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STARLIKE AND CONVEX FUNCTIONS ASSOCIATED WITH

HYPERGEOMETRIC MATRIX FUNCTIONS

SAURABH PORWAL, OMENDRA MISHRA

Abstract. The purpose of the present article to obtain some sucient con-

ditions for the hypergeometric matrix function belonging to certain classes of

starlike and convex functions. Finally, we discuss an integral operator associ-
ated with this function.

1. Introduction

Let A represent the class of functions f of the form

f(z) = z +

∞

n=2

anz
n, (1)

which are analytic in the open unit disk ∆ = z : z ∈ C and z < 1. Further, we
denote S by the subclass of A consisting of functions f of the form (1) which are
also univalent in ∆.

A function f(z) ∈ A is said to be starlike if it satises the following analytic
criteria

ℜ

z f ′(z)
f(z)


> 0, z ∈ ∆.

Similarly, a function f(z) ∈ A is said to be convex it satises the following analytic
criteria

ℜ

1 +

z f ′′(z)
f ′(z)


> 0, z ∈ ∆.

The classes of all starlike functions and convex functions are denoted by S∗ and C,
respectively and earlier studied by Robertson [14] and Silverman [16].
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The applications of hypergeometric functions [4, 11], generalized Bessel functions
[1, 13], Poisson distribution series [12] etc. on certain univalent functions are inter-
esting topics of research in geometric function theory. The hypergeometric matrix
function was introduced by Jodar and Cortes [8]. Bshouty and Hengartner [2, 3]
studied the linear operators and analytic injective on matrix function. Jodar and
Cortes [9] studied the some basic properties of Beta and Gamma function of matrix
function and obtain interesting results. Special matrix function play an important
role in Mathematics and Physics for deep study one may refer [7]. Motivated with
the above mentioned work we obtain some necessary and sucient conditions for
hypergeometric matrix function belonging to starlike and convex functions. First,
we recall the denition of hypergeometric matrix function.

Let A, B, C be matrices in Cr×r and if matrices B and C commute then
F (A,B;C; z) is a solution of the following dierential equation

z(1− z)ω
′′ − zAω

′
+ (C − z(B + I))−AB = 0.

Throughout this paper for a matrix A in Cr×r its spectrum σ(A) denotes the set
of all the eigen values of A. The 2-norm of A will be denoted by A and dened
by

∥A∥ = Supx̸=0
∥Ax∥2
∥x∥2

,

where the euclidean norm of y in Cr×r is given by

∥y∥2 =

yT y

 1
2 .

Let

α(A) = max ℜ(z) : z ∈ σ(A)
β(A) = min ℜ(z) : z ∈ σ(B) .

If f(z) and g(z) are holomorphic functions of the complex variable z, which are
dened in an open set Ω of the complex plane, and A is a matrix in Cr×r with
σ(A) ⊂ Ω, then from the properties of the matrix functional calculus [6], it follows
that

f(A)g(A) = g(A)f(A). (2)

Furthermore, if B ∈ Cr×r is a matrix for which σ(B) ⊂ Ω, and if AB = BA, then

f(A)g(B) = g(B)f(A). (3)

The reciprocal of Gamma function denoted by Γ−1(z) = 1
Γ(z) is an entire function

of the complex variable z. The image of Γ−1(z) acting on A, denoted by Γ−1(A),
is a well dened matrix. If A + nI is invertible for all integers n ≥ 0, then the
reciprocal gamma function is dened as [9]

Γ−1(A) = A(A+ I) . . . (A+ (n− 1)I)Γ−1(A+ nI), n ≥ 1. (4)

The Pochhammer symbol (a)n, a ∈ C, is dened as, if n is a nonnegative integer,
then the Pochhammer symbol, for a complex number a, is dened by

(a)n =


a(a+ 1) · · · (a+ n− 1), n ≥ 1,

1, n = 0.
(5)
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The Pochhammer symbol (a)n , a ∈ C, in terms of gamma function is

(a)n =
Γ(a+ n)

Γ(a)
. (6)

By application of the matrix functional calculus, the Pochhammer symbol for A ∈
Cr×r is given by

(A)n =


I, if n = 0,

A(A+ I) . . . (A+ (n− 1)I), if n ≥ 1.
(7)

This gives

(A)n = Γ−1(A) Γ(A+ nI), n ≥ 1. (8)

Let Sn be class of all univalent square matrices of order n in ∆. which are
normalized by

f(z) = Iz +

∞

n=2

Anz
n, (9)

The class Sn is natural extension of the usual class S for n = 1 in ∆.
A function f(z) of the form (9) is said to be starlike if it satises the following

analytic criteria

ℜ

z f ′(z)(f(z)−1)


> 0, z ∈ ∆.

The equivalent form of the above condition is given below

∥zf ′(z)(f(z)−1)− I∥ ≤ ∥zf ′(z)(f(z)−1) + I∥.
Similarly, a function f(z) of the form (9)is said to be convex it satises the following
analytic criteria

ℜ

I + z f ′′(z)(f ′(z))−1


> 0, z ∈ ∆.

The equivalent form of the above condition is given below

∥z f ′′(z)(f ′(z))−1∥ ≤ ∥z f ′′(z)(f ′(z))−1 + 2.I∥.
The classes of all starlike functions and convex functions are denoted by S∗ and C,
respectively.

The hypergeometric matrix function F (A,B;C; z) is dened by

F (A,B;C; z) =
∞

n=0

(A)n (B)n (C)
−1
n

n!
zn, (10)

for matrices A,B,C in Cr×r such that C + nI is invertible for all integer n ≥ 0.
Jodar and Sastre [10] show that the above series is convergent for z < 1.

Further, Jodar and Cortes [8] proved that if A,B,C be positive stable matrices in
Cr×r such that

β(C) > α(A) + α(B),

then the series is convergent for z = 1. The study of univalent matrix function
plays an important role in the theory of ordinary dierential equation. Schwarz and
Bshouthy obtained some intresting resuts in this direction one can prefer[2, 3, 15].
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2. Preliminary Results

To prove our main results we shall require the following lemmas.

Lemma 2.1. ([3]) A function f(z) of the form (9) and An be a sequence of square
matrix of order n and satisfy the condition

∞

n=2

nAn ≤ 1 (11)

then f ∈ S∗.

Lemma 2.2. ([3]) A function f(z) of the form (9) and satisfy the condition

∞

n=2

n2An ≤ 1 (12)

then f ∈ C.

3. Main Results

Theorem 3.1. Let A,B,C be matrices in Cr×r such that CB = BC and C, C−A,
C −B, C −A−B, C −A−B − I are positive stable and satisfy the condition

Γ(C)Γ(C −B −A− I)Γ−1(C −A)Γ−1(C −B) AB +

(C −B −A− I) − I∥ ≤ 1 (13)

then zF (A,B;C; z) ∈ S∗

Proof. From (10) we may write

zF (A,B;C; z) = Iz +

∞

n=2

(A)n−1 (B)n−1 (C)
−1
n−1

(n− 1)!
zn. (14)

To prove zF (A,B;C; z) ∈ S∗ it is sucient to show that

∞

n=2

n


(A)n−1 (B)n−1 (C)

−1
n−1

(n− 1)!

 ≤ 1
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Now

∞

n=2

n


(A)n−1 (B)n−1 (C)

−1
n−1

(n− 1)!



=


∞

n=2

n
(A)n−1 (B)n−1 (C)

−1
n−1

(n− 1)!



=


∞

n=2

(n− 1)
(A)n−1 (B)n−1 (C)

−1
n−1

(n− 1)!
+

∞

n=2

(A)n−1 (B)n−1 (C)
−1
n−1

(n− 1)!



=


∞

n=2

AB(C)−1
(A+ I)n−2 (B + I)n−2 (C + I)

−1
n−2

(n− 2)!

+

Γ(C)Γ(C −B −A)Γ−1(C −A)Γ−1(C −B)− I


=

ABΓ(C)Γ(C −B −A− I)Γ−1(C −A)Γ−1(C −B)+

Γ(C)(C −A−B − I)Γ(C −B −A− I)Γ−1(C −A)Γ−1(C −B)− I


= Γ(C)Γ(C −B −A− I)Γ−1(C −A)Γ−1(C −B) ∥AB+

(C −A−B − I) − I∥
≤ 1, from (13).

Thus, the proof of Theorem 3.1 is established. □

Theorem 3.2. Let A,B,C be matrices in Cr×r such that CB = BC and C, C−A,
C −B, C −A−B, C −A−B − I are positive stable and satisfy the condition

=
A(A+ I)B(B + I)(C)−1(C + I)−1Γ(C + 2I)Γ(C −B −A− 2I)Γ−1(C −A)Γ−1(C −B)

+ 3AB(C)−1Γ(C + I)Γ(C −B −A− I)Γ−1(C −A)Γ−1(C −B)

+

Γ(C)Γ(C −B −A)Γ−1(C −A)Γ−1(C −B)− I


≤ 1

then zF (A,B;C; z) ∈ C

Proof. To prove zF (A,B;C; z) dened by (14) in C, it is sucient to prove that

∞

n=2

n2


(A)n−1 (B)n−1 (C)

−1
n−1

(n− 1)!

 ≤ 1.
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Now
∞

n=2

n2


(A)n−1 (B)n−1 (C)−1

n−1

(n− 1)!



=


∞

n=2

n2 (A)n−1 (B)n−1 (C)−1
n−1

(n− 1)!



=


∞

n=2

[(n− 1)(n− 2) + 3(n− 1) + 1]
(A)n−1 (B)n−1 (C)−1

n−1

(n− 1)!



=


∞

n=3

(A)n−1 (B)n−1 (C)−1
n−1

(n− 3)!
+ 3

∞

n=2

(A)n−1 (B)n−1 (C)−1
n−1

(n− 2)!

+
∞

n=2

(A)n−1 (B)n−1 (C)−1
n−1

(n− 1)!



=


∞

n=3

A(A+ I)B(B + I)(C)−1(C + I)−1 (A+ 2I)n−3 (B + 2I)n−3 (C + 2I)−1
n−3

(n− 3)!

+ 3
∞

n=2

AB(C)−1 (A+ I)n−2 (B + I)n−2 (C + I)−1
n−2

(n− 2)!

+

Γ(C)Γ(C −B −A)Γ−1(C −A)Γ−1(C −B)− I



=
A(A+ I)B(B + I)(C)−1(C + I)−1Γ(C + 2I)Γ(C −B −A− 2I)Γ−1(C −A)Γ−1(C −B)

+ 3AB(C)−1Γ(C + I)Γ(C −B −A− I)Γ−1(C −A)Γ−1(C −B)

+

Γ(C)Γ(C −B −A)Γ−1(C −A)Γ−1(C −B)− I


≤ 1

Thus, the proof of Theorem 3.2 is established.
□

4. An Integral Operator

In this section we dene an integral operator G(A,B;C; z) associated with hy-
pergeometric matrix function F (A,B;C; z) as follows

G(A,B;C; z) =

 z

0

F (A,B;C; t)dt.‘ (15)

Theorem 4.3. Let A,B,C be matrices in Cr×r such that CB = BC and C, C−A,
C −B, C −A−B, C −A−B− I are positive stable and satisfy the condition (13)
then G(A,B;C; z) dened by (15) in the class C.
Proof. The representation of G(A,B;C; z) given by (15) dened as

G(A,B;C; z) = Iz +
∞

n=2

(A)n−1 (B)n−1 (C)
−1
n−1

(n− 1)!
zn. (16)

Now, applying the same reasoning as in Theorem 3.2 we obtain the required result.
Hence, we omit the details. □
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