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Abstract 

This paper presents an innovative deep-learning model for 

Automatic Modulation Classification (AMC) in wireless 

communication systems. The proposed architecture integrates 

Convolutional Neural Network (CNN) and Long Short-Term 

Memory (LSTM) networks, augmented by a Gaussian noise layer 

to mitigate overfitting. The integration of both networks seeks to 

enhance classification accuracy and performance by leveraging 

the unique capabilities of CNNs and LSTMs in capturing spatial 

and temporal features, respectively. The model is expected to 

distinguish between eight digital and two analog modulation 

modes. Experimental evaluation on the RadioML2016.10b dataset 

demonstrates a peak recognition accuracy of 93.2% at 18 dB 

SNR. Comparative analyses validate the superior performance of 

the proposed architecture. The Gaussian noise layer contributes 

significantly to a 3% performance improvement at 18 dB SNR. 

The model achieves recognition accuracy exceeding 96% for most 

modulation modes, highlighting its robustness. Finally, 

computational complexity analysis underscores the efficiency of 

the proposed architecture, reinforcing its practical viability. 
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1. Introduction  

 

AMC is a technique that detects the modulation class of the received signal at the receiver 

of a wireless transmission system without prior information. In the current 5G 

communications, the receiver receives the signal from various directions, resulting in 

multipath fading that causes difficulty in signal identification. Today, multiple input 

multiple Output (MIMO) technologies are widely used in communications beyond 5G 
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(B5G). As a result, the receiver will get a signal from more diverse sources, so a real-time 

system will be needed in the receiver to identify and classify the type of modulation [1]. 

AMC is expected to decrease overhead control as there is no need to share the modulation 

information between the receiver and the transmitter. In the literature, Researchers classify 

AMC algorithms into three categories: likelihood-based (LB) algorithms [2-5], feature-

based (FB) algorithms [6-9], and artificial neural network algorithms [10-15]. LB 

algorithms detect the modulation type of the signal by comparing the likelihood value of the 

incoming signal to the predetermined modulation set. The FB algorithm extracts features 

from the incoming signal and identifies signal modulation by comparing features to 

threshold values or sending it to a pattern recognizer.  

 Recently, artificial intelligence has made great progress in many applications. The 

computational capacity of a single computer chip has significantly increased, which results 

in the widespread use of deep learning methods in modulation classification. In [16], deep 

learning has been presented for AMC using CNN to differentiate between ten distinct 

modulation techniques. Compared to the previous methods, CNN provides not only better 

accuracy than other methods but also flexibility in recognizing various forms of modulation. 

In [1], the authors propose the Convolutional LSTM Dense Neural Network (CLDNN) for 

AMC. The architecture of the network is formed by combining three different networks: 

CNN, LSTM, and Fully connected (FC) networks. Combining networks is justified by the 

fact that CNN performs quickly and lightly, LSTM is excellent at modeling time, and FC is 

suitable for feature mapping towards a more distinct space. The author of [17] created 

a ResNet approach to discriminate between 24 modulation methods., and the experiment 

produced impressive outcomes. An AMC scheme based on CNN and GRU has been 

proposed in [18]. The model could classify between 11 modulation modes with high 

recognition accuracy. The author in [19] developed a data-driven fusion strategy to enhance 

classification accuracy. This strategy combines two CNNs trained on distinct datasets. In 

[22], the authors introduced a new solution for the AMC issue, which combines residual and 

LSTM networks. The purpose of merging the two networks is to mitigate the vanishing 

gradient problem using ResNet and enhance temporal modeling using LSTM. The peak 

recognition accuracy achieved with this approach is 92% at 18 dB SNR. 

This work presents a novel technique for AMC. The proposed architecture comprises two 

parallel networks, CNN and LSTM. Subsequently, the concatenation of these networks is 

followed by a Gaussian noise layer to mitigate overfitting. This architecture combines the 

strengths of CNNs in capturing spatial features with the capability of LSTMs in temporal 

modeling. The training and testing process relied on the RadioML2016.10b dataset. The 

simulation results of the proposed approach are contrasted with the findings of the latest 

AMC techniques. The performance analysis of this work focuses on recognition accuracy, 

confusion matrix, and execution latency. 

The contribution of this study includes presenting a novel solution to the AMC issue ,

handling the overfitting problem through a Gaussian noise layer, Justifying the 

improvements of the model compared to the latest AMC models in terms of recognition 
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performance and execution latency, and finally assessing the model performance with 

various settings.  

The content structure of the paper is as follows: Section 2 explains the signal model of the 

AMC system. Section 3 introduces the related works for AMC. Section 4 delineates the 

structural framework of the proposed method. Section 5 presents the performance of the 

proposed approach, focusing on recognition accuracy, and compares its simulation results 

with existing AMC models. Finally, the conclusion of this research is encapsulated in 

Section 6. 

 

2. System model 

The received wireless signal can be represented by: 

 

               (1) 

 

where  refers to the complex transmitted signal, For simplicity, the complex received 

signal  is frequently sampled in IQ format.  is the wireless time-variant channel 

impulse response, and  is the adaptive white Gaussian noise (AWGN). 

 

2. Related Works 

 

3.1. CNN-GRU approach. 

The CNN-GRU model was presented in [18]. As shown in Fig.1, the structure of the model 

consists of two distinct networks, namely CNN and GRU. The CNN network comprises a 

trilogy of convolutional layers, with each layer followed by a 1*2 Max-Pooling layer, 

facilitating dimensional reduction, and concluding with a 0.4 dropout layer. The primary 

CNN layer is equipped with 512 filters, each with a 2*3 kernel size, while the second CNN 

layer encompasses 512 filters, each with a 1*3 kernel size. Lastly, the ultimate CNN layer 

encompasses 256 filters, each with a 1*3 kernel size. To establish a connection between the 

CNN and GRU components, the author utilizes global average pooling (GAP) instead of the 

flattened layer. GAP serves the purpose of reducing the dimensionality of the feature maps 

from the CNN, thereby preventing overfitting. The GRU network consists of two layers, 

with each layer containing 64 units and utilizing a ReLU activation function. The ultimate 

layer is a dense layer with SoftMax for output indication, thus concluding the model 

architecture. 

 

3.2. Multi-channel convolutional long short-term deep neural network (MCLDNN)  

The model was introduced in [24]. As illustrated in Fig.2, the approach encompasses three 

distinct networks: CNN, LSTM, and dense networks. The IQ input directly feeds into both 

the primary and secondary convolutional (Conv) layers.  The model actively concatenated the 

outputs of these layers and then directed the resulting concatenation to the Conv3 layer. 

Subsequently, the result of the concatenation of Conv3 and Conv4 was passed through the Conv5  
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layer and ultimately fed to the LSTM network. The LSTM network consisted of two LSTM 

layers with 128 units and a ReLU activation function. The dense network includes two 

dense layers, each with 128 units and ReLU. The final layer was a dense layer with 

SoftMax for classification output. 

3.3. CGDNET approach 

The model was represented in [23]. As depicted in Fig.3, the model is constructed of three 

distinct networks, namely CNN, GRU, and dense networks. The CNN block consists of 

three Conv layers, with 50 filters each and a 1*6 kernel size, utilizing a ReLU activation 

function. Additionally, a 1*2 Max-Pooling layer follows this block. The concatenated 

outputs of the first and third Max-Pooling layers are subsequently fed into the GRU layer, 

comprising 50 units and employing a ReLU activation function. The GRU layer then passes 

its output through a dense layer, which contains 256 units, and applies another ReLU 

activation function. Finally, the model culminates in a dense layer with SoftMax, used for 

the output indication. 

Conv1, 2*3, 50  , ReLU 

1*2 Maxpool 

Conv2 , 1*3 50  ,  ,ReLU 

  

1*2 Maxpool 
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Fig. 1:  CNN-GRU [18] model architecture. Fig. 2:  MCLDNN [24] model architecture 
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Fig. 5: ResNet-LSTM [22] model architecture. Fig. 4:  VTCNN [25] model architecture. 

Fig. 3:  CGDNET [23] model architecture. 
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3.4. VTCNN2 approach 

As illustrated in Fig. 4, the VTCNN model described in [25] comprises a CNN block with 

two convolutional layers, Conv1 and Conv2, each preceded by zero-padding layers. Conv1 

employs 50 filters (1x3 kernel), while Conv2 utilizes 50 filters (2x3 kernel), both activated 

by ReLU. Subsequently, a dense layer with 128 units and ReLU activation is incorporated, 

leading to an output layer with SoftMax activation   function. 

 

3.5. ResNet-LSTM approach 

The approach was proposed in [22]. As shown in Fig.5, The architecture of the ResNet-

LSTM model was designed by combining the ResNet network with the LSTM network.  

The motivation behind this hybrid approach stems from ResNet's capacity to facilitate 

feature propagation and mitigate overfitting, coupled with LSTM's capability to capture 

long-term dependencies. The residual segment includes two residual units, which are 

depicted in Fig. 6 and Fig. 7. The LSTM segment consists of two LSTM layers, with each 

layer housing 64 units that utilize the ReLU activation function. 

 

4. The proposed method 

4.1.  Model description 

As shown in Fig.8, the proposed model was generated by parallel CNN and LSTM 

networks followed by a Gaussian white noise layer to add a regularizing effect. The fusion 

of the two networks aims to boost classification accuracy and performance by exploiting the 

complementary strengths of CNNs and LSTMs in capturing spatial and temporal features, 
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Fig. 6: Residual unit 1 architecture. Fig. 7: Residual unit 2 architecture . 
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respectively. The CNN network includes 4 convolutional layers, each of which contains a 

ReLU activation function. The initial Convolutional layer contains 64 (1*8) kernels and is 

followed by 2*2 max-pooling to reduce dimensionality. The Conv2 layer also has 64 (1*8) 

kernels without the max-pooling layer. The Conv3 layer includes 128 (1*3) kernels and is 

followed by a 1*2 max-pooling layer for dimension reduction.  The final convolutional 

layer contains 128 (1*8) kernels without a max-pooling layer. A 0.2 dropout layer is added 

after the third and last convolutional layers to avoid overfitting. The LSTM network 

architecture includes two LSTM layers, each with 64 units and utilizing the ReLU function. 

After concatenating the outputs of the CNN and LSTM networks, a Gaussian noise layer 

with a standard deviation of 0.1 is incorporated to introduce regularization and mitigate 

overfitting. A standard deviation of 0.1 strikes a balance between introducing sufficient 

noise for regularization without overly disrupting the learning process. Finally, the last layer 

has 10 neurons with SoftMax for output indication. 
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Conv4, 128, 1*8 , ReLU 
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Fig. 8:  Proposed model architecture 
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4.2. Dataset 

The experimental results in this work rely on the RadioML2016.10b [20] dataset, generated 

by the GUR Radio toolkit. The dataset contains 1,200,000 samples from ten different 

modulation modes in IQ format with an SNR range of -20 to 18 dB. The modulation modes 

include eight digital modulation odesm  (- 8PSK - QPSK BFSK, - BPSK- CPFSK- QAM64 - 

PAM4 - QAM16) and two analog modulation modes (WBFM and AM-DSB). Each dataset 

sample is categorized by both SNR and modulation type, with a size of 2 * 128. All 

modulation modes in the dataset have the same number of samples. 

 

4.3. Training and testing 

In the training and testing process, 90% of the data is designated for training and the 

remaining 10% for testing .The validation dataset comprises 15% of the total training data. 

The dataset is divided evenly across all modulation modes by utilizing the stratified 

sampling technique. A learning rate of 0.0001, 64 batch size, Adam optimizer, cross-

entropy loss function, and 35 epochs are adopted for the proposed approach during the 

training and testing. The structure of the proposed model is implemented using the Keras 

library and is run using Google Colab [21]. 

 

5. Results 

5.1. Recognition accuracy. 

The comprehensive analysis of recognition accuracy, as depicted in Fig. 9 and thoroughly 

elineated in Table 1, highlights a consistent and notable superiority of the proposed model 

over alternative methodologies across the specified SNR spectrum ranging from 0 dB to 18 

dB. The proposed architectural framework achieves a notable apex accuracy of 93.2% at an 

SNR of 18 dB, surpassing benchmarks including VTCNN2[25], MCLDNN [24], CNN-

GRU[18], CGDNET[23], and ResNet-LSTM[22] by differentials of 9.4%, 6.2%, 4.1%, 3%,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 9: The recognition accuracy of the six approaches. 
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Table 1: The recognition accuracy of the six approaches. 

SNR 

(dB) 

VTCNN2 

[25] (%) 

MCLDNN 

[24] (%) 

CNN-GRU 

[18] (%) 

CGDNET 

[23] (%) 

ResNet-LSTM 

[22] (%) 

Proposed 

Method (%) 

-10 22.5 22 31 24.3 27.8 30 

-2 74.6 75.7 77.6 77.5 85 84.6 

2 84.3 85.8 88 88.1 90.55 91.1 

6 85.78 87.9 89.1 89.28 91.6 92.7 

12 85.2 86.6 88.3 89.48 91.4 92.72 

18 85.8 87.2 89.1 90.2 92 93.2 

 
 

and 1.2%, respectively. At an SNR of 12 dB, it demonstrates discernible enhancements of 

7.5%, 6.12%, 4.42%, 3.24%, and 1.32% compared to VTCNN2, MCLDNN, CNN-GRU, 

CGDNET, and ResNet-LSTM. Transitioning to a moderate SNR of 6 dB, the proposed 

approach continues to excel, achieving an impressive accuracy of 92.7%, thereby outpacing 

VTCNN2 (85.78%), MCLDNN (87.9%), CNN-GRU (89.1%), CGDNET (89.28%), and 

ResNet-LSTM (91.6%). Navigating toward lower Signal-to-Noise Ratio (SNR) levels, 

specifically at -2 dB SNR, the proposed method exhibits resilience with an accuracy of 

84.6%, surpassing established models, including VTCNN2 (74.6%), MCLDNN (75.7%), 

CNN-GRU (77.6%), and CGDNET (77.5%). 

 

5.2. Confusion matrix 

To assess the proficiency of the six approaches in discerning various modulation modes, 

confusion matrices at 18 dB SNR are presented in Fig. 10. The diagonal entries within these 

matrices denote the classification accuracy for each modulation mode. Notably, the 

proposed model achieves a classification accuracy exceeding 96% for most modulation 

methods, except WBFM. Furthermore, in the recognition of QAM16, it demonstrates 

improvements of 48%, 32%, 28%, 12%, and 1% over VTCCN2, MCLDNN, CNN-GRU, 

CGDNET, and ResNet-LSTM models, respectively. Additionally, it outperforms in QAM64 

recognition, exhibiting advantages of 25%, 22%, 22%, 13%, 11%, and 8% over MCLDNN, 

VTCCN2, CGDNET, CNN-GRU, and ResNet-LSTM models, respectively. 

5.3. Computation complexity 

Table 2 presents a comparative analysis of the training and prediction times, as well as 

network sizes, for the six models. The proposed model has fewer parameters (314,890) 

compared to MCLDNN (9,500,646), VTCNN2 (5,698,714), CGDNET (654,476), and 

ResNet-LSTM (770,378), indicating potentially lower complexity and memory 

requirements. Furthermore, the proposed model demonstrates a substantial reduction in 

training duration per epoch, achieving 155 seconds, in stark contrast to the 517,416, 269, 

and 247 seconds required by the ResNet-LSTM, CNN-GRU, MCLDNN, and VTCNN2 

models, respectively. Moreover, the proposed model's prediction time per sample is 50 ϻs 

less than CNN-GRU, 25 ϻs less than MCLDNN, 8 ϻs less than VTCNN2, and 5 ϻs less 

than ResNet-LSTM. Despite equal prediction times, the proposed model surpasses  
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Fig. 10:  The Confusion matrix for  the six approaches  at SNR = 18 dB: (a) the proposed 

approach (b) VTCNN2 [25] (c) MCLDNN [24]  (d) CNN-GRU [18] (e) CGDNET [23]  (f) 

ResNet-LSTM [22] 

(a)                                                                            (b) 

 (c)                                                                            (d) 

 (e)                                                                              (f) 

https://www.sciencedirect.com/topics/engineering/confusion-matrix
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Table 2: The Computation complexity of the six models. 
 MCLDNN 

[24] 

VTCNN2 

[25] 

CNN-GRU 

[18] 

CGDNET 

[23] 

ResNet- 

LSTM [22] 

Proposed 

Method 

Total 

parameters 
9,500,646 5,698,714 2,014,090 654,476 770,378 314,890 

Training 

time/epoch 
269s 247s 416s 108s 582s 155s 

Prediction 

time/sample 
200 ϻs 183 ϻs 225ϻs 175ϻs 180 ϻs 175 ϻs 

 

 

CGDNET in overall classification accuracy and identifying complex modulations like 

QAM16 and QAM64, as mentioned in Sections 5.1 and 5.2. This makes it the preferred 

choice for precise modulation recognition. 

 

5.4. Diverse Architectures and Factors: A Comprehensive Exploration 

 To boost efficiency, the effects of different architectures and factors are investigated. Fig. 

11 examines the effect of integrating the Gaussian noise layer on the model's ultimate 

performance. It can be seen that The Gaussian noise layer helped the proposed approach to 

achieve a 3% improvement in performance at 18 dB SNR. This observation underscores the 

palpable effectiveness derived from the intentional integration of the Gaussian noise layer 

within the model's architectural framework. As demonstrated in Fig.12, nuanced 

adjustments to the CNN kernel size within the proposed architecture yield discernible 

effects on the ultimate recognition performance. Notably, the model characterized by a 1*8 

kernel size attains the highest discrimination accuracy among its counterparts. Fig. 13 

depicts the various depth settings for the CNN. Thorough scrutiny of these settings reveal 

the unequivocal superiority of the 4-layer CNN model, as evidenced by its superior 

performance relative to alternative depth configurations. This empirical observation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: The performance of the proposed model with and without gaussian noise layer. 
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underscores the robustness and efficacy intrinsic to the specifically chosen 4-layer 

configuration within the CNN architecture. Simulation results for different LSTM depth 

settings are plotted in Fig. 14. It is observed that the peak recognition accuracy is reached 

by the two-layer LSTM network. Fig.15 portrays the training of the proposed model under 

various learning rate values. The simulation results demonstrate that the model trained with 

a learning rate of 0.0001 exhibits superior performance compared to its counterparts trained 

with alternative learning rate settings. 

Fig. 13: The performance of the proposed approachh with different settings of CNN depth. 

Fig. 12: The performance of the proposed model across different CNN kernel sizes. 
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6. Conclusion  

In this paper, a new deep-learning approach for the AMC issue is provided. The model was 

developed with two parallel networks of CNN and LSTM followed by a Gaussian noise 

layer to reduce overfitting. The proposed architecture combines the strengths of CNNs in 

capturing spatial features with the capability of LSTMs in temporal modeling. The 

performance of the presented method is compared with five prior AMC approaches. The 

experimental results show that the maximum recognition accuracy obtained by the proposed 

Fig. 14: The performance of the proposed approach with different settings of LSTM depth. 

Fig. 15: The performance of the proposed model with different settings of learning rate. 
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method is 93.2% occurring at 18 dB SNR, which is 9.4%,6.2%,4.1%, and 3%, more than 

VTCNN2, MCLDNN, CNN-GRU, CGDNET, respectively. Moreover, in terms of 

computational complexity, the prediction time of the proposed model for each sample is 50 

ϻs, 25 ϻs, 8 ϻs, and 5 ϻs faster than CNN-GRU, MCLDNN, VTCNN2, and ResNet-LSTM 

models, respectively. In QAM16 recognition, the proposed approach shows improvements 

of 48%, 32%, 28%, 12%, and 1% over VTCCN2, MCLDNN, CNN-GRU, CGDNET, and 

ResNet-LSTM models, respectively. Moreover, in QAM64 recognition, it outperforms 

MCLDNN, VTCCN2, CGDNET, CNN-GRU, and ResNet-LSTM models by 25%, 22%, 

22%, 13%, 11%, and 8%, respectively. The incorporation of the Gaussian noise layer 

substantially enhances performance, leading to a notable 3% improvement at 18 dB SNR. 

The future direction will be directed toward making models that have both accuracy and 

speed to suit the new generations in the field of wireless communications. 
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 الغاوسية المنتظمة"  الهجينة CNN-LSTM بنية  خلال من التلقائي التعديل تصنيف تحسين"  

 

 الملخص العربي 

 

 .في أنظمة الاتصالات اللاسلكية (AMC) تقدم هذه الورقة نموذجًا مبتكرًا للتعلم العميق لتصنيف التعديل التلقائي

، (LSTM) وشبكات الذاكرة طويلة المدى (CNN) تدمج البنية المقترحة شبكات الشبكة العصبية التلافيفية

يسعى تكامل كلتا الشبكتين إلى تعزيز دقة التصنيف  .معززة بطبقة ضوضاء غاوسية للتخفيف من التجاوز 

في التقاط الميزات المكانية  LSTMsو CNN والأداء من خلال الاستفادة من القدرات الفريدة لشبكات 

 .أن يميز النموذج بين ثمانية أوضاع تعديل رقمية ووضعين تناظريين ومن المتوقع .والزمانية، على التوالي

  18% عند 93.2دقة التعرف القصوى البالغة  RadioML2016.10b يوضح التقييم التجريبي لمجموعة بيانات 

تساهم طبقة الضوضاء الغوسية  .التحليلات المقارنة تؤكد صحة الأداء المتفوق للبنية المقترحة .SNR ديسيبل

%  96يحقق النموذج دقة التعرف تتجاوز  .SNR ديسيبل 18% عند 3كل كبير في تحسين الأداء بنسبة بش

وأخيرا، يؤكد تحليل التعقيد الحسابي على كفاءة البنية  .لمعظم أوضاع التعديل، مما يسلط الضوء على متانته

 .المقترحة، مما يعزز صلاحيتها العملية

 


