown in Fig 13 and Fig 14. 

Fig 13 demonstrates that the proposed ADAM algorithm with BE achieved a rise time of around 0.06 seconds, while 

the normal ADAM algorithm resulted in a rise time of approximately 0.2 seconds. The adaptive PV controller, tuned 

by the proposed ADAM algorithm with BE, also exhibited improved overshoot during step disturbance. Detailed 

parameters can be found in Table 4. 
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Table 4 highlights that the proposed ADAM algorithm with BE yielded the best values for overshoot, rise time, and 

settling time compared to the conventional PV controller. However, when comparing the system with the classical 

ADAM algorithm, it was found to have better overshoot but similar rise time and settling time. Both Fig 12 and Fig 

14 demonstrate that the suggested adaptive PV controller, tuned by either the normal ADAM algorithm or the  

Fig. 11 Load disturbance 

 

modified ADAM algorithm with BE, effectively addressed the issue of load disturbance. Furthermore, the 

performance of the modified ADAM technique surpassed other. 

 

Fig.12 the outcome of tunning PV controller using conventional BOA in the event of a load disturbance 

The performance of the proposed ADAM algorithm with BE outperforms the normal ADAM algorithm, as 

demonstrated in Fig. 14. This figure illustrates the tuned values of 𝐾𝑝 and  𝐾𝑣 using both the normal ADAM  

Fig. 13 the outcome of tunning PV controller using conventional ADAM/ADAM+BE in the event of a load disturbance. 

algorithm and the proposed ADAM algorithm with BE. It visually represents the significant effort made by the 

proposed scheme to adjust 𝐾𝑝 and  𝐾𝑣 in order to effectively address system problems. 
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Table 4 Time response parameters 

 

 

 

 

Fig. 14 the outcome of tunning PV controller using conventional ADAM/ADAM+BE in the event of a load disturbance 

Experimental results  

 Fig. 15 shows the actual implementation of the proposed car, which is driven by a DC motor. The communication 

between MATLAB running on a PC and the DC motor was facilitated through the QPIDe data acquisition card and 

the QuanserVoltPAQ voltage amplifier unit. To determine the position, a single-ended optical shaft encoder was 

utilized as a sensor [29]. The hardware setup is depicted in Fig. 16. 

The experimental setup replicated the same test cases used in the simulation. The results obtained from the 

experiments are presented in Fig .17, Fig .18, and Fig .19. Fig .17 illustrates the system responses for both the 

classical and tuned PV controllers. It is evident that the suggested adaptive technique had a positive impact on 

the system's response to step load changes and step inputs. Using the normal ADAM algorithm, the overshoot 

was reduced by approximately 35% compared to the conventional PV controller. 

 𝑴𝒑 𝑻𝒓(sec) 𝑻𝒔(sec) 

Conventional PV  2.3% 0.2 0.4 

Normal BOA 1.1% 0.2 0.4 

BOA+BE 1% 0.06 0.32 
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  Fig. 15 The proposed system using digital MATLAB controller 

 

 

 

Furthermore, Fig .18 highlights the superiority of the system with the modified ADAM algorithm with BE over the 

system with the normal ADAM algorithm when subjected to load disturbance. It is evident that the system 

response using the modified ADAM algorithm with BE is smooth and stable, while the system response using the 

normal ADAM algorithm exhibits poor performance during the initial three seconds, accompanied by high ripples. 

Fig. 16 Experimental setup 

Fig. 19 The proposed system using digital MATLAB controller 

Fig. 19 The result of adaptive PV controller with normal / modified ADAM, In case of load disturbance 

Fig. 18 The result of adaptive PV controller with normal / modified ADAM, In case of load disturbance 

Fig. 17 The result of the system with conventional /adaptive PV controller 
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Based on the experimental findings, it is evident that the system utilizing the PV controller tuned by the proposed 

ADAM algorithm with BE exhibits greater resilience compared to the system employing the controller tuned by the 

traditional ADAM technique. To further scrutinize and compare the optimization between ADAM and ADAM with 

BE, specific time instances (t = 3 sec. and t = 5.5 sec.) were selected for the optimization evaluation. The comparison 

data was recorded and displayed using program code, as shown in Table 5. 

The data presented in Table 5 serves as evidence that the adaptive controller tuned by ADAM with BE 

demonstrates superior performance in terms of 𝑀𝑝 (maximum overshoot), 𝑇𝑟 (rise time), 𝑇𝑠 (settling time), and 

ISE (integral square error) during critical moments such as the onset and cessation of step load disturbances, in 

contrast to the system with the adaptive controller tuned by the classical ADAM algorithm. 

Table 5 An optimization comparison between ADAM and ADAM + BE 

 

Conclusions 

In summary, this research paper introduces an adaptive control technique that employs the ADAM optimization 

algorithm enhanced by BE. The main objective was to utilize this control method to adjust the gains of the PV 

controller, enabling precise control over the linear position of a cart propelled by a DC motor. By incorporating BE 

into the ADAM algorithm, the control technique underwent significant enhancement, enhancing its ability to 

handle load disturbances and uncertainties in system parameters. Moreover, the integration of BE in the ADAM 

algorithm resulted in overall improvement in essential system characteristics, including overshoot, settling time, 

and rise time. To evaluate the performance of the proposed adaptive controller using ADAM with BE, rigorous 

testing during external step disturbances was conducted, revealing exceptional and noteworthy outcomes. A 

comprehensive comparison was also carried out between the system employing the modified ADAM algorithm 

and the system utilizing the conventional ADAM algorithm, taking into account external disturbances and changes 

in system parameters. Consistently, both simulation and experimental results affirmed the superiority of the 

system with the proposed ADAM with BE across all examined scenarios with the presence of some limitations like  

Complexity, Implementing the ADAM algorithm with the Balloon effect may increase the complexity of the 

controller tuning process, requiring a deeper understanding of both algorithms and their interactions and 

Sensitivity to Hyperparameters, The performance of the ADAM algorithm and the Balloon effect can be sensitive 

to their respective hyperparameters, requiring careful tuning to achieve optimal results. 
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