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Abstract: Exchangeability is one of the most important concepts in Bayesian probability theory [7], as
well as in causal analysis, particularly within the theory based on the potential outcomes (see [18], [21],
[23] and [15]). In this paper, we propose a way to make explicit the link between the two concepts.
We show they are almost coincident with the exchangeability property introduced by de Finetti [3],
without making use of notions such as partial, conditional, or hierarchical exchangeability. To do this,
we will start from the exchangeability property described in Greenland et al. [14], and assuming the
use of a recursive linear Gaussian structural equation model, we will show how it is possible to exploit
the properties of de Finetti’s representation theorem, without performing any computation, to obtain
an estimate of the average causal effect by calibrating a simple linear regression. This is achieved
by showing the role of a specific subset of the latent variables in the data-generating process for the
variable Y |X = x, linking the exchangeability property required for the identification of the causal
coefficient, with the non-correlation between regressors and error term in linear regression, needed to
obtain an unbiased coefficient estimation. The results here proposed are not restricted to the Gaussian
family of random variables distributions.
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1. Introduction

Exchangeability is one of the building blocks for assessing causal inference results, and every book
concerning causal analysis explains the implication of this necessary condition, which allows us to deal
with counterfactuals. Here, we want to restate the link between the property of exchangeability used in
the context of causal analysis and the classical notion of exchangeability well known in the Bayesian
field and due to de Finetti [3].
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In the context of causal analysis, this property is related to the identifiability of the causal effect
and is also known as the strong ignorability of Rubin and Rosenbaum [23], which refers to the con-
dition YX=xy X, or its conditional form YX=xyX|Z (where Y is the outcome, X the treatment and Z a
covariate) in the context of potential outcomes. It has been further detailed in the literature in the same
theoretical context (see, for example, [15] Technical Point 2.1), or it has been used as a synonym for
a no-confounding condition (Greenland and Robins [12, 13], Greenland et al. [14], Pearl [19], Hernán
and Robins [15]).

Exchangeability à la de Finetti appears explicitly in the pre-treatment exchangeability conditions,
with features similar to the exchangeability described in [14], and the post−treatment condition both
proposed by Dawid [9], as well as in the work of Lindley and Novick [17], Saarela et al. [24], Green-
land and Robins [12, 13]and Greenland et al. [14], among others.

It is from the description given by Greenland et al. [14] that we will derive some steps, given
below, to make more explicit the link between the two concepts of exchangeability, that is, to show that
exchangeability in the causal domain is essentially exchangeability à la de Finetti.

This paper also mentions the concept of a hierarchical model (Bernardo and Smith [1]) related to the
exchangeability of characteristic parameters of different sequences of partially exchangeable variables
(de Finetti [6], Diaconis [10]) to describe a property of group exchangeability (of subjects selected to be
treated or untreated). Recently, a conditional exchangeability property was also proposed by Saarela
et al. [24], and within a randomized experiment, it involves sharing the same P parameter (in the
representation theorem) among the output variables, covariates and unobservable variables (Y,X,U),
as distinct from the PZ parameter characterizing the treatment variable (Z). This structure could be a
constraint on the contexts where the proposed model can be applied, although the main goal of such a
model is to use exclusively statistical and Bayesian analysis concepts for the purpose of causal analysis,
as in the work of Dawid [9].

In what follows, to link the classical concept of Bayesian exchangeability with the one used in
causal analysis, it is shown how exchangeability between groups (treated and untreated) is essentially
achieved through the use of Bayesian exchangeability applied to the probability functions of the two
types of treatment assignment (together with the exchangeability of the latent data-generating process),
without using partial, hierarchical or conditional exchangeability models.

In the context of recursive linear Structural equation models with Gaussian variables [2, 19], we
achieve the goal of using linear regression to estimate the average causal effect (ACE), as reported in the
literature [15, 19], without performing the computation contained in de Finetti’s representation theorem
formula but using only the properties of the variables described therein. The structural equation related
to Y in the linear SEM is used to derive a linear regression that is estimable. This is accomplished
by showing the properties of a subset of the latent variables which can entail both the exchangeability
property for causal identification and the non-correlation between the regressor and the error term
needed in the linear regression for an unbiased causal estimation.

The rest of the paper is summarized as follows: in the second paragraph, we will formalize a de-
scription of exchangeability and the representation theorem in Bayesian theory, also reporting insights
from de Finetti on the topics of probability and causality. In the third paragraph, we will introduce
some basic concepts of causal analysis and report the result of applying de Finetti’s exchangeability
in this context, relying on the characteristics of a subset U’ of the latent variables. In the fourth para-
graph, a couple of examples are reported where the role of a subset U’ of the latent variables has as a
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consequence both the exchangeability property and the causal effect estimation via linear regression.
Some brief final remarks will end the paper.

2. Exchangeability in Bayesian theory

The link between de Finetti and causality is closer than one might imagine. In Probabilismo [4], one
of his earliest writings, he describes the existence, in everyone, of a probabilistic mental model of the
reality around us, where cause-effect relationships are one of the components, having a probabilistic
nature. This is an evolution of the thought of Hume, Poincaré, and Tilgher, among others, with Bayes’
theorem playing a fundamental role in the human learning process.

At the end of the first paragraph, we read:
no science will permit us to say: this fact will come about, it will be thus and so because it follows

from a certain law, and that law is an absolute truth. Still less will it lead us to conclude sceptically: the
absolute truth does not exist, and so this fact might or might not come about, it may go like this or in a
totally different way, I know nothing about it. What we can say is this: I foresee that such a fact will
come about and that it will happen in such a way because past experience and its scientific elaboration
by human thought make this forecast seem reasonable to me. Here, the essential difference lies in what
the ”why” applies to: I do not look for why THE FACT that I foresee will come about but why I DO
foresee that the fact will come about. It is no longer the facts that need causes; it is our thought that
finds it convenient to imagine causal relations to explain, connect and foresee the facts.”.

Later, in paragraph 9, he writes:
But let us examine our conscience and see when it is that we admit that a circumstance can influence

a certain event. Isn’t it precisely when knowledge of it influences our probability judgment? [. . . ] the
concept of cause is only subjective, and it depends essentially on the concept of probability”.

Today, these kinds of thoughts may seem almost part of the commonsense, for many people, but in
1929, when the text was written, the subjectivist theory of probability, the probabilistic but convergent
nature of experience in prediction, and the understanding of a mental reality (model) as an instance of
an external reality (and not the other way around) were by no means part of the mainstream scientific
culture.

And again [5], on the fundamental concept of cause:
”Repetition and association give rise in us to the idea of cause, the anticipation of further repetition.”
On the following definition of exchangeability, de Finetti himself said [8]:
“exchangeability is a necessary condition because those conditions that are usually described in

terms of independent and constant but unknown probabilities hold. However, the reciprocal statement
is also true”.

Definition (exchangeability – de Finetti) Let {Xi}1,...,∞ be an infinite sequence of Boolean (Bernoulli)
random variables. Suppose that the probability Pr( x 1,. . . ,xn) of having observed x = ( x 1,. . . ,xn) with
n any finite number does not depend on the specific order, i.e., that Pr(X1= x 1,. . . ,Xn=xn) = Pr(X1= x
k(1),. . . ,Xn= x k(n)) for any permutation of the observations k. Then, the sequence of random variables
Xi, is said to be exchangeable.

This property is related to the homogeneity or similarity of the Xi and is fundamental for inductive
reasoning, where we learn from the past to predict the future, in contrast to the case of independence
of the same variables (here independence is conditional). Under this light see equations (1) and (2)
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below, the former for estimating a subsequent realization Xn+1=xn+1 and the latter for estimating the
parameter underlying the conditional probability of the Xi.

If the Xi are i.i.d. ⇒ the Xi are exchangeable, but the converse is not true, as the example of Polya’s
urn shows (distribution of exchangeable urns, identical, but not independent). Moreover, independence
alone is not sufficient, as it is possible to have Pr(A=1,B=0) = Pr(A=1)Pr(B=0) , Pr(A=0)Pr(B=1)
= Pr(A=0,B=1), so independence does not imply exchangeability. The following relationships of set
inclusion apply: i.d. ⊃ exchangeability ⊃ i.i.d. For Gaussian variables Yi ∼ N(µ,σ), the properties of
i.i.d. and exchangeability are the same.

Representation Theorem (de Finetti). Let {Xi}1,...,∞ be an infinite sequence of Boolean (Bernoulli)
random variables, exchangeable for each subsequence {Xi}1,...,∞n with n>1, and let S n = X1 = x1 + . . .+

Xn = xn be the number of 1’s in the subsequence of n elements. We will then have that there exists a
random variable Θ and a posteriori distribution F(θ), with dF(θ) = π(θ)dθ = Pr(θ)dθ:

1. Pr
(
lim
n→∞

x̄n = lim
n→∞

1
n

∑
i=1,...,n xi = Θ

)
= 1, with Θ ∼ F(θ)

2. Pr( x 1,. . . ,xn) =
∫ 1

0
θS n(1 − θ)(n−S n) dF(θ) =

∫ 1

0

(∏
i=1,...,n θ

xi(1 − θ)(1−xi)
)
π(θ)dθ =∫

θ∈Θ
Pr(x1, . . . ,xn|θ)Pr(θ)dθ =

∫
θ∈Θ

(∏
i=1,...,n Pr(xi|θ)

)
Pr(θ)dθ

Written in its most general form (Bernardo et al., 1994).
where in 1 the random variable Θ does not necessarily converge to a constant value, and the product

of probabilities in 2 is justified by the fact that XiyX j|Θ = θ with i , j. The theorem was generalized
by Hewitt and Savage [16].

Before observing realizations Xi, any assumption about the density π(θ) = Pr(θ) is admissible and
will be the a priori density of Θ. After observing x 1,. . . ,xn realizations, the (best) estimate of a
future realization xn+1 is obtained using the a posteriori estimate of the probability of Θ (probability
conditional on past observations x 1,. . . ,xn) and, in the case of Bernoulli variables, is given by the a
posteriori mean of the variable Θ:

Pr(xn+1|x1, . . . , xn) =
Pr(x1, . . . , xn, xn+1)

Pr(x1, . . . , xn)
=

∫
θ∈Θ

Pr(x1, . . . , xn, xn+1, θ)dθ

Pr(x1, . . . , xn)

=

∫
θ∈Θ

Pr(x1, . . . , xn, xn+1|θ)Pr(θ)dθ

Pr(x1, . . . , xn)
=

∫
θ∈Θ

Pr(xn+1|θ)Pr(x1, . . . , xn|θ)Pr(θ)dθ

Pr(x1, . . . , xn)

=

∫
θ∈Θ

Pr(xn+1|θ)Pr(θ|x1, . . . , xn)dθ,

by Bayes’ theorem (joint probabilities). so, if xi are Bernoulli’s variables, we have∫ 1

0
Pr(xn+1= 1|θ)Pr(θ|x1, . . . , xn)dθ =

∫ 1

0
θPr(θ|x1, . . . , xn)dθ = E[Θ|x1, . . . , xn]. (2.1)

The a posteriori estimates of Θ=θ is given by:

Pr(θ|x1, . . . , xn) =
Pr(x1, . . . , xn, θ)
Pr(x1, . . . , xn)

=
Pr(x1, . . . , xn|θ)Pr(θ)

Pr(x1, . . . , xn)
=

∏
i=1,...,n Pr(xi|θ)Pr(θ)

Pr(x1, . . . , xn)
(2.2)
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In the classical frequentist approach, sample data are the only source of information that can be
used to achieve the (objective) knowledge of a reality phenomenon, and no a priori knowledge is
assumed. In the Bayesian approach, such a priori knowledge (whichever is formed) is needed and is a
basic element of the inferential method. Moreover, sample data serve only to proceed to its updating
by shaping the a posteriori knowledge: as the number of observations increases, the precision of its
estimation improves.

3. Exchangeability in causal analysis

Exchangeability in the causal analysis is one of the necessary conditions that allow the ACE of a
generic treatment X on a response variable Y can be identified. A parameter of a probabilistic model
is identifiable if it can be uniquely determined from the model’s probability distribution, and if an
estimator is used, it must be unbiased or at least consistent.

The other components required for the identification of the ACE are positivity, consistency, and
noninterference among the treated variables (SUTVA). The reader can refer to [19] or [15] for further
discussion on this topic.

In the following, we report some classical notations and results from causal analysis theory that will
be used in demonstrating proposition 1, denoting X as the treatment variable and Y as the outcome
variable.

1. For the sake of simplicity, we suppose that the joint distribution of variables in our model is
Gaussian and described by a recursive linear Gaussian SEM (see [2]) with variables (Y, X, W,
K, U), where W is a vector of observed variables not belonging to causal paths (X,Y), K is
a vector of observed variables belonging to at least a causal path (X,Y), and U is a vector of
unobservable and mutually independent Gaussian variables. Among the others, the reader can
refer to Pearl’s book [19] for an in-depth discussion of this linear causal structure, underlying
the joint Gaussian distribution of the observed variables, and for the related direct acyclic graph
(DAG) model useful for several of key concepts, like open/blocked path, d−separation, backdoor
path, backdoor criterion, and so forth.

2. In detail, let
Y = f(WY ,KY ,UY) (3.1)

be a linear function defining the variable Y in the recursive linear Gaussian SEM, with KY the
generic vector of parents of Y belonging to at least one causal path (X,Y) and thus depending by the
value X has been conditioned on. We denote by KY(X= x ) the KY vector related to X= x , pointing
out that its realizations depend on X.

1. In the literature, we have several equivalent notations for the expression PrX=x(Y = y) used in
Greenland et al. (1999), and among them, we find that of Neyman-Rubin’s potential outcomes
Pr(Yx = y) and that of Pearl’s do(.) operator Pr (Y = y|do(X = x)).

2. Identification without confounding (Pearl 2009): Pr (Y = y|do(X = x))= Pr (Y = y|X = x).
3. Identification with confounding (deconfounding through the adjustment formula):

Pr (Y = y|do(X = x))=
∑

z Pr (Y = y|X = x,Z = z) Pr (Z = z), with Z a sufficient variable
(or set of variables) able to block all the backdoor paths from X to Y; see Pearl (2009).
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4. Identification with confounding (deconfounding through IPTW): the Inverse Probability of Treat-
ment Weighted (IPTW) method is used to obtain a new pseudo-population wherein the number of
treated subjects is multiplied by 1

PS and the number of untreated subjects is multiplied by 1
1−PS ,

where PS stands for the so-called propensity score. For further discussion of the method and the
mathematical derivation of the PS, see, among others, [15], [19], and [25].

5. Although several methods are described in the literature to remove confounding between a pair
of variables (X,Y) in an observational study, see the adjustment formula for example, in the
following we will refer to the IPTW method. Also, it is supposed that no biases are present in the
model (selection or others).

6. The use of the randomized experiment has historically been the golden method for eliminating (or
reducing as much as possible) confounding and identifying the ACE even in a Bayesian context
[21, 22]. We will assume irrelevance of any difference (due to chance) between the observable
characteristics of two randomly drawn populations, so sufficiently large, resulting in a partition
of the starting set of observations.

7. To align the conditions related to the randomized experiment with those of an observational study
where the IPTW method is applied (absence of confounding between X and Y), we assume that
all variables necessary to correctly characterize the study are observable.

From (3.1), we derive the following properties of the random variable Y conditional on X(Y |X).

1. The population represented by the available (potentially infinite) realizations of the variable
Y(WY ,KY(X= x ),UY) does not depend on the specific value X= x (see [20] Theorem 4.3.1),
and we can obtain it as a realization of UY and the Ui∈U connected to Y by an open path, i.e., the
Ui∈U able to influence one of its parents (WY ,KY) joined UY . We denote this subset by U’⊆U.
The Ui∈U’ thus identified, whether they belong to causal or backdoor paths or some other type of
open path to Y, turn out to be independent of X (U’{y} X) after the IPTW procedure or random-
ization. Furthermore, the vector U’ has its Gaussian distribution N(0,ΣU ′),with ΣU ′ a diagonal
matrix, and any infinite random sample of realizations {ui}1,...,∞ is exchangeable.

2. From a single realization of u’∈U’, we can obtain several distinct realizations of (Y |X). For
example, one conditional on X= x and one conditional on X= x ’ with x , x ’. Conversely,
assigning a value to X, the value of (Y |X) is determined by at least one realization u’∈U’. In the
following, this allows us to associate the same population, corresponding to an unbounded set
of exchangeable realizations {u′i}1,...,∞, for at least a couple of realizations: one for (Y |X = 0)
and one for (Y |X = 1). Moreover, to any exchange in a (unobservable) sequence {u′i}1,...,n there is
an admissible corresponding exchange in the related (observable) realizations {yi|X = 1}1,...,n and
{yi|X = 0}1,...,n.

3. Any randomly sampled sequence of realizations of the conditional variable (Y |X = x) are ex-
changeable because realizations of the same random variable (Y |X = x) ∼ N(µY ,σY — X=x) =
N(µY+σYX/σXX( x –µX),σYY–σ2

YX/σXX), where µY and µX are the average values of the Y and X,
while σYX = Cov(Y,X) and σXX = Var(X); see [26] page 189.

4. Given an unlimited (potentially infinite) sequence of realizations of (Y |X = x), we can partition
that sequence into two unlimited sub-sequences that will have the same representativeness for the
variable N(µY ,σY — X=x) as the original one.

5. The probability Pr (Y = y|X = x) is related to a Gaussian random variable, for which the mean
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depends on the specific value X= x , but the variance does not (see (c)).
6. In the following, we narrow the admissible values for the treatment variable X, focusing only on

binary variables: X=1 for the treated and X=0 for the untreated, as in [14].

The deductions given in (a) and (b) are useful in defining a single infinite population of realizations
of U’ to be used in describing the variables (Y |X = 0) and (Y |X = 1) and their probabilities, while that
in (d) will be used to partition the initial population into two sets of equal cardinalities (A and B).

The exchangeability described in [14], referring to two populations A and B, is formulated for two
generic parameters of the probability distribution, µA and µB, and results in the following equation
PrX=x (µA, µB) = PrX=x (µB, µA), where x ∈{0,1}. Here, we will refer to the formulation of exchange-
ability with two vectors of the output variable of equal size, yA and yB, for example, used for the
computation of µA and µB, and belonging to two sets A and B that here form an equipartition of the
randomly sampled population of realizations. This is a particular form of exchangeability, directly
derivable from de Finetti’s exchangeability [1], and implies that, relative to probability PrX=x(.), the
elements yi, associated to {A∪B} and derived from u’i, are i.i.d. conditional on a vector of parameters θ
unknown to the analyst. Concerning (a), (b) and (e) above, we can refer to the same population {A∪ B}
induced by {ui}1,...,∞ for the realizations of both PrX=1(.) and PrX=0(.). Moreover, about point (e) above,
the Gaussian probability distributions PrX=1(.)andPrX=0(.) share the same standard deviation σ.

Proposition 1: Let us have a recursive linear Gaussian SEM with (3.1) describing the outcome
variable Y, an infinite population of realizations of the vector U’ defined as in (a), and an infinite
sequence of realizations {Yi|X = 0}1,...,∞ and {Yi|X = 1}1,...,∞ both derived from {u′i}1,...,∞. Let us randomly
extract two sub-sequences {yi|X = 0}1,...,2n and {yi|X = 1}1,...,2n, and randomly draw two sets, A and B, of
cardinality n. It is assumed that the treatment performed on one subject does not influence the outcome
of another subject (treated or untreated) and that each value of the treatment variable is associated with
a positive probability. In the case of a randomized experiment or an observational setting where we
have removed the confounding between X and Y by applying the IPTW method, the ACE of X on the
outcome variable Y can be identified, and estimated by calibrating a simple linear regression of the
form α + βx + ϵ.

Proof We know that we are in the conditions under which the property Pr (Y = y|do(X = x))
= Pr (Y = y|X = x) applies. Under the hypotheses described, randomized experiment or IPTW, de
Finetti’s exchangeability holds for random sampled observations {yi|X = x}1,...,2n of (Yi|X = x) ∼
N(µx, σ), with mean µx and variance σ unknown to us, as independent realizations of variables with
the same probability distribution (i.i.d.). We can imagine that we know the indices with the popula-
tion observations belonging to A and B so that we write the specific property of exchangeability for
PrX=1(.), PrX=1 (yA, yB) = PrX=1 (yB, yA), as any permutation π of the indices that exchanges the ele-
ments of A with those of B, for example, such that π(Ai) = Bi and π(Bi) = Ai (with a corresponding
exchange in the set {u′i}1,...,2n), and finally Pr (yA, yB|X = 1)=Pr (yB, yA|X = 1). This is true for PrX=0(.)
as well, with (yA, yB|X = 0) derived from the same {u′i}1,...,2n generating (yA, yB|X = 1).

Assuming we also know the three real parameters, µ1 = µY |X=1, µ0 = µY |X=0 and σ, which char-
acterize the two realizations of (Yi — X=1) and (Yi — X=0), we can write the exchangeability as
Pr (yA, yB|X = 1, µ1, σ)=Pr (yB, yA|X = 1, µ1, σ). Additionally, from the i.i.d. of the individual condi-
tional variables, we can write Pr (yA, yB|µ1, σ) as

∏
i=1,...,n Pr (yAi|µ1, σ)

∏
i=1,...,n Pr (yBi|µ1, σ): µ1 and σ

are sufficient statistics, so we omit X=1. Exchangeability and de Finetti’s central limit theorem (Theo-
rem 1, 1)) guarantee us that as the number of observations tends to infinity, the parameters vector θ of
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de Finetti’s representation theorem will tend to the real parameters, and we can obtain lim
n→∞
θ1 = (µ1, σ)

for PrX=1(.) and lim
n→∞
θ0 = (µ0, σ) for PrX=0(.). We have the equality lim

n→∞

∏
i=1,...,n Pr (yAi|µ1, σ) =

lim
n→∞

∏
i=1,...,n Pr (yBi|µ1, σ), because yA and yB both describe the same probability shape when the num-

ber of observations indefinitely increases. The same properties can be derived for PrX=0(.).
We are allowed to use the same unlimited sets A and B for both PrX=0(.) and PrX=1(.) because

realizations deterministically induced by the same exchangeable set {u′i}1,...,2n of U’ (see (b) described
above) which is stochastically independent of X. This lets us identify the average causal effect through
the following identity [14]:

E[Y |do(X = 1)]−E[Y |do(X = 0)] = EA[Y |do(X = 1)] − EA[Y |do(X = 0)] =
∑
yAi

yAiPrX=1 (yAi) −
∑
yAi

yAiPrX=0 (yAi)

=
∑
yAi

yAiPrX=1 (yAi) −
∑
yBi

yBiPrX=0 (yBi) =
∑
yBi

yBiPrX=1 (yBi) −
∑
yAi

yAiPrX=0 (yAi)

=
∑
yBi

yBiPr (yBi|µ1, σ) −
∑
yAi

yAiPr (yAi|µ0, σ)

= µ1 − µ0.

Considering that we do not know the two distributions of the Gaussian response variable Y (we do
not know the actual parameters µ1, µ0 and σ), however, we do know that the unconfoundness of (X,Y)
is sufficient for the identifiability of E[Y |do(X = x)] and thus the computation of the average causal
effect. Moreover, E[Y |do(X = x)] has a linear form in X (see [15], [19]): E[Y |do(X = x)] =E[Y |X = x]
= α + β x . Note that the value of E[Y |X = x] before and after IPTW could be different.

Therefore, we can calibrate, using the OLS method, a simple linear regression of the form α + βx
+ ϵ ([14] [25]) on the observed values of the populations A and B, using the values (yAi|X = 1) and
(yBi|X = 0), for example, to estimate the average causal effect of X on Y: E[Y |X = 1]−E[Y — X=0] =
β = Cov(Y,X)/Var(X), as first shown by S. Wright [27], where Cov(Y,X) refers to the joint distribution
of (Y,X).

Under the assumptions made of no−confounding, whether in the context of a randomized experi-
ment or observational study with IPTW, the OLS method applied to the linear form with intercept, α
+ βx , provides an unbiased and consistent estimate of E[Y |X = x]:

E[Y |X = x] = µY +
σYX

σXX
(x − µX) ≈ ȳ + β̂(x − x̄) = (ȳ − β̂x̄) + β̂x = α̂ + β̂x (3.2)

where ȳ and x̄ are the arithmetic mean of the yi and xi observations in the population A ∪ B, and
σYX, σXX are scalar values (see among others [26] chapter 3). The OLS estimate is unbiased and the
condition of the Gauss−Markov’s theorem, referring to the lack of correlation between x and ϵ, is met
(ϵ is the stochastic error of the linear regression α + βx + ϵ).

Actually, X and ϵ are uncorrelated (independent) because the variability of Y is inducted by the
vector U’, which is represented in the linear regression through the error term ϵ (ϵ is a function of U’),
and is stochastically independent from X. Also, we see that Cov(Y,X) depends only on the causal paths
between X and Y ([27], [19]), and the coefficient α does not depend on the values of Y conditional on
X or even on the specific value X= x but on the X’s mean value µX and the Y’s mean value µY . α deals
with not-centred variables and also guarantee that E[ϵ] = 0. ♢
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The previous result is a substantial rewriting, with a few modifications and the addition of some de-
tailed steps, of what was reported in Greenland and Robins [12] and Greenland et al. [14], and allows,
by using the exchangeability property, no-confounding and the assumptions about the probability
distribution law of the outcome variables, to obtain an operational method for estimating the ACE:
it is not necessary to apply de Finetti’s representation theorem, but it is sufficient to use its peculiarities.

The main elements used to achieve the results described in proposition 1 are as follows:
The causal nature of the Cov(X,Y) covariance, i.e., obtained exclusively through causal paths, for a
random experiment or an observational study with IPTW (no-confounding);
We identified the vector U′ with the exchangeable sequence {u′i}1,...,∞, as the core of the data-generating
process for both the variable Y |X = 1 and Y |X = 0;
The property U′y X let unchanged the Cov(X,Y), and Var(X) as well, when we use the same u′i to
switch from Y |X = 1 to Y |X = 0, leaving unchanged the causal effect in both scenarios. What does
change (and we expect to be so) is the mean value from Y |X = 1 to Y |X = 0, for the identification and
the estimation of the ACE;
As Pearl says [19], in an observational context the property U′yX cannot be assured without a
causal analysis of (what we know about) the data-generating process. It appears not to be only a
statistical/probabilistic matter. In randomized experiments, with sufficiently large samples, this is
assured by design and randomization imply exchangeability of the u’i.
It should be stressed that most of the results shown before are linked to an unlimited number of
observations. When we deal with a finite number of observations, also in the case of randomized
experiments, estimation of causal effects can be problematic because the influence of chance is no
longer negligible and can bias (reducing or amplifying) the causal effect [12, 13, 21, 22] and flaws the
population representativeness of the two sets A and B.

Finally, we want to add just one more thought regarding partial exchangeability and hierarchi-
cal exchangeable models. Suppose now that we have two parameters XA and XB that are subject
to two sets of observations of Gaussian variables with the same standard deviation σ,(yA1, . . . , yAn)
and (yB1, . . . , yBn), partially exchangeable, for which there is also a joint distribution Pr (y) =
Pr (yA1, . . . , yAn, yB1, . . . , yBn). This time let us assume that the following joint probability form holds
for the pair (XA, XB), Pr(XA=1, XB=0) = Pr(XA=0, XB=1) = 1/2, Pr(XA=0, XB=0) = Pr(XA=1,
XB=1) = 0, and that 1 and 0 represent a priori values for the mean values µ1, µ0 associated with treated
and untreated subjects. It is easily verified that the pair (XA, XB) is exchangeable, although it does not
admit a representation theorem [10, 11]. We thus obtain a hierarchical system of exchangeable values
(yi and xi); see [1], although not hierarchically representable à la de Finetti.
If the exchangeability of (XA, XB) reflected an exchangeability at the level of a single pair of obser-
vations, Pr(XAi=1, XBi=0) = Pr(XAi=0, XBi=1), this would represent precisely the equal probability
of the Yi observations to be able to flow into one or the other set (treated and untreated) and thus
make them exchangeable, in the manner described in [12], as randomly drawn (uniform probability
1/2 is associated with the two treatment values used, with three values and three sets we would have
probability 1/3, and so on).
4. Examples
In this last section, we propose a couple of examples (see Table 1) showing the role of the subset
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of latent variables U’ in the data-generating process for the variable Y |X = x, without confounding
between X and Y, and the relationship with the error variable ϵ (additive noise) in the linear regression,
used to estimate the beta value of the ACE of treatment X. The ACE we obtain could be the total effect
(direct + indirect) or only the direct effect: it depends on the characteristics of the probabilistic model
encoded within the DAG associated with the SEM. The characteristics of this subset U’ are useful
both for deriving the exchangeability property à la de Finetti and for assessing the zero−correlation
(independence) between regressors and error term needed to obtain an unbiased estimate of the beta
coefficient in the linear regression (through the Gauss−Markov theorem).

Table 1. Mediator and confounding graphs.

Example A: Mediator Example B: Confounding

SEM equations:
Y = bX + cZ + Uy
Z = aX + Uz
X = Ux
Ux∼N(0,σXX), Uz∼N(0,σZZ), Uy ∼N(0,σYY)
mutually stochastically independents

SEM equations:
Y = bX+cZ+Uy
Z = Uz
X = aZ+Ux
Ux∼N(0,σXX), Uz∼N(0,σZZ), Uy ∼N(0,σYY)
mutually stochastically independents

Cov(X,Y) = Cov(X, bX+cZ+Uy) =
Cov(X, bX) + Cov(X, caX+cUz) + Cov(X, Uy)
=

bVar(X) + acVar(X) + cCov(X, Uz) =
bVar(X) + acVar(X) =
acVar(X)+bVar(X)

Cov(X,Y) = Cov(X, bX+cZ+Uy) =
Cov(X, bX) + Cov(X, cZ) + Cov(X, Uy) =
bVar(X) + cCov(X, Z) =
bVar(X) + cCov(aZ, Z) + cCov(Ux, Z) =
bVar(X) + acVar(Z) =
acVar(Z)+bVar(X)

SEM equation of Y wrt X:
Y ∼ bX+c(aX +Uz)+Uy
= (b+ac)X+cUz+Uy
= βX+ϵ
where β=b+ac, ϵ=cUz+Uy and Xy(Uz,Uy).

SEM equation of Y wrt X:
Y ∼ bX+cUz+Uy
= βX+ϵ
where β=b, ϵ=cUz+Uy and XyUy, but
not(XyUz) imply confounding on (X,Y).

Causal effect identified by: Y ∼ α + βx + ϵ

ACE (total) τYX: β̂ = ac+b
Variability of ϵ being induced by {Uz,Uy}=U’
β̂not biased: E[β̂] = b+ac.
α deals with not-centred variables [26].

Causal effect identified by controlling also on
Z⇒ Uz<U’: Y ∼ α + β x +δz + ϵ
ACE (direct) τYX: β̂ = b
Variability of ϵ being induced by Uy = U′

β̂ not biased: E[β̂] = b.
α deals with not-centred variables [26].

In example A the covariance between X and Y depends only on the variance of X and the structural
coefficients of the DAG. Note that the variable X is stochastically independent of both Uz and Uy,
and from the linear regression Y ∼ α + β x the total causal effect can be derived with coefficients α
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and β unbiased. Conditioning also on Z allows us to obtain only the direct effect. In example B, the
covariance between X and Y depends on the variance of Z. It is therefore necessary to condition the
latter variable to obtain the total causal effect (which is indeed the direct effect), and the coefficients of
Y ∼ α + β x +δz will be unbiased (both Z and X are stochastically independent of Uy). Note that in
example B, if we used regression Y ∼ α + βx + ϵ, the coefficient α̂ and β̂ would be biased because the
Gauss−Markov’s conditions are violated: the variable Uz that contributes to the Y’s dispersion and
which is contained in the error term ϵ, is not independent of X and the two variables are correlated.

5. Conclusions
In this paper, we have proposed a rewriting of the exchangeability property used in the context of
causal analysis to make more explicit its relationship with the exchangeability property introduced
by de Finetti [3] and of fundamental importance in the context of Bayesian probability theory. No
notions such as partial, conditional, or hierarchical exchangeability were used. We started from the
exchangeability property described by Greenland et al. [14] and show how it is possible to exploit
the properties of de Finetti’s representation theorem, without performing any computation, to obtain
exchangeability between groups (treated and untreated) from the classical Bayesian exchangeability
property. Using a recursive linear Gaussian structural equation model, we also related the exchange-
ability result to the classical way of estimating the average causal effect through calibration of a simple
linear regression, although these results can be extended to other kinds of probability distributions.
This has been achieved using the characteristics of a subset of the latent variables useful both for
deriving the exchangeability property à la de Finetti and for assessing the independence between
regressors and error term in the linear regression. A further step will be generalizing these results to a
broader class of probability distributions.
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