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Abstract 

Bacterial infections persist as a major worldwide health issue. Regarded as the 

most distressing factor affecting the wound healing process, resulting in 

prolonged healing time, increased patient trauma, elevated treatment expenses, 

and substantial mortality and morbidity. The prevalence of antibiotic resistance 

among bacteria has led to the emergence of bacterial wound infection as an 

alarming and complex health issue. The effectiveness of traditional antibiotic 

treatments is progressively limited, prompting the exploration of alternative 

therapeutic approaches. Antibacterial Photodynamic Therapy (aPDT) using laser 

technology has shown great potential in treating persistent bacterial infections. 

This review aims to provide an extensive overview of different wound treatment 

strategies and infection management modalities within and surrounding the 

wound bed as well as the use of aPDT against different bacterial pathogens, with 

a particular focus on its potential to tackle the worldwide problem of bacterial 

infections. 
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1. Introduction 

The skin is the largest sensory organ, with a surface area of about 2 square meters 

(Chang et al., 2020). It's a layered structure made up of cells, fibers, and other 

components. Skin integrity is difficult to maintain, but it is an essential protection 

measurement against potentially harmful toxic substances and invading 

pathogenic microorganisms. Any skin injury provides a warm, moist, and 

nutritious environment for pathogenic microorganisms to infiltrate and thrive in. 

Therefore, rapid repair of these injuries is critical to minimize the risk of 

infection. There are different types of injuries, ranging from minor wounds to 

wounds that may lead to major disability or even death (Chang et al., 2020). 

Wound healing is a distinct biological process characterized by a well-organized 

sequence of events. The process of healing is crucial in order to reduce tissue 

damage and ensure sufficient tissue perfusion, oxygenation, proper nourishment, 

and a moist environment to restore both the anatomical continuity and 

functionality of the injured skin area (Pierce & Mustoe, 1995). Appropriate 

wound healing typically progresses through four phases: (i) Hemostasis, (ii) 

Inflammation, (iii) Proliferation, and (iv) Remodeling of the scar tissue (Schultz 

et al., 2003; Singer & Clark, 1999). 

The process of homeostasis is initiated immediately following an injury by the 

constriction of blood vessels and the subsequent creation of a fibrin clot 

(Barchitta et al., 2019). This mechanism effectively stops excessive bleeding and 

promotes the entry of platelets and growth factors into the body. Inflammation 

follows, characterized by the invasion of neutrophils to cleanse the wound and 

the activation of macrophages to facilitate tissue regeneration. Proliferation 

includes the processes of cell proliferation and migration, which ultimately result 

in the creation of granulation tissue and the contraction of wounds (Xue & 

Jackson, 2015). Ultimately, the process of remodeling, which takes many months 

to years, involves collagen remodeling and the production of scars, augmenting 

the strength of wounds. Healing results are influenced by a range of factors, 

including the size of the wound, the quality of the tissue, and the presence of 

necrosis (Nourian Dehkordi et al., 2019). Inadequate healing or delayed healing 

might result in the formation of acute or chronic wounds (RASHIDI et al., 2015). 
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2. Types of wounds 

2.1. Acute wounds 

Acute wounds are temporary tissue injuries that fully heal within the anticipated 

timeframe, typically ranging from 8 to 12 weeks. These wounds undergo a 

systematic progression of wound healing, resulting in minimum scarring and 

infrequent consequences. There are many types of acute wounds including minor 

burns, traumatic and surgical wounds (Boateng et al., 2008). 

2.2. Chronic wounds 

Non-healing or chronic wounds refer to tissue injuries that do not undergo the 

typical healing process and are frequently trapped in one or more stages of wound 

healing for an extended duration (usually the inflammatory and/or the 

proliferative phases). These wounds usually have a prolonged healing time, 

beyond 12 weeks, and often reoccur. Chronic wounds have a huge 

socioeconomic burden as a public health concern with an estimated prevalence 

of 1-2% of the population in developed countries. Patients with chronic wounds 

suffer from severe emotional and physical trauma. Chronic wounds commonly 

include various forms, including pressure ulcers, leg ulcers, diabetic ulcers, and 

nonhealing surgical wounds. Usually, many complications can be associated 

with chronic wounds such as infection, sepsis, amputation, and death (Boateng 

et al., 2008). 

Repeated trauma, poor primary treatment, underlying physiological conditions, 

and many Additional factors contribute to the formation of chronic wounds. 

Therefore, identifying these factors is a primary clinical concern to provide 

appropriate treatment and prevention modalities (Boateng et al., 2008). 

3. Factors affecting wound healing 

Many factors may interrupt the healing process, causing prolonged trauma, 

higher treatment costs as well as significant mortality and morbidity. These 

factors are broadly classified into: Drugs: Some chemical agents have adverse 

effects on the healing process, such as Aspirin, Indomethacin, Tolmetin, 

Cytotoxic agents, radiation, immunosuppressants as well as chemotherapeutic 

drugs utilized in cancer treatment (Shpichka et al., 2019; Yildirimer et al., 2012). 
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Systemic factors: such as age (Enoch & Leaper, 2008), malnutrition (Demidova- 

Rice et al., 2012), as well as some underlying physiological conditions, for 

example, obesity, arterial disease, or diabetes (Boateng et al., 2008). Local 

factors: such as wound environment, moisture, local supply of blood and oxygen, 

as well as Infection; which is the single most crucial inevitable impairment to 

wound healing (Demidova-Rice et al., 2012; Shpichka et al., 2019). 

Despite the presence of bacteria in the skin microbiome and wounds, a critical 

threshold of bacteria and the formation of clusters of these bacteria known as 

biofilms can potentially hinder the process of wound healing (Bowler et al., 

2001). Infection can lead not only to chronic wounds but also to gangrene, 

amputation, and even death. The susceptibility to infection is present in both 

acute and chronic wounds (Gallo & Hooper, 2012). Chronic wounds are even 

more susceptible to bacterial infection and microbial colonization (Gallo & 

Hooper, 2012). In chronic wounds, the prolonged skin rupture and slower 

regenerative process (Nesi-Reis et al., 2018) increase the chances of microbial 

penetration and consequent proliferation (Lambrechts et al., 2005). 

Understanding these elements and their impact on wound healing is crucial in 

developing more effective therapeutic alternatives for chronic wounds infected 

by bacteria. 

3.1. Bacterially infected wounds 

Bacterial pathogens create a bioburden on the wound while competing for the 

limited oxygen and nutrient supply, resulting in weakened tissue that can easily 

be ruptured (Agren et al., 2000). The unlimited development of bacterial 

pathogens negatively impacts the progression of wound healing and causes local 

tissue damage (Frykberg & Banks, 2015; Schultz et al., 2003). This bacterial 

development starts as contamination with the presence and attachment of 

bacteria to the wound surface and progresses from acute to chronic colonization 

where the bacterial pathogen replicates till the wound reaches a critical 

colonization state and the healing has been impaired (Guo & Dipietro, 2010), to 

end as an infection with the bacterial pathogens invading the tissue and triggering 

a systematic response in a quick time course (hours to days) (Bowler et al., 2001; 

Coggan & Wolfgang, 2012). 
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A multitude of organisms can be identified within chronic wounds (Dowd et al., 

2008; Sprockett et al., 2015). Despite the topical antibiotic treatment, many 

bacterial pathogens are difficult to manage, especially with the increase in 

antibiotic-resistant bacterial strains (Boucher et al., 2009; M. E. Jones et al., 

2003; R. N. Jones, 2001; Livermore, 2007; Paterson, 2006; Rice, 2006; Spellberg 

et al., 2008). Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa 

(P. aeruginosa) are widely recognized as prominent resistant bacteria infecting 

chronic wounds. (Barsoumian et al., 2015). In the initial phases of the chronic 

wound, S. aureus remains within the superficial wound, while in advanced 

phases, P. aeruginosa is mostly present deeper in the wound (Cardona & Wilson, 

2015). have acquired resistance to nearly all antibiotics and disinfectants licensed 

for clinical use. They are considered a real challenge because of their rapid 

colonization and survival ability (Barsoumian et al., 2015). 

 

 
4. Wound Management 

Many wound management modalities have been developed to optimize and 

accelerate the healing process of chronic wounds (Mustoe et al., 2006). These 

modalities consider general principles such as: 1) Wound cleaning and 

appropriate moisturization using non-irritating, nontoxic solutions to minimize 

any additional trauma or cytotoxicity, 2) Restoring the quality of the wound edge, 

3) The elimination of any accumulated hindrances to wound healing such as 

necrotic tissue and excessive bacterial burden while preserving the vital 

surrounding tissue (AYELLO et al., 2004). Some of the most known wound 

healing therapeutic modalities are listed below in Table 1. 
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Table 1: Different wound healing therapeutic modalities: 
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This modality attempts to achieve local 

therapeutic effects and improve symptom 

management. Many drugs have been used, such 

as antibiotics, peptides (anti-tumor necrosis 

factor α (anti-TNF- α), or α-melanocyte- 

stimulating hormone), amino acids or their 

derivatives (proline or N-acetyl cysteine), 

corticosteroids, aspirin, warfarin, phenytoin, 

and many growth factors such as: epidermal 

growth factor (EGF), basic fibroblast growth 

factor (bFGF), human granulocyte macrophage 

colony stimulating factor (GMCSF), platelet- 

derived    growth    factor    (PDGF), or 

transforming growth factor beta (TGF-β). 

The systemic administration of these 

drugs has positively affected wound healing 

even better than their local administration. 

However, its effectiveness is constrained by 

the challenges associated with tissue targeting 

and the off-target adverse effects.  
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Several herbal extracts and natural 

substances, including rosemary oil, curcumin, 

berberine, Aloe Vera, thyme extract, and 

honey, have demonstrated antibacterial, 

angiogenic, and regenerative properties. 
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This modality represents a conventional 

approach to wound management, wherein the 

elimination of diseased tissue and foreign 

substances from the wound is achieved 

through various methods such as surgical, bio- 

surgical, mechanical, chemical, or enzymatic 

means. The technique of sharp debridement is 

widely recognized for its rapidity and efficacy. P
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 This modality helps to reduce ulceration 

by applying external and gradual pressure 

with special compression bandages systems. It 

is imperative to conduct a thorough clinical 

assessment prior to implementing any type of 

compression therapy, as it has the potential to 

result in severe consequences, such as limb 

gangrene. 
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This modality relies on using Composite 

tissue and artificial skin dressings to sustain 

wound closure. 

This procedure aims to reconstruct the 

skin tissue, especially in cases of thermal and 

burn injuries, providing sufficient wound 

covering and protection against bacteria. 
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This approach employs biomaterial- 

based systems derived from biological 

sources, including fibrin, gelatin, collagen, 

chitosan, starch, and lactose, as well as 

synthetic chemicals like polyglycolic acid 

(PGA) and polylactic acid (PLA) as wound 

dressings. 

Dressing therapies serve to facilitate the 

regeneration of new tissue while 

simultaneously reducing pain, delivering 

moisturization, preventing friction or shear, 

and safeguarding both the peri-ulcer tissue and 

the skin. When selecting a suitable wound 

dressing, it is important to take into account 

the present stage of wound healing. Numerous 

contemporary dressings integrate various 

elements of wound bed preparation. 
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Another non-invasive traditional 

modality, that works by the removal of wound 

exudates with a vacuum device and generally 

is not used alone but applied after 

debridement. 

This modality is helpful in reducing 

edema, increasing local perfusion, promoting 

angiogenesis, decreasing overall wound size, 

and enhancing granulation tissue formation.  
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 Electromagnetic pulses are utilized as an 

adjuvant method to augment the treatment of 

chronic wounds. Research has demonstrated 

that it has the capacity to augment fibroblast 

activation and bolster collagen synthesis. 
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This modality involves the 

administration of medication by the elevation 

of atmospheric pressure within a chamber, 

while the patient is undergoing 100% 

oxygenation. This approach has the potential 

to enhance neovascularization, minimize 

proinflammatory enzymes, and stimulate the 

synthesis of collagen and growth factors. 

Hyperbaric oxygen has been associated with 

adverse outcomes such as seizures and 

pneumothorax.  
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Shockwaves modalities promote 

angiogenesis and reduce inflammation. 
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This modality uses heat to improve 

oxygen flow, tissue oxygenation and increases 

subcutaneous oxygen tension. 

M
ai

n
ly

 p
o

st
o
p
er

at
iv

e 

w
o
u
n
d
s,

 d
ia

b
et

ic
, 
an

d
 

p
re

ss
u

re
 u

lc
er

s 

 
(P

ri
ce

 e
t 

al
.,
 2

0
0

0
) 

 

 

 

 

 

 

 

 

 

 

Page 45 of 33 



Laser Innovations for Research and Applications 
 

 
 

 

Management 

modality 

 

Based on 

Reported 

for 

treating 

 
Ref. 

  
U

lt
ra

so
u
n

d
th

er
ap

y
  

 

This modality relies on the mechanical 

anti-inflammatory effect of both high- 

frequency and low-frequency ultrasounds, as 

they reduce macrophages. 
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 Hydrotherapy is a unique wound 

treatment modality that provides an optimal 

healing environment. This modality is a form 

of mechanical debridement technique that 

aims to clear the wound from any cellular 

debris. 
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This modality works by promoting 

cytokine synthesis. 
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Light emitted by light-emitting diodes 

(LEDs), lasers, and other light sources across 

the wavelength range spanning from vision to 

infrared has been used as a wound-healing 

modality. 

This modality can stimulate various 

biological processes with the least systemic 

side effects such as: 1) Increase blood 

perfusion, and vasodilation, 2) Reduce 

inflammation and neutrophil infiltration, 3) 

Enhance fibroblast proliferation, wound 

reepithelization, and closure, 4) Elevate ATP 

synthesis, oxygen generation, and protein 

synthesis, as well as 5) Induce mitotic cellular 

proliferation.  

W
id

e 
v
ar

ie
ty

 o
f 

ac
u
te

 a
n

d
 c

h
ro

n
ic

 w
o

u
n

d
s 

(A
m

in
i 

et
 a

l.
, 
2
0

2
1
; 

F
re

id
o
u
n

i 
et

 a
l.

, 
2

0
1
5
; 

G
ao

 &
 

X
in

g
, 

2
0
0
9
; 

K
u
ff

le
r,

 2
0
1

6
; 

M
iz

u
ta

n
i 

et
 a

l.
, 

2
0
0
4
; 

R
A

S
H

ID
I 

et
 a

l.
, 

2
0

1
5

; 
S

ef
at

i 
et

 a
l.

, 
2
0
1
8
) 



Esraa et al., LIRA (Vol.1-Issue 1- June 2024) 
 

 

4.1. Infection management within and surrounding the wound bed 

Any wound can develop into a chronic wound even in immune-competent 

individuals. Thus, appropriate wound treatment modalities aim to eliminate the 

causing factors of chronic wound development that hinder the healing process. 

These factors include ischemia and bacterial infection (AYELLO et al., 2004). 

Despite being a part of the skin's microbiota, the continuous proliferation of 

bacterial pathogens leads to the accumulation of a bioburden on the wound 

(Bowler et al., 2001). Bacterial burden over 105-106 bacteria colony forming 

units per gram of tissue, or when any amount of β-hemolytic streptococci is 

present (Sibbald et al., 2000). Hence, it is imperative to decrease the amount of 

bacteria present in a wound in order to decrease the levels of local and systemic 

inflammatory substances, hence managing the extended inflammatory stage of 

chronic wounds (Sibbald et al., 2000). In chronic wounds, topical antibiotics and 

surgical debridement have been observed to reduce bacterial populations 

effectively (AYELLO et al., 2004). 

4.1.1. Antibiotics 

Antibiotics have saved countless lives since their discovery. Some antibiotics are 

synthetic, while others are formed naturally as some microbes produce 

substances that inhibit or kill other microbes competing for the same resources. 

These products, if successfully extracted and mass-produced, can be used as 

natural antibiotics drugs or modified as semi-synthetic antibiotics. They remain 

an essential tool for treating and controlling infectious diseases. Various 

bacteriostatic or bactericidal antibiotic classes such as quinolones, tetracyclines, 

aminoglycosides, and cephalosporins can assist wound healing (Kohanski et al., 

2010). 

The prevalence of antibiotic resistance among bacteria has led to the emergence 

of bacterial wound infection as a significant and complex health issue (Rai et al., 

2016). Although many bacteria are still susceptible to antibiotics (Rice, 2008), 

about 70% of wound-infecting bacteria are resistant to a minimum of one 

antibiotic (Friedman et al., 2016). S. aureus and P. aeruginosa are among these 

bacteria (Rice, 2008). Infections caused by antibiotic-resistant bacteria are 

exceptionally hard to treat. These infections are usually associated with a 

prolonged hospital stay and an approximately two-fold higher death rate  (Fang 
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et al., 2016), with a predicted mortality of 10 million people per year by 2050 

(Fang et al., 2016). Since the rate of acquisition of resistance is faster than the 

clinical introduction of new antibiotics, the development of alternative 

antimicrobial techniques to treat these infections is becoming necessary for 

public health throughout the world (Jackson et al., 2018; Kmietowicz, 2017; 

Kraus, 2008). Amidst the ongoing antibiotic crisis, several advancements in 

biotechnology, genetic engineering, and synthetic chemistry have introduced 

novel alternatives to traditional antibiotics for wound management, some are 

listed below in Table 2. 

4.1.2. Alternative antibacterial therapeutic strategies 

The following antibacterial therapeutic alternatives are arranged in three 

categories: (1) Naturally existing alternatives, (2) Synthetically generated 

strategies, and (3) Biotechnology-based strategies. 

 

 

Table 2 Different alternative antibacterial therapeutic strategies. 
 
 

(1) Naturally Existing Alternatives strategies 

Strategy Based on 
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Bacteriophages (phages) are viruses that propagate at the 

expense of bacteria. Their use as an antimicrobial agent is much older 

than the antibiotic (Gravitz, 2012). 

Bacteriophages adhere to the bacterial cell wall and introduce 

their genetic material into the cytoplasm, thereby taking control of the 

bacterial cell machinery. This process facilitates the synthesis of phage 

components and the generation of novel phages within the bacterial 

infection. Over time, bacterial cells undergo dissolution, subsequently 

leading to the release of phage progeny, which can initiate a 

subsequent infection cycle (Abedon et al., 2011). 

Advantages over antibiotics Possible disadvantages 

Self-replicating pharmaceuticals (Labrie 

et al., 2010). 

Bacteriophages can distinguish between 

different  bacterial  populations,   thus 

High specificity. 

Bacterial pathogens can develop 

resistance to phages (Abedon et 

al., 2011). 
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 provide an alternative yet selective 

antimicrobial strategy (Abedon, 2015; 

J. R. Clark & March, 2006). 

Responsive to genetic engineering, thus 

many of its limitations have been 

overcome with genetic engineering 

enabling their use in innovative ways 

(Braff et al., 2016). 

High toxicity with the 

accumulation of endotoxins and 

pyrogenic substances after 

bacterial lysis. 

Their pharmacokinetics, 

challenges in phage preparation, 

its stability, and immunogenicity 

(Labrie et al., 2010). 

Strategy Based on 
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 As the initial line of defense, host-defense peptides (HDPs) and 

antimicrobial peptides (AMPs) are released as soon as the pathogen 

invades the body (Brogden, 2005; Hancock & Sahl, 2006). 

Advantages over antibiotics Possible disadvantages 

Selective antibacterial, antifungal, 

antiviral, anticancer, antiplasmodial, 

antiprotozoal, insecticidal, and 

spermicidal agents with no activities 

against host cells (Zhang & Gallo, 

2016). 

Not prone to resistance development 

High toxicity (Zhang & Gallo, 

2016). 

Difficult industrial scalability 

(Fosgerau & Hoffmann, 2015). 

Expensive large-scale production. 

Susceptible to proteolysis 

(Fosgerau & Hoffmann, 2015). 

Strategy Based on 

 

B
ac

te
ri

o
ci

n
s 

Bacteriocins are ribosomal synthesized small AMPs produced 

by many bacterial species as a self-defense mechanism against other 

bacteria within the population to increase their probability of survival 

(Rea et al., 2011). 

Different modes of action are exhibited by bacteriocins, 

including suppression of peptidoglycan production and forming pores 

in cell membranes (Cotter et al., 2013). 

Advantages over antibiotics Possible disadvantages 

Selective against some bacteria (Rea et 

al., 2011). 

Active against drug-resistant pathogens. 

Have high tolerance towards harsh 

conditions, such as heat and UV 

exposure. Thus, Bacteriocins have 

many applications in the food industry 

(Cotter et al., 2013). 

Bacterial pathogens can develop 

resistance to bacteriocins (Ghosh 

et al., 2019). 

Expensive large-scale production 

(Ghosh et al., 2019). 

Susceptible to proteolysis (Ghosh 

et al., 2019). 
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(2) Synthetically Generated Strategies 

Strategy Based on 
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p
ep
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S
M

A
M

P
s)

 

SMAMPs are simple, rapidly bactericidal molecules, that are 

synthesized to maintain the properties of antimicrobial peptides while 

overcoming their disadvantages (Ghosh et al., 2019). 

Advantages over antibiotics Possible disadvantages 

Can turn back multi-drug resistant 

bacteria re-sensitive to antibiotics 

(Ghosh et al., 2019). 

Ease of synthesis (Ghosh et al., 2019). 

Broad-spectrum  activity  (Ghosh  et al., 

2019). 

Toxicity (Konai et al., 2018). 

Challenges in administration 

(Ghosh et al., 2019). 

Bacterial pathogens can develop 

resistance to SMAMPs (Ghosh et 

al., 2019). 

Strategy Based on 

 

A
n

ti
b

ac
te

ri
al

 

o
li

g
o

n
u

cl
eo

ti
d

es
 Oligonucleotides have been used to treat many infectious 

diseases, where antisense oligonucleotides with sequences 

complementary to resistance-causing genes have been used to silence 

these genes, in what is known as gene silencing therapy. It is an 

alternative strategy against multidrug-resistant bacteria (Ayhan et al., 

2016). 

Strategy Based on 

 

In
n

at
e 

d
ef

en
se

 r
eg

u
la

to
ry

 

p
ep

ti
d
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 (
ID

R
P

s)
 

IDRPs are antiendotoxin and immunomodulatory peptides with 

no direct antibacterial activity. A promising candidate to conventional 

antibiotics with proven activity against bacterial and malarial 

infections (Hilchie et al., 2013). 

Advantages over antibiotics Possible disadvantages 

Modulate the immunesystem (Ghosh et 

al., 2019). 

No resistance development (Ghosh et 

al., 2019). 

Expensive production (Ghosh et 

al., 2019). 

Susceptible to proteolysis (Ghosh 

et al., 2019). 

Strategy Based on 
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u
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n
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 The extracellular and cell-surface molecules that the bacterial 

pathogen produces to establish the infection are known as virulence 

factors. By targeting these virulence factors, the interaction between 

the bacterium and its host can be disrupted, thereby impeding the 

development of resistance in the bacterium. Consequently, this 

approach facilitates the elimination of the bacterium by the host 

immune system (Ghosh et al., 2019). 

(3) Biotechnology-Based Approaches 

Strategy Based on 

 

G
en

et
ic

al
ly

 M
o
d
ifi

ed
 

B
ac

te
ri

o
p
h
ag

es
 

Genetically modified phages have been considered recently as 

an alternative strategy (Braff et al., 2016). With many modes of action, 

such as producing bacterial-biofilm-degrading enzymes (Lu & Collins, 

2007). This particular approach has the potential to reverse the 

resistance of microorganisms, such as P. aeruginosa, rendering them 

susceptible to standard antibiotics (Libis et al., 2014; Lu & Collins, 

2009). 

Strategy Based on 

L
y

si
n

s 
(E

n
d

o
ly

si
n

s,
 E

x
o

ly
si

n
s,

 a
n
d

 

A
u

to
ly

si
n

s)
 

One potential therapeutic approach that exhibits direct 

antibacterial activity is the utilization of either: 1) Endolysins 

generated by phages that facilitate the degradation of the bacterial cell 

wall (Nelson et al., 2012; Schmelcher et al., 2012), 2) Exolysins 

produced by bacteria to eliminate cells belonging to different strains 

or species or, 3) Autolysins which are synthesized during cellular 

growth and division (Basso et al., 2017). 

Advantages over antibiotics Possible disadvantages 

Vulnerable to genetic manipulation. 

Selective towards particular 

microorganisms (Ghosh et al., 2019). 

Not prone to resistance development. 

 
Production challenges (Ghosh et 

al., 2019). 

Strategy Based on 

 

C
R

IS
P

R
-C

as
 

9
 

The CRISPR (clustered, regularly interspaced, short palindromic 

repeats)-Cas9 systems comprise essential parts in the bacterial 

immune system, where 20 nt tiny RNA serves as a template for Cas9 

to eliminate foreign genetic material at precise locations (Bikard   &   

Barrangou,   2017).   The   CRISPR-Cas9   system   was 
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 delivered using bacteriophages to specifically target multidrug- 

resistant bacteria, rendering them susceptible (M. Goren et al., 2017). 

Advantages over antibiotics Possible disadvantages 

Specificity to certain strains (M. Goren 

et al., 2017; M. G. Goren et al., 2015). 

Expensive production (Ghosh et 

al., 2019; Wang et al., 2016). 

Toxicity (Ghosh et al., 2019). 

 

Some of these approaches show encouraging progress, yet many of them face 

many limitations usually related to; high production costs, toxicity, instability, 

and being strain- or species-specific rather than having the broad-spectrum 

effects of traditional antibiotics. For this reason, multiple therapeutics might be 

needed concurrently to treat wound infections. 

 

 
5. Photodynamic therapy as a promising phototherapeutic approach 

for wound management 

One interesting option is a simple, non-invasive, and inexpensive 

phototherapeutic method that causes no significant tissue damage known as 

laser-based antimicrobial photodynamic therapy (aPDT) (Dai et al., 2009; 

Ghorbani et al., 2018; Gois et al., 2010). Moreover, it is unlikely that bacteria 

will become resistant to aPDT (Gupta et al., 2018; Schastak et al., 2010). 

Phototherapy has many approaches based on the interaction between light 

photons and different tissues, one of which is laser-based aPDT, a type of 

photochemotherapy initially developed for cancer treatment (Mang, 2004; 

Mitton & Ackroyd, 2008). 

Lasers use the physical phenomena of stimulated emission to generate a light 

beam that is monochromatic, coherent, and collimated, characterized by a small 

bandwidth and low divergence (MAIMAN, 1960). Lasers exhibit superior 

efficiency for aPDT in comparison to alternative light sources due to these three 

characteristics (Hode, 2005). The therapeutic effects of laser-based phototherapy 

depend on the irradiation parameters of the laser output including fluence, 

intensity, mode of action either continuous wave or pulsed, exposure duration, 

and most importantly, its wavelength. The selection of a laser type for a specific 
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application is determined by these criteria (Medrado et al., 2003; Samaneh et al., 

2015). 

Laser-based aPDT refers to the process of eradicating specific pathogens by the 

photochemical stimulation of naturally occurring Photosensitizers (PS) 

molecules. These molecules can become active after being exposed to a specific 

wavelength of light (Sternberg et al., 1998), which then triggers photochemical 

or photophysical processes within the microbial cell. The therapeutic efficacy of 

photodynamic therapy (PDT) relies on the in situ generation of cytotoxic reactive 

oxygen species (ROS), which cause oxidative damage to various cellular 

components, ultimately resulting in cell death (de Annunzio et al., 2018; Ravanat 

et al., 2000; Stark, 2005). ROS are generated via two photochemical processes 

that occur simultaneously (Hamblin & Hasan, 2004), The first process involves 

electron transfer (type I), resulting in the formation of oxygen, peroxide, or 

hydroxide radicals. The second process involves energy transfer reactions (type 

II), leading to the production of singlet oxygen (1O2) (Dolmans et al., 2003). 

These processes depend on the interaction between laser radiation and matter, 

which converts light energy into chemical energy (photochemical interaction) 

(Gois et al., 2010; Hanakova et al., 2014). 

 

 
Femtosecond laser pulses have the unique ability to deposit energy into a 

microscopic volume on a very short time scale within a single laser pulse without 

affecting the surrounding surface of the tissue (El-Khordagui et al., 2017; 

RASHIDI et al., 2015). Both the pulse width and the repetition rate determine 

the heat accumulation in biological samples. If the heating duration is short, then 

the thermal energy can diffuse away more rapidly. And, if the duration between 

two pulses is long enough for the heat produced by the previous pulse to decay 

away, there will be no accumulation of heat (C. D. Clark et al., 2013). 

Femtosecond laser-based aPDT is one of the most promising emerging 

technologies for chronic wound management and infection as demonstrated in 

Table 3. Regrettably, an important challenge lies in determining the optimal 

wavelength, light dose, and fluence to effectively restrict bacterial growth while 

minimizing harm to the adjacent host tissue 
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Table 3: Investigating the bactericidal efficacy of femtosecond laser irradiation against 

different bacterial pathogens. 
 

 
Light 

Source 

 

Tested Organisms 

External 

Photosen- 

sitizers 

 
Irradiation 

Wavelength 

 
Irradiation 

Parameters 

 

Ref. 

IN
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IR
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 H

F
1
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0

 l
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r 
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em
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S
p

e
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h
y
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w
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s 

p
u

m
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e
d
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y
 a
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o

d
e
-l

o
ck

ed
 

fe
m

to
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c
o

n
d

 T
i:

 s
a

p
p

h
ir

e 
la

se
r 

M
A

I 
T

A
I 

H
P

 (
S

p
ec

tr
a
 P

h
y

si
cs

) 

 

- Pseudomonas 

aeruginosa 

- Staphylococcus 

aureus 

 

 

 
- 

370, 380, 

390, 400, 

410, 

420,480, 

495, 700, 

and 800 nm 

Power density = 

0.047, 0.0377, 

0.0354, and 0.0348 

W/cm2 

Irradiation time = 1, 

3, 5, 5.5, 7, 9, 10, 

10.5, 15, and 20 min (A
h
m

ed
 e

t 
al

.,
 2

0
2
0
) 

 

 

 

 

- Staphylococcus 

aureus 

 

 

 

 

- 

 

 

 
380, 390, 

400, 410, 

and 420 nm 

Average Power = 

75, 150, and 210 

mW 

Irradiation time = 5, 

10 and 15 min. 

Energy density = 

79.6, 159, 223, 239, 

318, 420, 477, and 

630 J/cm2. 

(A
h
m

ed
 e

t 
al

.,
 2

0
2
1
) 

- Pseudomonas 

aeruginosa 

- Listeria 

monocytogenes 

- Methicillin- 

resistant 

Staphylococcus 

aureus (MRSA) 

 

 

 

 

- 

 

 

 

 

400 nm 

 

Power = 50 mW 

Irradiation time = 15 

min. 

Energy density = 

160 J/cm2
 

(E
l-

G
en

d
y
 e

t 
al

.,
 2

0
2
1
) 

- Pseudomonas 

aeruginosa 

- Methicillin- 

resistant 

Staphylococcus 

aureus (MRSA) 

 

 
 

- 

 

 
 

400 nm 

Power = 50 mW 

Irradiation time = 15 

min. 

Energy density = 

160 J/cm2
 

(E
l-

G
en

d
y
, 

N
aw

af
, 

et
 a

l.
, 
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 - Candida 

albicans 

- Escherichia coli 

- Enterococcus 

faecalis 

- Listeria 

monocytogenes 

- Methicillin- 

resistant 

Staphylococcus 

aureus (MRSA) 

 

 

 

 

 

- 

 

 

 

 

 

400 nm 

 

 

 
Power = 50 mW 

Irradiation time = 15 

min. 

Energy density = 

160 J/cm2
 

(E
l-

G
en

d
y
, 

O
b
ai

d
, 

et
 a

l.
, 

2
0
2
2
) 

 

 

 

6. Conclusion and future perspectives 

Bacterial infections pose a significant health burden globally and with the 

increasing ineffectiveness of conventional treatments alternative approaches are 

urgently needed. Laser-based aPDT has emerged as a promising alternative for 

infection management. Additional research is required to investigate the 

potential clinical uses of various laser systems against specific microbial 

populations in tissues, such as microbial biofilm and the microbial expression of 

distinct virulence factors. 
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