Journal of Current Veterinary Research

ISSN: 2636-4026

Journal home page: http://www.jcvr.journals.ekb.eg

Internal medicine & Infectious disease

Vectors and Vector-Borne Diseases with Special Reference to History and Current Status of LSD in Egypt: A One Health Approach

Mohamed A. Hashad¹, Ahmed Zaghawa¹, Akram A. Salama¹, Mohammed AboElkhair², Abdelhamid Bazid², Hanem Harb¹, Mohammed A. Nayel^{1*}.

(1) Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.

(2) Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Egypt.

**Corresponding author:* mohamed.aboalez@vet.usc.edu.eg Accepted: 20/11/2023 *Received:* 1/11/2023

ABSTRACT

Infectious diseases known as "vector-borne diseases" (VBDs) are re-emerging and re-emerging, inflicting considerable economic losses due to high mortality rates, decreased productivity in the livestock sector, and effects on both human and animal health. Furthermore, VBDs make for roughly 25% of important vertebrate pathogens for veterinarians. Viruses, bacteria, and parasites cause vector-borne illnesses, which are spread through the bite of hematophagous arthropods (mostly ticks and mosquitoes). Given that most of these diseases are zoonotic, managing them requires a multidisciplinary approach. Insects that feed on disease-causing microorganisms from an infected host (human or animal) and then inject them into their next victim during their next blood meal include mosquitoes, sandflies, ticks, bugs, flies, fleas, lice, and some freshwater aquatic snails. Arthropod populations, such as flea, tick, mosquito, sandfly, and Culicoides populations, are susceptible to quick changes in temperature and humidity. Both the abundance and distribution of vectors can be impacted by climatic changes that go beyond simple increases in mean temperature. The current review throws lights into VBDs and their vectors in Egypt.

Keywords: Vector Borne Diseases, Ticks, Mosquitoes, Egypt.

INTRODUCTION

Egypt is a country in northern Africa that is home to more than one hundred million people and twenty eight million animals. The bulk of the population relies heavily on the cattle industry as their main source of meat, milk, farm work, and subsistence, contributing 40% of the nation's agricultural GDP. Egypt currently has 27 governorates, including 4 city governorates (Alexandria, Cairo, Suez and Port Said), 9 in Lower Egypt, 9 in Upper Egypt, and 5 governorates that cover the Sinai and the eastern and western deserts (Fang et al., 2022).Vectors are living organisms that can transmit infectious diseases from one person to another or between animals. Many of these vectors are bloodsucking insects, such as mosquitoes, sandflies, ticks, bugs, flies, fleas, lice, and some freshwater aquatic feed on disease-causing snails. that microorganisms from an infected host (human or animal) and then inject them into their next victim during their next blood meal (Eassa & Abd El-Wahab, 2022). The most prosperous group of animals in the animal kingdom are arthropods. Since ancient times, they have been recognized as the primary vectors of disease transmission since they may be found in all habitat types and geographical areas of the world, feeding on a wide range of plant and animal materials (Shoukry & Morsy, 2011).Mosquitoes are the primary agents carrier of human infectious hematophagous arthropod among vectors, whereas ticks are the primary carrier of the great majority of zoonotic diseases globally. Furthermore, ticks are the agents that transmit the broadest range of infectious diseases to both animals people (Álvarezand Hernández, 2018).Birds that are migrating can cover thousands of kilometres while bringing ectoparasites like mites, ticks, fleas, and lice with them. When migratory birds come into touch with local host populations, such arthropod pests have the potential to infections local spread to animals. According to our timing of migration events, the sources and directions of migration of migratory bird species are frequently predictable (Sparagano et al., 2015).

Egypt's geographic location leads to dry equatorial largely climate. with exception of the northern coastal districts, where a fairly warm climate Egypt experiences hot, prevails. drv summers and a mild winter that gets colder and rainier as you get closer to the Red Sea and Mediterranean Sea shores. These conditions result in an ideal conditions for the growth of many species, including ticks and the diseases they carry (Abdelbaset et al., 2022). Despite the fact that global warming is just one of many elements contributing to climate change, the terms "climate change" and "global warming" are frequently used interchangeably. In most cases, when the phrase "global warming" is used, what is meant is the observed rise in average global temperature over the past few decades, both in frequency and intensity. It from the greenhouse results effect. which is brought on by an increase in CO2 emissions as a result of increased global usage of fossil fuels and simultaneous destruction of trees and forests (El-Sayed & Kamel, 2020). Large rains are also required to provide the standing water surfaces required for laving and larval development, egg despite the fact that mosquitoes can withstand higher temperatures and have longer active seasons. The dynamics of the vector population are improved by high atmospheric humidity. Last but not least, the wind is vital to the growth of mosquitoes and the diseases they spread (Min and Xue 1996; Walsh et al. 2008).

Fig. 1: Distribution of vectors in Egypt. The following provinces are shown on the map of Egypt: Alexandria, El-Behera, Kafr El-Sheikh, El-Gharbia, El-Menofia, El-Qalubia, El-Sharquia, El-Dakahlia, Damietta, and Port Said. El-Ismailia (11) El-Suez (12), Cairo (13), El-Fayoum (15), Bani-Suif (16), El-Menia (17), Giza (18), Marsa Matrouh (19), Assiut (20), Sohag (21), Qena (22), Luxor (23), Aswan (24), Red Sea (25), New Valley (26), North Sinai (27), and South Sinai (27). The distribution of the various vectors is shown as a series of coloured dots (Eassa & Abd El-Wahab, 2022).

Especially in the of zoonotic case illnesses, which pose a direct threat to both animal and human health, vectorborne diseases (VBDs) are of global relevance. These infections are spread by arthropod vectors like ticks, mosquitoes, fleas, and phlebotomine flies in communities of both sand animals and people (Selim et al., 2021). Vector-borne diseases are spread the bite of hematophagous by arthropods. primarily ticks and and are brought on by mosquitoes, parasites, bacteria, or viruses. Their care calls for a multidisciplinary approach, especially given that the majority of these diseases are zoonotic (Parola et al., 2005). One of the biggest risks to

human and animal health is arthropodborne illness transmission (Folly et al., 2020). Numerous VBDs, including piroplasmosis, anaplasmosis, and 0 fever. listed World are by the Organization for Animal Health (WOAH). Numerous variables, including urbanization, climate issues for medical professionals and globalization veterinarians, and increased international trade, have an prevalence impact the and on transmission of VBDs(Abdullah et al.. 2021).

Due to the non-specific febrile sickness, difficulties in isolation, and crossreactivity of serological tests, diagnosis of all these diseases is difficult.

Therefore, improve diagnostics' to sensitivity and specificity, find previously undiscovered infections, and tell apart closely related species, new molecular approaches have been applied. The epidemiology and frequency of these illnesses are still poorly studied and neglected in Egypt (Abdullah et al., 2021).

Transmission of vector-borne diseases.

Each of the vector-borne element system, the pathogen, vector, and reservoir must work together effectively for vector transmission to occur. However, it also depends on how these elements interact with one another in their environment, which may have a direct or indirect impact. Since not simply any pathogen can be transmitted by any vector and be harbored by every animal, their genotypes can also affect the success of transmission (Kuleš et al., 2016). "horizontal The term transmission" refers to the spread of viruses between mosquitoes, birds. people, and other vertebrates. However, some vector species also have transvertical generational transmission of which allows viruses. the spread of infectious viruses from adult mosquitoes to offspring (Braack et al., 2018).

The Mechanical Transmission

Most likely, not long after arthropods became dependent on blood feeding on gearbox vertebrate hosts. mechanical first started to occur through infected mouthparts of the blood-sucking arthropods that switched vertebrate hosts during feeding activities. Among the DNA viruses at work are myxoma virus, cow lumpy skin disease virus, rabbit fibroma virus and African swine mechanically fever virus. Among the

transmitted RNA viruses are the rift valley fever virus, bovine viral diarrhea virus, equine infectious anemia virus bovine leukemia virus, and hog cholera virus (Kuno & Chang, 2005).

(Sohier 2019) et al.. reported experimental evidence of Haematopota spp. horseflies and Stomoxys calcitrans biting flies transmitting the mechanical lumpy skin disease virus. They came to the conclusion that one experiment LSDV transfer demonstrated bv Haematopota spp. The creation of nodules and the discovery of a virus in the acceptor animals' blood supported LSD the evidence. These findings support the idea that these vectors mechanically transmit the viruses.

<u>Biological Transmission</u>

A mosquito must first bite and feed on amplifying (and infected) host in an to naturally transfer virus. order a Following this internal growth, the pathogen must be released into the insect's saliva where it can then infect a fresh receptive non-host by feeding on it. Only a few (or one) mosquito species must be able to biologically transmit a particular mosquito-borne pathogen. "Vector competence" refers to а mosquito's tendency for infection while feeding on blood as well as its ability to spread disease after feeding. Depending on the species, a vector's competence might range from higher to lower to absolutely refractory. Lifespan, host feeding preferences, bite rate, population size. and other ecological and behavioral traits may be more important the establishment of to diseases (Smith et al. 2012).

Tick borne diseases:-

Ticksarehematophagousarthropodsthatparasitizethe

majority vertebrate species of worldwide, including people and animals. Ticks are the secondlargest vector for human vectorbehind borne diseases. mosquitoes, number of and host and spread a harmful diseases that are to both humans and animals. Additionally, tick bites irritation. can cause paralysis, or severe allergies in humans (De La Fuente et al., 2007). Egypt, which is situated on the southern Mediterranean Sea coast. situated is along the African-Eurasian flyway, a significant migration path for avians travelling between their breeding grounds in Eurasia and wintering sites the in Africa. the spring and In autumn, millions of birds, including many migrant birds from Europe. cross the Mediterranean Sea, creating chances for the spread of ticks and with the infections that go them (Abdelbaset et al., 2022).

Twelvebacterialdiseases(anaplasmosis,Lymeborreliosis,

ehrlichiosis. bovine borreliosis. Mediterranean spotted fever. African tick-bornefever, lymphangitisassociated rickettsiosis, bordetella, and babesiosis) and three protozoal diseases theileriosis, (babesiosis, and hepatozoonosis) have also been reported in Egypt There have also been reports of a number of arboviruses, including Lumpy skin disease (LSD), Alkhurma hemorrhagic fever (AHF), and Crimean-Congo hemorrhagic fever (CCHF). (Table.1) (Abdelbaset et al., 2022).

The use of acaricides has been the main method for controlling tick infestations. Acaricide use, however, has been be shown to unsuccessful in the reduction of tick infestations and is accompanied frequently by significant negative consequences, such as the selection of acaricide-resistant ticks. environmental contamination. and contamination of milk and meat products with acaricide residues (Antunes et al., 2012).

Table (1):- Tick-borne diseases, tick vectors, and their geographical distribution in Egypt (Abdelbaset et al., 2022).

Tick-borne	Species	Host	tick vector	Geographical Distribution
disease				
Babesiosis	Babesia	Buffaloes,	Rhipicephalus	Assiut, Cairo, Beheira, Dakahlia,
	bovis	camels, cattle,	annulatus	Elminia, Fayoum, Giza, Halayeb,
		sheep		Kafr Elsheikh, Matrouh, Menofia,
				New Valley, Port Said, Qena,
				Shalateen, Sharkia, and Sohag
	Babesia	Buffaloes,	Rhipicephalus	Behera, Dakahlia, Benisuef,
	bigemina	camels, cattle	annulatus	Elminia, Giza, Fayoum,Ismailia,
				Kafr Elsheikh, Matrouh, Menofia,
				New valley, Qena, Qualyobia,
	Babesia	Buffaloes,	Hyalomma	Sharkia, Sohag,
	occultans	cattle	excavatum	Assiut, Elminia, Fayoum, New
				valley
Theileriosis	Theileria			

	annulata	Buffaloes,	Hyalomma	
		camels, cattle,	dromedarii,	Aswan, Beheira, Benisuef,
		sheep	Hyalomma	Dakahlia, Elminia, Fayoum, Giza,
	Theileria ovis		excavatum	Menofia, New valley, Port Said,
	Anaplasmosis	Buffaloes,		Qena, Qualyobia, Sharkia, Sohag
		camel, cattle,	ND	Aswan, Beheira, Benisuef, Cairo,
		equines, goats,		Giza, Menofia, New valley,
		sheep		Qualyobia, Sinai
				Alexandria
	Theileria equi			
		Donkey,		
		horses, mule	Rhipicephalus	
	Theileria sp		annulatus	Alexandria, Cairo, Benisuef,
		Camels, cattle		Fayoum, Giza, Ismailia, Matrouh,
		Buffaloes,	Hyalomma	Menofia
Anaplasmosis	Anaplasma		dromedarii	
	marginale	Buffaloes,		Menofia, Upper Egypt
		camels, cattle,		
		equine, sheep	Hyalomma	
			excavatum,	Assiut, Cairo, Beheira, Benisuef,
	Anaplasma		Rhipicephalus	Dakahlia, Damietta, Elminia,
	platys	Buffaloes,	annulatus	Fayoum, Gharbia, Giza, Kafr
		camel, cattle,		Elsheikh, Matrouh, Menofia, Qena,
		dogs	Hyalomma	New valley, Qualyobia, Sinai,
			excavatum,	Sohag
			Rhipicephalus	Assiut, Benisuef, Cairo, Elminia,
	Anaplasma	D	annulatus,	Fayoum, Giza, New valley,
	phagocytophilum	Dogs,	Rhipicephalus	Qualyobia, Sinai
Demalia	D	numans, sneep	sanguineus	
Borreliosis	Borrella	Cattle daga	Rhipicephalus	
Lyme	burgdorfer	Cattle, dogs,	sangumeus	Cine Nile Dalta
borelliosis		numans	Unalamma	Giza, Nile Delta
			nyaloinina	
Dovino	Domalio Thailani		anatoncum	Daniquif Caina Fayoum Ciza
borraliacia	Dorrelia Theheri	Cattle horses	Dhiniaanhalua	Denisuii, Cairo, Fayouiii, Giza,
DOTTEHOSIS	Donena	cattle, norses,	Kilipicephalus	Quaryobia
O favor	Covielle hurneti	sneep	sangumeus	
V IEVEI		Camels cattle	Rhinicenhalus	
		dogs humans	annulatus	Benisuef Cairo Favoum
		uogo, numans	amuatus	Benisuei, Cano, Fayouni
			Amblyomma	
			variegatum	Alexandria Cairo Aswan
			Hvalomma	Dakahlia Giza Ismailia Matrouh
			anatolicum	New valley Port Said Sharkia
			Hvalomma	Sinai
			Hyalomma	Sinai

Ehrlichiosis	Ehrlichia canis Ehrlichia minasensis	Buffaloes, cattle, dogs, sheep Cattle	dromedarii, Rhipicephalus pulchellus, Rhipicephalus sanguineus Rhipicephalus sanguineus	
African tick- borne fever	Rickettsia africae	Camels	Hyalomma excavatum, Rhipicephalus annulatus Hyalomma dromedarii, Hyalomma	Alexandria, Cairo, Giza, Qualyobia Assiut, Fayoum, New valley
Lumpy skin disease	LSD virus	Cattle	impeltatum, Hyalomma marginatum Rhipicephalus annulatus	Cairo, Giza, Sina Beni-suef

Mosquito vectors of infectious diseases

Mosquitoes are insects of the family Culicidae and order Diptera (twowinged). The Triassic epoch, 200–245 million years ago, is when the earliest mosquito ancestors most likely first arose. Since then, the Culicidae have likely co-evolved throughout the Jurassic period with terrestrial animals. Culicidae fossils were found in the Early Cretaceous, despite the fact that there is a limited fossil record for their inception (Pagès & Cohnstaedt, 2018), Two important subfamilies are Culicinae, which includes the arboviruscarrying Aedes, Culex, Mansonia, and Haemagogus mosquito genera, and Anophelinae, which includes the malaria-carrying Anopheles mosquito genus. Even though each subfamily has hundreds of species, very few of them can transmit diseases to humans via biting people (El-Bahnasawy et al., 2013).

With significant morbidity and mortality, mosquitoes are insect vectors that spread parasitic and viral illnesses to millions of people worldwide. In order to develop and put into action effective practical and disease management and preventive strategies. disease monitoring requires a thorough mosquito of taxonomy, grasp differentiating characteristics, and insect life cycles (El-Bahnasawy et al., 2013). Except for Antarctica, everywhere has mosquitoes. Although their larval stages (immature stages) require a minimal level of standing water, they can be found in a variety of environments. Thanks to their special adaptation mechanisms, mosquitoes were able to

adapt and colonize almost any aquatic ecosystem as breeding grounds, from sea level to elevations greater than 3,000 meters. No matter how big, what kind, or how polluted the water body is, they can be found in both temporary and permanent water sources (Pagès & Cohnstaedt, 2018).

Mosquito species in Egypt:

Cx. poicilipes, and Cx. pusillus were the mosquitoes found in Egypt. Anopheles caspi, An. hispaniola, An. rhodesiensis, An. stephensi, An. coustani, Ae. detritus, An. sergentii, An. pharoensis, multicolor, An. detali, An. An. algeriensis, tenebrosus, An. An. gambiae (previously), An. superpictus, An. tarkhadi, An. Coustani (El-Bahnasawy et al., 2013).

Cx.	pipiens,	Cx.	antenn	atus,	Cx.	
thelere	i, Cx.	univittatus,	, Cx.	perexi	guus,	
Table 2	2: Distri	ibution of n	nosquit	oes in l	Egypt	by selected publications:

Genus	Species	Authors
Anopheles	AlgeriensisDetaligambiae (formerly)HispanioalMulticolorPharoensisRhodesiensisSergentii	Kirkpatrick, 1925, Gad, 1963 Kenawy, 1988,1990, Morsy et al, 1995a,b, El-Bahnasawy et al, 2010; 2011b
	Stephensi Superpictus Tarkhadi	
Culex	Perexiguus Pipiens poicilipes, pusillus quinquefasciatus thelerei univittatus	Kirkpatrick, 1925, Gad, 1963,Harbach et al,1988,Morsy et al, 1990, 2003, 2004 Mostafa, 2002, El-Bashier et al, 2006, Abdel Hamed et al, 2011a,b, 2013, El-Bahnasawy et al, 2013
Aedes	Aegypti Caspius Detritus	Gad, 1963; Mostafa et al, 2002,Morsy et al, 2003, 2004, El-Bahnasawy et al, 2011a
Culiseta (Theobaldia)	Longiareolata	Mostafa et al, 2002, Morsy et al, 2003, 2004

Species	Disease
Aedes (albopictus,	Chikungunya, dengue fever, lymphatic filariasis,
aegypti,triseriatus	Rift Valley fever, yellow fever, Zika, La Crosse
	encephalitis, Jamestown Canyon, Eastern equine
	encephalitis, Western equine encephalitis
Anopheles	Malaria, lymphatic filariasis
(culicifacies,fluviatilis,	
minimus,philippinensis,	
stephensisundaicus,	
leucosphyrus)	
Culex	Japanese encephalitis, St. Louis encephalitis virus,
(pipiens,quinquefasciatus,	lymphatic filariasis, West Nile fever.
nigripalpus,tarsalis)	

Table 3. Common mosquito vectors, vector-borne diseases (Eassa & Abd El-Wahab,2022).

Egypt One Health Approach and vector-borne diseases

The One Health approach has been proposed as a pertinent way to address vector-borne diseases (VBDs) (Düzlüet 2020). The concept acknowledges al. the interconnectedness between human beings. animals. and environmental well-being. It advocates for collaborations span multiple that disciplines and sectors, and it offers a valuable way to addressing vectors and diseases. Hence, vector-borne it is imperative for veterinarians, physicians, ecologists, and public health specialists to engage in collaborative efforts aimed at identifying the vectors and vectorborne infections, with the ultimate goal of formulating effective control methods for vector-borne diseases (VBDs).

The Health One National Strategic Framework 2023–2027 was introduced In collaboration with in Egypt. the World Health Organization (WHO) and United Nations the Food and Organization Agriculture (FAO), the

Egyptian ministries of health. agriculture, and the environment developed the framework. This method crucial for preventing, anticipating, is spotting, and responding to pandemic risks to world health. Additionally, it is essential for preventing zoonotic and vector-borne diseases as well as for guaranteeing the safety of food, water, and nutrition.

establishment of this The framework has the potential to augment the understanding of risk factors among all stakeholders effectively relevant and supervise the execution of the most suitable methods aimed at managing preventing vector-borne zoonotic and illnesses. Given the Health One framework, it is imperative to prioritize the advancement of research initiatives researchers led by competent across several scientific disciplines to effectively control vector-borne diseases (VBDs). Furthermore. it is imperative to emphasize the significance of international cooperation and regional collaborations in the prevention and management of vectorborne diseases (VBDs), hence promoting their encouragement. It is recommended that individuals who are accountable should conduct regular surveys in both endemic locations and places that are free from vectors and diseases. The purpose of these surveys is to assess the possible danger of vectors and the infections they carry emerging due to human and animal movement.

Study limitations

The inability to do a meta-analysis was attributed to the constraints posed by the limited quantity, scope. and geographical representation of studies pertaining to vectors and vector-borne (VBDs). Likewise, diseases it is challenging to currently ascertain the comprehensive crude prevalence and the extent of the burden associated with

different vectors and vector-borne diseases in the human population and livestock. Furthermore, there has been a lack of research undertaken on the genetic diversitv and transmission dynamics of animal vector-borne diseases. as well as an absence of assessment about their economic impact.

LSD was first recorded in Egypt 1988, after that several outbreaks were followed as presented in table (4). The current situation of LSD was focused by WOAH (2020)which described that notifications LSD were 87 with 17 confirmed outbreaks which much higher than 2019 that was 30 notification. Most of cases focus in Delta, Northern east region and Southern west regions in 2020.

Lable in The conduce of Lob outercards in Lg prian go ternorates.	Table 4.	Prevelance	of LSD	outbreaks	in Egyptian	governorates:
---	----------	------------	--------	-----------	-------------	---------------

Date of Outbreak	Reference	Type of samples	Area	Diagnosis
June 2, 1988	James A. House et al.,	Blood samples Skin nodules	Suez, Ismailia, Egypt	IFAT ELIZA PCR
In July, 1989	B.I.Agag, et al., 1992	blood sampling	Dakahlia Governorates.	SNT
March up to September 2006	A. M. El- Sherif et al, 2006	cutaneous nodules	Beni-Suef and Al-Fayium governorates	ELISA PCR passive hemagglutination
2006	S.S.A. Sharawi (1) & I.H.A. Abd El- Rahim (2)(2009)	tissue Milk	Kalubia province, Egypt.	AGPT PCR
2006	Fayez Awadalla Salib* and Ahmed Hassan Osman	Skin nodules	Giza governorate farms	electron microscopy

In 2006	W. Awadinetal ., 2010	skin nodules, lungs, lymph nodes, heart, liver and spleen	in the Damietta	PCR
(January) 2008	Omyma, M. El-Desawy	serum skin nodules	Giza governorate	SNT VNT
2009	Walid, S Awad, et al 2009	Blood sample Skin biopsies	Ismailia governates	PCR DBH IELIZA IFAT
March 2010 to February 2011	Ali Meawad Ahmed and Amina A. Dessouki et al.,2013	skin nodules	Ismailia	pathology section of VRC
2011	M. El-Tholoth and A. A. El- Kenway	skin nodules	in Egypt	PCR
during the summer of 2012	Mohamed A. Shalaby et al., 2012	skin nodules	Dakahlia Governorate	PCR
during the 2014	Ahmed N. F. Neamat-Allah et al.,2015	BLOOD SAMPLES skin nodules	Sharkia governorate from Egypt	Hematological and histopathological examination
June to December 2014	Aziza Amin et al.,2015	skin nodules, lymph nodes, lung and liver	Kaluobia governorate	PCR
January 2014 to mid- 2015	Mahmoud M. Elhaig et al.,2016	skin lesions Blood samples	Sharqia Governorate	PCR
Summer of 2016	Fatma M. Abdallah1, et al, 2018,	Skin nodules lymph nodes	Sharkia province	PCR
From June 2015 to September 2016	Sherin Reda Ruby 2019 et all	Skin biopsies	Ismailia, Beni Suef Governorates and.	GPCR)
2016-2017	Mona Dawoud et al 2019	Bloodsamples skin nodules	(Beni Suef, El-Fayoum El Giza, El- Menia, El- Gharbia, El- Qalyubia, and Sharkia)	PCR ELISA

	Gamil Saved	blood samples	(Beni Suef	$(F\Delta T)$
2017	Gamil Zeedan	Skin	(Defini Suer, Fl-Fayoum Fl	$(\mathbf{PCR})_{-}$
2017	of al 2010	SKIII	Giza El	$(I CK)^{-}$
	et al 2019		Olza, El- Monio El	(IEAT)
			Gharbia El	(IFA1)
			Gilardia, El-	western minunoblotting
			Qalyubia, and	
2017	Comil Com 1		Sharkia)	DCD
2017	Gamil Sayed		Different	PCR
	Gamil Zeedan	blood and Skin	governorates	
D : 2017	et al.,2019	biopsies	in Egypt	IFAI
During 2017–	Sherin R.	Skin nodules	Beni Suer,	PCR
2018	Rouby ET		Sohag and	
	AL.,2021		Aswan	
D : 0017	LCDI		Governorates	DCD
During 2017 to	Lutti Bakar et	Skin nodules	Beni suif	PCR
2018	al,2021	biopsies	governates	
		1 • 1 • •		
During the	Anmad M.	skin biopsies		DCD
summer of	Allam1 et al		Upper Egypt	PCR
2018	2020	1 . 1		DCD
2018	Ahmad M.	skin biopsies	Upper Egypt	PCR
	Allam et			
2010	al.,2020			D.CD.
2018	Mahmoud M.	Skin nodule	Sharkia	PCR
	Elhaig etal.,	Blood samples	Governorate	
	2021			
August 2019	Hansen et al,	skin biopsies	Dakahlia	PCR
	2019		Governorate,	
			Egypt.	2.02
2019	Hani G.	blood samples	Shebein El	PCR
	Keshta et		kom villages,	
	al.,2020		Menoufia	
			Governorate,	
			Egypt	
During 2019	Dawlat M.	skin nodule	(Menofia,	PCR
and 2020	Amin et		Behira,	IFAT
	al.,2021		Gharbia,	
			Ismailia, Kafr	
			El-Sheikh,	
			Damitta, and	
			Sharkia).	
From January	Abdelmoneim	liver, lungs,	Dakahlia,	PCR
2019 to January	A. Ali et al.,	heart, testes,	Sharkia,	
2020	2021	kidneys,	and Kaloubia	
		and trachea		
January 2019 to	Abdelmoneim	kidneys, liver,	Sharkia,	PCR

January 2020	A. Ali1 et al., 2021	heart, lungs, testis, trachea, and lymph node	Kaloubia and Dakahlia,) in Nile delta,	
April to November 2018	Mahmoud M. Elhaiget al.,2021	skin nodule	Sharkia Governorate	PCR
2017–2018	(Rouby et al., 2021)	skin nodule	Beni Suef, Sohag and Aswan	PCR, Histopathology
2020	Selim et al., 2021	skin nodule blood sample	Alexandria	PCR
2019 and 2020	(Fawzi et al., 2022)	skin nodule	Menofia, Behira, Gharbia, Ismailia, Kafr El-Sheikh, Damitta, and Sharkia	virus isolation (VI) Molecular detection, Histopathological, and Immunohistochemical
2018 and 2019	(El-Ansary et al., 2022)	skin nodule Ticks	Kafr El-Sheikh Al-Behera	PCR
2018, 2019, and 2020	(Fawzi et al., 2022)	skin nodule oculonasal swabs	Sharkia	(PCR)
January 2019 to January 2020	(Fawzi et al., 2022)	liver, heart, kidneys, lungs, testis, udder and lymph node	Sharkia, Dakahlia, and Kaloubia	PCR
2018	Yassien Badr et al., 2022	skin samples	El-Beheira Governorate	histopathologically and immunohistochemically
Survey between 2006 and 2018	(Azza M. Ezzeldin, 2023)		All Egypt Governorate	retrospective and survey studies

SEASONAL TREND IN EGYPT OF LSD 2015-2020

Fig.2. The most predominate season for LSD is Summer season/vector season (WOAH, 2020).

Fig.3. The Epi curve showed that the most notified villages between July and September with highly increase in August (WOAH, 2020).

Fig.4. Spatial distribution of lumpy skin disease in Egypt 2020 (WOAH, 2020).

CONCLUSION

review demonstrates This that the majority of the reports concerning vectors vector-borne diseases and (VBDs) pertain to livestock., there is a scarcity of recorded for human vectorborne diseases (VBDs). This poor documentation hinders our ability to accurately assess the real prevalence of VBDs in humans. Hence, there is an urgent need to enhance the laboratory diagnostic capabilities inside healthcare facilities in order to facilitate regular screening for tick-borne illnesses. This improvement is crucial for enhancing diagnostic accuracy and providing valuable for policy insights prevention. development in disease Furthermore, imperative it is that research efforts concentrate on significant knowledge gaps pertaining epidemiology of vector-borne to the diseases (VBDs) in Egypt. The swift adoption of the One Health strategy is required to remove this barrier and to make it easier to carry out investigations looking at humans, animals, and vectors in a particular area. The use of cuttingedge technology, with a focus on Next-Generation Sequencing (NGS), should addition be used in to these investigations. The simultaneous identification of numerous recognized and new diseases will be made easier by these technologies.

REFERENCES

Abdelbaset, A. E., Nonaka, N., & Nakao, R. (2022). Tick-borne diseases in Egypt: A one health perspective. *One Health*, *15*(August), 100443. https://doi.org/10.1016/j.onehlt.2022. 100443

Abdullah, H. H. A. M., Amanzougaghene,

N., Dahmana, H., Louni, M., Raoult, D., & Mediannikov, O. (2021). Multiple vector-borne pathogens of domestic animals in egypt. *PLoS Neglected Tropical Diseases*, *15*(9). https://doi.org/10.1371/JOURNAL.PN TD.0009767

- Antunes, S., Galindo, R. C., Almazán, C., Rudenko, N., Golovchenko, M., Grubhoffer, L., Shkap, V., De, J., & Domingos, A. (2012). Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite , Babesia bigemina q. *International Journal for Parasitology*, 42(2), 187–195. https://doi.org/10.1016/j.ijpara.2011.12. 003
- Azza M. Ezzeldin, E. Y. B. Z. A. M. A. and T. F. I. (2023). JAVS-Volume 8-Issue
 1- Page 90-96 egypt azza. Journal of Applied Veterinary Sciences,8(1):90-96 (January, 2023)ISSN: Online: 2090-3308, Print: 1687-4072, 8(1), 90–96.
- Braack, L., Almeida, A. P. G. De, Cornel, A. J., Swanepoel, R., & Jager, C. De. (2018). *Mosquito-borne arboviruses of African origin : review of key viruses and vectors*. https://doi.org/10.1186/s13071-017-2559-9
- Eassa, S., & Abd El-Wahab, E. (2022). Vector-Borne diseases in Egypt: Present status and accelerating toward elimination. *Journal of Vector Borne Diseases*, 59(2), 127–138. https://doi.org/10.4103/0972-9062.321759
- El-Ansary, R. E., El-Dabae, W. H., Bream, A. S., & El Wakil, A. (2022). Isolation and molecular characterization of

lumpy skin disease virus from hard ticks, Rhipicephalus (Boophilus) annulatus in Egypt. *BMC Veterinary Research*, *18*(1), 1–10. https://doi.org/10.1186/s12917-022-03398-y

- El-Bahnasawy, M. M., Fadil, E. E. A., & Morsy, T. A. (2013). Mosquito vectors of infectious diseases: are they neglected health disaster in Egypt? *Journal of the Egyptian Society of Parasitology*, 43(2), 373–386. https://doi.org/10.12816/0006393
- El-Sayed, A., & Kamel, M. (2020). Climatic changes and their role in emergence and re-emergence of diseases. *Environmental Science and Pollution Research*, 27(18), 22336–22352. https://doi.org/10.1007/s11356-020-08896-w
- Fawzi, E. M., Morsi, A. M., & Abd-Elfatah, E. B. (2022). Molecular diagnosis of three outbreaks during three successive years (2018, 2019, and 2020) of Lumpy skin disease virus in cattle in Sharkia Governorate, Egypt. *Open Veterinary Journal*, *12*(4), 451–462. https://doi.org/10.5455/OVJ.2022.v12.i 4.6
- Kuleš, J., Horvatić, A., Guillemin, N., Galan, A., Mrljak, V., & Bhide, M. (2016). New approaches and omics tools for mining of vaccine candidates against vector-borne diseases. *Molecular BioSystems*, 12(9), 2680– 2694. https://doi.org/10.1039/c6mb00268d
- Kuno, G., & Chang, G. J. (2005). Biological Transmission of Arboviruses : Reexamination of and New Insights into Components, Mechanisms, and Unique Traits as Well as Their

Evolutionary Trends. *18*(4), 608–637. https://doi.org/10.1128/CMR.18.4.608

- Pagès, N., & Cohnstaedt, L. W. (2018). Mosquito-borne diseases in the livestock industry. *Ecology and Control of Vector-Borne Diseases*, 5, 195–220. https://doi.org/10.3920/978-90-8686-863-6_8
- Rouby, S. R., Hussein, K. H., Aboelhadid,
 S. M., & El-Sherif, A. M. (2017). Role of rhipicephalus annulatus tick in transmission of lumpy skin disease virus in naturally infected cattle in Egypt. Advances in Animal and Veterinary Sciences, 5(4), 185–191. https://doi.org/10.17582/journal.aavs/2 017/5.4.185.191
- Selim, A., Alanazi, A. D., Sazmand, A., & Otranto, D. (2021). Seroprevalence and associated risk factors for vector-borne pathogens in dogs from Egypt. *Parasites and Vectors*, 14(1), 1–11. https://doi.org/10.1186/s13071-021-04670-0
- Sohier, C., Haegeman, A., Mostin, L., De, I.
 L., Campe, W. Van, & De, A. V.
 (2019). Experimental evidence of mechanical lumpy skin disease virus transmission by Stomoxys calcitrans biting flies and Haematopota spp . horseflies. 1–10.
 https://doi.org/10.1038/s41598-019-56605-6
- Sparagano, O., George, D., Giangaspero, A., & Špitalská, E. (2015). Arthropods and associated arthropod-borne diseases transmitted by migrating birds. The case of ticks and tick-borne pathogens. *Veterinary Parasitology*, 213(1–2), 61–66. https://doi.org/10.1016/j.vetpar.2015.08.028