Identification of Four Thermophilic *Geobacillus* Isolates from Hammam Pharaon, Sinai, Egypt

Osman, Y. A.¹; A. M. Mowafy ; A. Abdelrazak and Amira El-Mallah Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt *E-mail: ellazeiky@yahoo.com

ABSTRACT

The present study was conducted to identify thermophilic bacteria from local habitats and to test their ability for producing thermostable α -Amylase, cellulase, lipase and protease in order to pave the way for their use in industrial processes. Out of 29 isolates initially obtained mainly from Hammam Pharaon, four potential isolates were selected based on thermo-tolerance ability and enzyme activity. The four isolates were characterized using phenotypic and 16S rRNA sequencing which recognized the isolates as *Geobacillus*. All four isolates were found to be variable for indole test, methyl red and rod shaped morphology. However, they were found to be variable for citrate utilization, catalase test starch hydrolysis, gelatin hydrolysis, casein hydrolysis, and Tween 80 hydrolysis. These bacteria grow at temperatures ranging from 50 to 90°C and the pH ranged from 6 to 9. This study added a lot to our knowledge about the thermophilic bacteria inhabiting Hammam Pharaon and their characters that would open the door for their use in biotechnological applications.

Keywords: α-Amylases, Cellulase, protease, lipase, thermophilic Geobacillussp., Hammam Pharaon

INTRODUCTION

Prokaryotes inhabit all possible environments including those with extreme conditions. Thermophilic microorganisms, for instance, are adapted to grow at temperatures from 55°C to 115°C and their cellular components, enzymes, proteins and nucleic acids are thermostable (Haki and Rakshit, 2003).Thermophiles fall in three categories; moderate, extreme and hyperthermophiles (Bertoldo and Antranikian, 2002). Geothermal vents could be the main source of such organisms (Gupta *et al.*, 2014).

Thermophiles have adapted to high temperature by several structural and functional features. Thermophiles have adjusted the composition of cell membrane including the increase in acyl chain length and the degree of saturation and branching of fatty acids and cyclization, thus maintaining optimal membrane structure and function in high temperature that could increase the fluidity and permeability of membranes (Rothschild and Mancinelli, 2001; Charlier and Droogmans, 2005).Thermophiles contain a higher content of saturated straight- and branched fatty acids, but rarely contain significant amounts of polyunsaturated acids (O'Leary, 1962; Kaneda, 1963; Moss and Cherry, 1968).The fatty acid composition of several thermophilic bacteria of the genus *Bacillus* was recently investigated (Daron, 1970).

Thermophiles are a potent source of thermo-stable enzymes characterized by stability and activity under conditions of high temperature. Thus, these enzymes are rapidly used in industrial applications (Haki and Rakshit, 2003).Among industrially important enzymes, amylases, cellulase, protease and lipases which become more attractive ,and have wide applications in many fields. For instance, amylases have a great significance in present-day biotechnology as it represent 25% of the global enzyme market (Van Der Maarel *et al.*, 2002).

Amylases are intensively used in several industrial applications such as detergent and baking industries, ethanol production and HFCS (high fructose corn syrup) according to their characteristics(Gupta *et al.*, 2003) and it is also broadly used in several fields including medicinal and analytical chemistry(Kandra, 2003). Textile industry, laundry detergents, animal feed as well as juice processing require cellulases (Singh *et al.*, 2007). Proteases also have many industrial application and they represent 60 % of the enzyme market(Rao *et al.*, 1998). Lipases catalyze the hydrolysis and the synthesis of esters formed from glycerol and long-chain fatty acids. Lipases occur widely in nature but only

microbial lipases are commercially significant (Sharma *et al.*, 2001) that are employed in paper industry, obtaining lipid by-products such as mono- and di-glycerides (Markossian *et al.*, 2000).Antibiotics in addition to several bio-active molecules have been reported to be obtained from thermophiles (Gonzalez *et al.*, 2003; Aanniz *et al.*, 2015).

In Egypt, There are many hot springs surrounding the coast of the Gulf of Suez accompanying to the tectonic action of the Red Sea area and Gulf of Suez rift (Lashin and Al Arifi, 2010; Lashin, 2013; Lashin and El Din, 2013).Hammam Pharaon is advised the hottest sulfuric hot spring in Egypt with temperature ability to 70°C, (Morgan *et al.*, 1983; Morgan *et al.*, 1985).Environmental conditions and the nutritional status available in Hammam Pharaonrepresent a selective media toward a particular group of microbial population that are not sufficiently studied. This study aims to study and identify the potential thermophilic bacteria mainly isolated for Hammam Pharaon and screening their potentialities to be used as a source of several thermostable enzymes.

MATERIALS AND METHODS

Materials:

Soluble starch, Carboxy methyl cellulose (CMC), Azo casein and Gum acacia were purchased from sigma chemical company, otherwise all chemicals were analytically grade.

- Sampling sites and sample collection

The main source of the intended isolates in this study was the thermal water and soil obtained from Hammam Pharaon, Sinai, Egypt .The Water and soil samples were collected in sterilized falcon tubes and immediately transferred to the lab.The temperature of water ranged between 55 to 70°C according to the site of collection and the water pH was 6.5- 7.The chemical constituents of this site has already been reported(Selim *et al.*, 2014).

- Isolation of thermophilic bacteria and growth conditions

Both dilution plate method and enrichment method were used for isolation (Holt *et al.*, 1994). 0.45 μ m membrane filters were used to filtrate water samples and the obtained filtrate was inoculated in Nutrient Agar (NA)medium(Prescott *et al.*, 2002). For soil deposits, one gram of soil was serially diluted in sterile distilled water and plated on nutrient agar plates and incubated at 60°C for 24-48 hrs. Colonies with different shape, size and pigmentation were individually picked and sub-cultured on nutrient agar plates to obtain pure isolates (Mohapatra *et* *al.*, 2014).Further characteristics were obtained by Gram staining, Endospore staining and capsule staining. The purified bacterial isolates were maintained under 20% glycerol and kept at -20 °C till use for further experiments.

Screening of extracellular thermostable enzymes Screening for α-Amylase Activity

The obtained isolates were inoculated in a solid medium containing soluble starch (Castenholz, 1969)to test the activity of α -Amylase. After incubation for 24-72h at 60°C, 1% iodine solution was added to the pre-inoculated plates and the development of clear zones around colonies indicated positive amylolytic activity(Yanmis et al., 2015). Ouantitavely, the tested isolates were inoculated in the afromentioned broth medium at 60°C for 72h then; the culture broth was centrifuged at 5000 rpm for 20 min at 4°C. To evaluate the activity, an assay mixture (total volume 10 ml) containing 1% soluble starch, crude enzyme solution in 60 mM potassium phosphate buffer pH 7.0 and the mixture was incubated at 60°C. The increase in the reducing sugar was monitored over time intervals by using dinitrosalicylic acid reagent (Miller, 1959). Maltose was used as standard and one unit of α -amylase activity was defined as the amount of enzyme that releases one umol reducing sugar equivalent to maltose per min.

2- Screening for cellulase Activity

CMC containing solid medium (Bragger *et al.*, 1989) was used to screen cellulase activity. The obtained isolates were inoculated and then incubated at 60°C for 5-7 days. The formation of clear zone around the colonies after addition of Congo red solution indicated positive result(Yanmis *et al.*, 2015).Quantitavely,to determine cellulase activity, the tested isolates were inoculated in the afro-mentioned broth medium and incubated for5-7 days at 60°C then; the culture broth was centrifuged at 5000 rpm for 20 min at 4°C. The quantification of the resulted reducing sugars was performed by using the same assay mixture and dinitrosalicylic acid reagent was used to estimate released sugars. Glucose was used as standard and the unit of cellulase activity was defined as the amount of enzyme that releases one µmol reducing sugar equivalent to maltose per min.

3- Screening for Protease Activity

Minimal Synthetic Medium (MSM) containing skimmed milk were used as a source of protein (Priest and Alexander, 1988). After inoculation, the cultures were incubated for 24-72h at 60°C and the formation of clear zones around colonies indicated positive proteolytic activity(Panda et al., 2013). For the purpose of quantifying the protease enzymes; the tested isolates were inoculated in the afro-mentionedbroth medium and the cultures were incubated for5-7 days at 60°C then; the culture broth was centrifuged at 5000 rpm for 20 min at 4°C. To evaluate the activity, an assay mixture (total volume 10 ml) containing 0.5% azocasein and the crude enzyme solution in 60 mM potassium phosphate buffer pH 7.0 and the mixture was incubated at 60°C. The reaction was started by adding 1 ml of enzyme source to the assay mixture and the reaction was stopped by 1 ml trichloroacetic acid. The unit of protease activity was defined as the amount of enzyme release of one µmol of tyrosine per minute per µg protein.

4- Screening for Lipase Activity

Tween 20/tween 80 containing solid medium were used to test lipase activity (Kumar *et al.*, 2012). After incubation for 2 days at 60° C, the observation of white precipitation around the colonies indicated positive lipase activity(Ertuğrul *et al.*, 2007).Quantitavely, to determine lipase activity, the tested isolates were inoculated in the afromentioned broth medium 5-7 days at 60°C then, the culture broth was centrifuged at 5000 rpm for 20 min at 4°C. The lipase activitywas measured in an assay mixture containing homogenized olive oil in 10 % (w/v) gum acacia as a substrate and the crude enzyme source in 60 mM potassium phosphate buffer pH 7.0 and the mixture was incubated at 60°C(Jensen *et al.*, 1983). The reaction was stopped by the addition of 1 ml of acetone: alcohol (1:1) mixture and titration was performed against 0.1MNaOH.The unit of lipase activity was defined as the amount of enzyme that liberated one µmol fatty acid per minute per µg protein.

- Identification and characterization of the potential thermophilic isolates

1. Morphological, biochemical and physiological identification:

Morphological and biochemical identification was done by applying the methods described in Bergey's Manual of Determinative Bacteriology (Vos *et al.*, 2011).

Optimum pH and temperature of the most potential producers were determined using the Central Composite Design (CCD) algorithm in which a factorial CCD was proposed with two factors. 13 sets per experiment was formulated to obtain the optimum pH and temperature for growth(Box *et al.*, 1978). The CCD matrix included 5 levels for each variable, 6 center points and star points to estimate the curvature. The CCD provided an indication of the main effect of each factor in addition to the interaction between them. All the experiments were carried out at least in triplicate (Fossi *et al.*, 2011).

All isolates were inoculated in 50 ml LB medium with particular pH and then incubated in the temperature indicated in table 4for 10 days. Final biomass were collected into a 50 ml falcon centrifuge tube and centrifuged at 5,000 rpm for 15 minutes. The cell pellets were transferred into a 15 ml screw tube and freeze-dried and the dry weights were determined (Tamilarasan *et al.*, 2012) . In the RSM, the interactive effects of pH, and temperature were studied to obtain optimum growth. Both factors in were studied at five different levels (-2, -1, 0,+1, +2) in which the minimum and maximum ranges of variables were tested with respect to their values in actual and coded for mass displayed in table 1.Minitab 15 software (StatEase, Inc, Minneapolis, MN, USA) was used in this experiment.

 Table 1. Different pH and temperature levels in terms actual and coded factors were tested during optimization using Central Composite Design (CCD) experiment

Variables	Range of levels				
variables	-2	-1	0	+1	+2
pН	5	6	7	8	9
Temperature(°C)	50	60	70	80	90

2- The molecular identification:

The genomic DNA of the isolates was obtained by using Insta-Gene Matrix Genomic kit (Bio-Rad, USA) and then it was used as a template for amplification of the 16S rRNA gene. PCR was performed using518F as forward primer (5'CCAGCAGCCGCGGTAATACG) and 800R as a reverse primer (5'-TACCAGGGTATCTAA TCC). Montage PCR Clean up kit (Millipore) was used to obtain PCR pure product. Sequencing was performed by using ABI PRISM[®]BigDyeTM Terminator Cycle Sequencing Kits. The sequence obtained was checked and manipulated by Finch TV version and the phylogenetic tree was generated via Sea view software using the closest published type strains sequences.

RESULTS

- Isolation of thermophilic bacteria and growth conditions

In the present study, Hammam Pharaon was the main source of thermophilic bacteria. At the time of sampling, the thermal water temperature ranged from 55 to 70°C, and pH 6.5-7. The obtained 29 isolates were further screened for the desired hydrolytic activities.

As indicated in table 2,of the 29 isolates it was found that; 17 isolates are capable of degrading starch due to their amylase activity. In addition; 9 isolates were found to be able to produce cellulase enzyme, 15 isolates were able to produce lipases enzyme and 14 isolates were able to produce proteases enzymes. In order to select the best in each group, enzyme activity was measured for all enzymes in each group. The isolate (HF_84) gave the highest assay for amylases activity compared with the other isolates with total activity 24.16 U/ml. The isolate (HF_85) gave the highest activity of cellulase with a value of 11 U/ml. The isolate (HF_86) gave the highest protease activity among other isolates with total activity 49.7 U/ml. Finally, the isolate (HF_87) gave the highest value of lipase activity with total activity 1.72 U/ml.

- Morphological and biochemical identification of thermophilic bacteria

The obtained four isolates (HF_84, HF_85, HF_86 and HF_87) that gave the highest activity in the quantitative assays were further subjected to morphological and biochemical tests as represented in table 3. The colony shape **Table 3. Morphological, biochemical and physiological c** of the four strains was different and all of them showed the ability to survive at 50-90°C, pH 5-9 and 1-5% NaCl. These strains were further selected for molecular identification.

Table 1	2.	The obtained isolates and their corresponding
		enzyme assays. (+) represent positive activity
		while (-) represent absence of the enzyme
		activity.

Isolate code	Alpha amylase	Cellulase	Protease	Lipase	
HF 84	+ -	+	+	+	
HF ⁻ 85	+	+	+	+	
HF-86	+	+	+	+ +	
HF ⁻ 87	+++++	+	+	+	
HF 88	+	-	-	-	
HF ⁻ 89	-	-	-	-	
HF ⁻ 90	+	-	+	-	
HF 91	-	+	-	-	
HF ⁻ 92	+	-	+	+	
HF 93	+	+	+	+	
HF ⁻ 94	+	-	-	+	
HF ⁻ 95	+ +	-	+	+	
HF 96	+	-	-	-	
HF ⁻ 97	+	-	-	-	
HF 98	+	-	+	+	
HF ⁻ 99	+	-	+	-	
HF ⁻¹⁰⁰	+		-	+	
HF 101	-	-	-	-	
HF ⁻¹⁰²	+	-	-	-	
HF 103	-	-	-	-	
HF ⁻¹⁰⁴	-	+	-	+	
HF ⁻¹⁰⁵	-	+	+	+	
HF ⁻¹⁰⁶	-	-	-	-	
HF 107	-	-	-	+	
HF ⁻¹⁰⁸	-	-	-	-	
HF 109	+	-	+	-	
HF 110	-	+	-	+	
HF 111	-	-	+	-	
HF ⁻¹¹²	-	-	+	+	

	characterizati		

Morphological characterization	HF 84	HF 85	HF 86	HF 87
Colony size	small	moderate	moderate	large
Colony shape	circular	circular	circular	circular
Margin	Entire	Entire	Entire	Entire
Form	regular	regular	irregular	regular
Elevation	Slightly raised	Slightly raised	Slightly raised	Slightly raised
Color	white creamy	white-yellow	white	white creamy
Surface texture	Smooth	Smooth	Smooth	Smooth
Light transmission	Translucent	Translucent	Opaque	Transparent
Consistency	moist	moist	drv	moist
Nutrient broth culture	Sediment	Turbid	Turbid	Turbid
Growth form on slant	Arbores cent	Effuse	Effuse	Arbores cent
Gram's nature	G+ve rods	G+ve rods	G+ve rods	G+ve rods
Spore position	Terminal	Terminal	Terminal	Terminal
Spore shape	Oval	Ellipsoidal	Ellipsoidal	Oval
Sporangium shape	Swollen	swollen	Swollen	Swollen
Motility	motile	motile	motile	motile
Acid fast staining	-ve	-ve	-ve	-ve
Capsule staining	+ve	+ve	+ve	+ve
Amylase activity	+ve	+ve	+ve	+ve
Cellulase activity	+ve	+ve	+ve	+ve
Protease activity	+ve	+ve	+ve	+ve
Lipase activity	+ve	-ve	+ve	+ve
Gelatinase activity	-ve	-ve	-ve	-ve
Catalase	+ve	+ve	+ve	-ve
Oxidase	+ve	+ve	+ve	-ve
Urease	-ve	+ve	+ve	-ve
Macconkey agar	-ve	-ve	-ve	-ve
Eosin methylene blue agar	-ve	-ve	-ve	-ve
Indole test	-ve	-ve	-ve	-ve
Methyl red test	-ve	-ve	-ve	-ve
Citrate utilization test	+ve	+ve	+ve	-ve
H_2S test	+ve	+ve	+ve	-ve
Voges-proskauer test	-ve	-ve	-ve	+ve
Sugar fermentation test	+ve	+ve	+ve	+ve
Triple Sugar Iron test	+ve	+ve	+ve	+ve
Physiological characterization				
Growth at 50-90°C	+ve	+ve	+ve	+ve
Growth at pH 5-9	+ve	+ve	+ve	+ve
Growth at 1-5 % NaCl	+ve	+ve	+ve	+ve

Table4. Matrix and responses of CCD applied for
optimum pH and temperature for growth of
the four isolates and the higher dry weight
were displayed as Bold.

Dun	Variables		Responses (growth in term of Dry Weight Biomass)			
Run	pН	Temp.	HF 84 (g/L)	HF 85 (g/L)	HF 86 (g/L)	HF 87 (g/L)
1	7	70	4.31	4.53	3.52	5.97
2 3	8.4	70	3.80	5.11	3.90	2.69
3	7	70	4.33	4.51	3.53	5.96
4 5	7	70	4.31	4.53	3.52	5.97
	7	55.8	2.11	3.64	2.89	5.40
6	8	60	3.48	2.17	3.33	5.55
7	5.5	70	1.02	1.26	1.89	1.06
8	6	80	2.35	5.91	1.74	3.60
9	7	70	4.33	4.51	3.53	5.96
10	7	70	4.31	4.53	3.52	5.97
11	7	84	1.08	1.04	1.00	1.31
12	8	80	2.07	2.33	346	5.89
13	6	60	3.95	2.79	4.15	5.15

Statistical analysis of the effect of the tested factors (pH and temperature) tested for growth of Geobacillus_HF84 showed the significant effect of pH,pH²and temp² on the dry weight as their P values were less than 0.1 (α value), P value was used as a cut off to test the significant at 90% level of confidence their P values were 0.059 and 0.009 respectively. Statistical analysis of the effect of the tested factors (pH and temperature) tested for growth of Geobacillus HF85showed the non-significant effect of pH,pH² and temp² on the dry weight as their P values were more than 0.1 (α value),P value was used as a cut off to test the significant at 90% level of confidence, their P values were 0.414 and 0.163 respectively. Statistical analysis of the effect of the tested factors (pH and temperature) tested for growth of Geobacillus HF86 showed the significant effect of pH, temp, pH- Temp and temp² on the dry weight as their P values were more than 0.1(α value), P value was used as a cut off to test the significant at 90% level of confidence, their P values were 0.028,0.008, 0.013 and 0.033 respectively. Finally, Statistical analysis of the effect of the tested factors (pH and temperature) tested for growth of Geobacillus HF87 showed the significant

effect of pH² on the dry weight as their P values were more than 0.1 (α value),P value was used as a cut off to test the significant at 90% level of confidence, its P value was 0.034.Statistical analysis of the CCD experiment for the growth of the four isolates were summarized in Table 5 at 90% level of confidence. Significant P value(<0.1) displayed as Bold. The interaction among the tested variables could be summarized using contour plot (Fig.1).

Table	5. Statistical analysis of the CCD experiment for
	the growth of the four isolates at 90% level of
	confidence. Significant P value(<0.1) displayed
	as Bold

a5 1	Dolu					
Geobacillus_HF84						
Variables	Summation of Squares	F Value	P Value			
pН	0.012653	1.81	0.220			
Temp	0.024939	3.57	0.101			
pH [∠]	0.022809	5.08	0.059			
temp ²	0.087497	12.54	0.009			
pH- Temp	0.000090	0.01	0.913			
Geobacillus	HF85					
pH -	0.017509	7.58	0.028			
Temp	0.030664	13.28	0.008			
pH^2	0.000166	0.49	0.508			
temp ²	0.025211	10.92	0.013			
pH- Temp	0.016129	6.99	0.033			
Geobacillus	HF86					
pH -	0.001937	0.07	0.793			
Temp	0.000197	0.01	0.933			
pH ²	0.011758	0.76	0.414			
temp ²	0.063395	2.43	0.163			
pH- Temp	0.021904	0.84	0.390			
Geobacillus	HF87					
pH -	0.031190	1.51	0.259			
Temp	0.061147	2.96	0.129			
pH2	0.128292	6.95	0.034			
temp2	0.033832	1.64	0.242			
pH- Temp	0.008930	0.43	0.532			

According to Fig.1, it was found that; the optimum conditions for the growth of *Geobacillus*_HF84 at pH 7 and temperature 70°C., *Geobacillus*_HF85 at pH 6 and temperature 80°C, *Geobacillus*_HF86 at pH 6 and temperature 60°C, and finally *Geobacillus*_HF86pH 7 and temperature 70°C

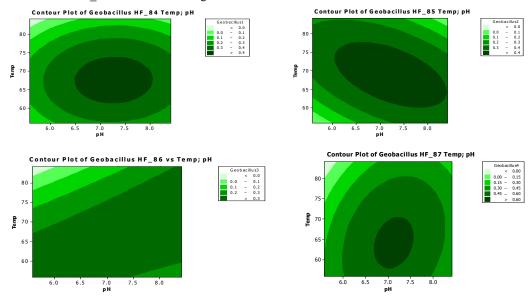


Fig. 1. Counter plot showing the interaction among the tested variables on the dry weight of the four isolates.

- Molecular identification of the selected isolates

The 16S rRNA sequence analysis showed that all the obtained isolates are members of the genus *Geobacillus*. The isolate HF_84 that is phylogenetically relevant to *Geobacillus caldoxylolyticus* (96.7 % identity),HF_85 and HF_86 showed very high sequence identity to *Geobacillus thermoglucosidasius*(97.9-96.3 % identity) respectively, and HF_87 showed high sequence similarity to *Geobacillus vulcani*(94.4 % identity). The obtained GenBank accession numbers for the four isolates HF_84,HF_85, HF_86 andHF_87 were KY084244, MG564474 , MF155645 and MF155646respectively. The phylogenetic tree of four local isolates (Fig. 2) has been obtained by Sea view software in which the common type strains were selected.

- Seobacillus NF 87

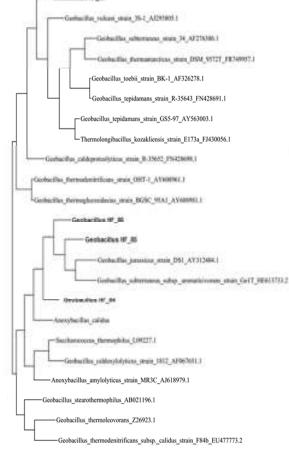


Fig. 2. Phylogenetic tree of the four isolates showing the relationship with other members of the genus *Geobacillus* upon the analysis of the 16S rRNA gene sequence and analysis.

DISCUSSION

Out of 29 isolates obtained from Hammam Pharaon in Egypt. Among them, four isolates (HF_84, HF_85, HF_86 and HF_87) have been further characterized and identified on basis of their higher ability to hydrolyze starch, CMC, protein and lipids. In terms of phenotypic, physiological and biochemical characters that have been confirmed by 16s rRNA analysis, these isolates have been identified as *Geobacillus*(Logan *et al.*, 2009). Strains HF_84 The isolate HF_84 that is evolutionary relevant to *Geobacillus caldoxylolyticus* (96.7 % identity)(Fortina *et al.*, 2001), HF_85, HF_86 showed very high sequence identity to *Geobacillus thermoglucosidasius* (97.9 -96.3 % identity) respectively(Suzuki *et al.*, 1983; Nazina *et al.*, 2001), and HF_87 showed high sequence similarity to *Geobacillus vulcani*(94.4 % identity)(Nazina *et al.*, 2004).

Since 2001, the thermophilic *Bacillus* of group 5 were reclassified to be members of Geobacillus that is characterized by optimal growth at 45-70°C(McMullan *et al.*, 2004). For this group, Geobacillus (Bacillus) stearothermophilus was regarded as the type strain (Nazina *et al.*, 2001). At present, this genus includes several species such as *Geobacillus stearothermophilus*(Nazina *et al.*, 2001), *G. thermocatenulatus*(Golovacheva *et al.*, 1975) and *G. thermoleovorans*(Zarilla and Perry, 1987).

The obtained data for optimum temperature and pH required for growth of the obtained Geobacillus strains indicated that RSM could not only be used for optimization of medium components in the fermentation process (Puri *et al.*, 2002) but also for studying the combined effects of culture parameters(Zambare, 2011). The data obtained for the optimum temperature (60 - 70°C) and pH (6-7) agrees well with the data collected about the temperature and pH of the site of collection supporting that the obtained isolates are thermophilic bacillus (Geobacillus) adapted to live under the conditions of Hammam Pharaon.

From the results represented in this study, it could be concluded that the most attractive attributes of thermopiles is their production of thermoactive and thermostable enzymes which are required for several industrial processes such as α -amylase, cellulase, protease and lipase. Such enzymes have been employed in several industrial processes. Several enzymes which are promising enzymes regarding their characteristics particularly thermal stability and optimum pH. Further studies are of our consideration now to optimize its production from the parent strain to pave the way for its industrial commercialization.

ACKNOWLEDGEMENT

The Research Unit of Mansoura University supported this work. The authors thank Dr. Hisham Sallam and Dr. Tarek Anan from Geology Department, Faculty of Science, Mansoura University, Egypt for their considerable guidance during sample collection.

REFERENCES

- Aanniz, T.,Ouadghiri, M.,Melloul, M.,Swings, J.,Elfahime, E.,Ibijbijen, J.,Ismaili, M. and Amar, M. (2015). Thermophilic bacteria in moroccan hot springs, salt marshes and desert soils. Brazilian Journal of Microbiology 46(2): 443-453.
- Bertoldo, C. and Antranikian, G. (2002). Starchhydrolyzing enzymes from thermophilic archaea and bacteria. Current opinion in chemical biology 6(2): 151-160.
- Box, G. E., Hunter, W. G. and Hunter, J. S. (1978). Statistics for experimenters: An introduction to design, data analysis, and model building, JSTOR.

- Bragger, J., Daniel, R. M., Coolbear, T. and Morgan, H. W. (1989). Very stable enzymes from extremely thermophilic archaebacteria and eubacteria. Applied Microbiology and Biotechnology 31(5): 556-561.
- Castenholz, R. W. (1969). Thermophilic blue-green algae and the thermal environment. Bacteriological Reviews 33(4): 476.
- Charlier, D. and Droogmans, L. (2005). Microbial life at high temperature, the challenges, the strategies. Cellular and molecular life sciences 62(24): 2974-2984.
- Daron, H. H. (1970). Fatty acid composition of lipid extracts of a thermophilic bacillus species. Journal of bacteriology 101(1): 145-151.
- Ertuğrul, S.,Dönmez, G. and Takaç, S. (2007). Isolation of lipase producing bacillus sp. From olive mill wastewater and improving its enzyme activity. Journal of Hazardous Materials 149(3): 720-724.
- Fortina, M. G., Mora, D., Schumann, P., Parini, C., Manachini, P. L. and Stackebrandt, E. (2001). Reclassification of saccharococcus caldoxylosilyticus as geobacillus caldoxylosilyticus (ahmad et al. 2000) comb. Nov. International journal of systematic and evolutionary microbiology 51(6): 2063-2071.
- Fossi, B. T., Tavea, F., Jiwoua, C. and Ndjouenkeu, R. (2011). Simultaneous production of raw starch degrading highly thermostable a-amylase and lactic acid by lactobacillus fermentum 04bba19. African Journal of Biotechnology 10(34): 6564-6574.
- Golovacheva, R.,Loginova, L.,Salikhov, T.,Kolesnikov, A. and Zaitseva, G. (1975). New thermophilic species, bacillus-thermocatenulatus nov-sp. Microbiology 44(2): 230-233.
- Gonzalez, J. B., Fernandez, F. and Tomasini, A. (2003). Microbial secondary metabolites production and strain improvement.
- Gupta, G.,Srivastava, S.,Khare, S. and Prakash, V. (2014). Extremophiles: An overview of microorganism from extreme environment. International Journal of Agriculture, Environment and Biotechnology 7(2): 371.
- Gupta, R.,Gigras, P.,Mohapatra, H.,Goswami, V. K. and Chauhan, B. (2003). Microbial α-amylases: A biotechnological perspective. Process biochemistry 38(11): 1599-1616.
- Haki, G. and Rakshit, S. (2003). Developments in industrially important thermostable enzymes: A review. Bioresource technology 89(1): 17-34.
- Holt, J.,Krieg, N.,Sneath, P.,Staley, J. and Williams, S. (1994). Bergey's manual of determinative microbiology. Williams and Wilkins, Maryland.
- Jensen, R. G., DeJong, F. A. and Clark, R. M. (1983). Determination of lipase specificity. Lipids 18(3): 239-252.
- Kandra, L. (2003). A-amylases of medical and industrial importance. Journal of Molecular Structure: THEOCHEM 666: 487-498.
- Kaneda, T. (1963). Biosynthesis of branched chain fatty acids i. Isolation and identification of fatty acids from bacillus subtilis (atcc 7059). Journal of Biological Chemistry 238(4): 1222-1228.

- Kumar, D.,Kumar, L.,Nagar, S.,Raina, C.,Parshad, R. and Gupta, V. K. (2012). Screening, isolation and production of lipase/esterase producing bacillus sp. Strain dvl2 and its potential evaluation in esterification and resolution reactions. Arch Appl Sci Res 4(4): 1763-1770.
- Lashin, A. and Al Arifi, N. (2010). Some aspects of the geothermal potential of egypt. Case study: Gulf of suez-egypt. Proceeding.
- Lashin, A. (2013). A preliminary study on the potential of the geothermal resources around the gulf of suez, egypt. Arabian Journal of Geosciences 6(8): 2807-2828.
- Lashin, A. and El Din, S. S. (2013). Reservoir parameters determination using artificial neural networks: Ras fanar field, gulf of suez, egypt. Arabian Journal of Geosciences 6(8): 2789-2806.
- Logan, N. A., Vos, P. D. and Dinsdale, A. (2009). Geobacillus. Bergey's Manual of Systematics of Archaea and Bacteria.
- Markossian, S.,Becker, P.,Märkl, H. and Antranikian, G. (2000). Isolation and characterization of lipiddegrading bacillus thermoleovorans ihi-91 from an icelandic hot spring. Extremophiles 4(6): 365-371.
- McMullan, G., Christie, J. M., Rahman, T. J., Banat, I. M., Ternan, N. G. and Marchant, R. (2004). Habitat, applications and genomics of the aerobic, thermophilic genus geobacillus. Biochem Soc Trans 32(Pt 2): 214-217.
- Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry 31(3): 426-428.
- Mohapatra, S.,Samantaray, D. and Samantaray, S. (2014). Phylogenetic heterogeneity of the rhizospheric soil bacterial isolates producing phas revealed by comparative analysis of 16s-rrna. Int. J. Curr. Microbiol. App. Sci 3(5): 680-690.
- Morgan, P.,Boulos, F. K. and Swanberg, C. (1983). Regional geothermal exploration in egypt. Geophysical prospecting 31(2): 361-376.
- Morgan, P.,Boulos, F.,Hennin, S.,El-Sherif, A.,El-Sayed, A.,Basta, N. and Melek, Y. (1985). Heat flow in eastern egypt: The thermal signature of a continental breakup. Journal of Geodynamics 4(1-4): 107-131.
- Moss, C. W. and Cherry, W. B. (1968). Characterization of the c15 branched-chain fatty acids of corynebacterium acnes by gas chromatography. Journal of bacteriology 95(1): 241.
- Nazina, T., Tourova, T., Poltaraus, A., Novikova, E., Grigoryan, A., Ivanova, A., Lysenko, A., Petrunyaka, V., Osipov, G. and Belyaev, S. (2001). Taxonomic study of aerobic thermophilic bacilli: Descriptions of geobacillus subterraneus gen. Nov., sp. Nov. And geobacillus uzenensis sp. Nov. From petroleum reservoirs and transfer of bacillus stearothermophilus, bacillus thermocatenulatus, bacillus thermoleovorans, bacillus kaustophilus, bacillus thermodenitrificans to geobacillus as the new combinations g. Stearothermophilus, g. Th. International journal of systematic and evolutionary microbiology 51(2): 433-446.

- Nazina, T. N., Tourova, T. P., Poltaraus, A. B., Novikova, E. V., Grigoryan, A. A., Ivanova, A. E., Lysenko, A. M., Petrunyaka, V. V., Osipov, G. A., Belyaev, S. S. and Ivanov, M. V. (2001). Taxonomic study of aerobic thermophilic bacilli: Descriptions of geobacillus subterraneus gen. Nov., sp. Nov. And geobacillus uzenensis sp. Nov. From petroleum reservoirs and transfer of bacillus stearothermophilus, bacillus thermocatenulatus, bacillus thermoleovorans, bacillus kaustophilus, bacillus thermodenitrificans to geobacillus as the new combinations g. Stearothermophilus, g. Th. Int J Syst Evol Microbiol 51(Pt 2): 433-446.
- Nazina, T. N.,Lebedeva, E. V.,Poltaraus, A. B.,Tourova, T. P.,Grigoryan, A. A.,Sokolova, D. S.,Lysenko, A. M. and Osipov, G. A. (2004). Geobacillus gargensis sp. Nov., a novel thermophile from a hot spring, and the reclassification of bacillus vulcani as geobacillus vulcani comb. Nov. International journal of systematic and evolutionary microbiology 54(6): 2019-2024.
- O'Leary, W. M. (1962). The fatty acids of bacteria. Bacteriological reviews 26(4): 421.
- Panda, M. K., Sahu, M. K. and Tayung, K. (2013). Isolation and characterization of a thermophilic bacillus sp. With protease activity isolated from hot spring of tarabalo, odisha, india. Iranian journal of microbiology 5(2): 159.
- Prescott, L. M., Harley, J. P. and Klein, D. A. (2002). Laboratory exercises in microbiology, McGraw-Hill Companies.
- Priest, F. G. and Alexander, B. (1988). A frequency matrix for probabilistic identification of some bacilli. Microbiology 134(11): 3011-3018.
- Puri, S.,Beg, Q. K. and Gupta, R. (2002). Optimization of alkaline protease production from bacillus sp. By response surface methodology. Current microbiology 44(4): 286-290.
- Rao, M. B., Tanksale, A. M., Ghatge, M. S. and Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and molecular biology reviews 62(3): 597-635.
- Rothschild, L. J. and Mancinelli, R. L. (2001). Life in extreme environments. Nature 409(6823): 1092-1101.
- Selim, S.,Sherif, M. E.,El-Alfy, S. and Hagagy, N. (2014). Genetic diversity among thermophilic bacteria isolated from geothermal sites by using two pcr typing methods. Geomicrobiology Journal 31(2): 161-170.

- Sharma, R., Chisti, Y. and Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology advances 19(8): 627-662.
- Singh, A.,Kuhad, R. C. and Ward, O. P. (2007). Industrial application of microbial cellulases. Lignocellulose Biotechnologgy: Future Prospects: 345-358.
- Suzuki, Y.,Kishigami, T.,Inoue, K.,Mizoguchi, Y.,Eto, N.,Takagi, M. and Abe, S. (1983). Bacillus thermoglucosidasius sp. Nov., a new species of obligately thermophilic bacilli. Systematic and applied microbiology 4(4): 487-495.
- Tamilarasan, K., Muthukumaran, C. and Kumar, M. D. (2012). Application of response surface methodology to the optimization of amylase production by aspergillus oryzae mtcc 1847. African Journal of Biotechnology 11(18): 4241-4247.
- Van Der Maarel, M. J.,Van Der Veen, B.,Uitdehaag, J. C.,Leemhuis, H. and Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of biotechnology 94(2): 137-155.
- Vos, P.,Garrity, G.,Jones, D.,Krieg, N. R.,Ludwig, W.,Rainey, F. A.,Schleifer, K.-H. and Whitman, W. (2011). Bergey's manual of systematic bacteriology: Volume 3: The firmicutes, Springer Science & Business Media.
- Yanmis, D.,Baltaci, M. O.,Gulluce, M. and Adiguzel, A. (2015). Identification of thermophilic strains from geothermal areas in turkey by using conventional and molecular techniques. Res J Biotechnol 10(1): 39-45.
- Zambare, V. (2011). Optimization of amylase production from bacillus sp. Using statistics based experimental design. Emirates Journal of Food and Agriculture 23(1): 37.
- Zarilla, K. A. and Perry, J. J. (1987). Bacillus thermokovorans, sp. Nov., a species of obligately thermophilic hydrocarbon utilizing endosporeforming bacteria. Systematic and applied Microbiology 9(3): 258-264.

عزل و تعريف اربع سلالات من جنس Geobacillus من حمام فرعون - مصر يحيي عثمان اللازق ، عمرو محمد موافي ، احمد عبد الرازق و اميرة الملاح قسم النبات كلية العلوم جامعة المنصورة المنصورة - مصر

استهدفت هذه الدراسة عزل وتعريف سلالات بكتيرية محبة لدرجات الحرارة العالية من البيئات المحلية و لها القدرة على إنتاج انزيمات متحملة لدرجات الحارة العالية مثل الالفا امبليز و السيليوليز و اليوتيز و الليبيز. تم عزل 29 سلالة من حمامات فرعون وقد تم إختيار اربعة منها لقدرتها على انتاج الانزيمات سالفة الذكر بنشاط عالى. تم تعريف هذه السلالات على المستوي الجزيئى حيث وجد انهم جميعا من جنس Geobacillus وكانت هذه السلالات مختلفة من حيث الشكل و تحليل الجيلاتين و غيرها و كذلك كانت مختلفة فسيولوجيا فهي تتموا في درجات حرارة من 50 الي 90 ودرجة حموضة من 5-و. وختما فان هذه الدراسة تقدم معلومات هامة عن البكتريا ال محبة لدرجات الحرارة العالية من حمامات في عن من من الماس على 200 ودرجة حموضة من 5-و. وختما فان هذه الدراسة تقدم معلومات هامة عن البكتريا ال محبة لدرجات الحرارة العالية من حمان من خصائص تعطيها اهمية في العديد من التطبيقات البيوتكولوجية.