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UNIQUENESS OF GENERAL DIFFERENCE DIFFERENTIAL
POLYNOMIALS AND MEROMORPHIC(ENTIRE) FUNCTIONS

HARINA P. WAGHAMORE, MANJUNATH B. E.

ABSTRACT. This study explores the uniqueness of entire and meromorphic
functions with equal weights [ > 0 by investigating the general difference-
differential polynomial ¥(z, f). We have extended the findings attributed to
[3] and derived a new result. Additionally, we examine the implications when
a polynomial of degree n shares a common value with the general difference-
differential polynomial. We have also posed an open problem for future re-
search work.

1. Background Information, Definitions and results

A meromorphic function is a non-constant function that exhibits poles as singularities
throughout the complex plane. The Nevanlinna theory of meromorphic functions provides
standard notations for the discussion, as referenced by [5], [9], and [10]. If f(z) and g(2)
share a(z) CM(IM), we refer to a(z) as a small function concerning f(z) if T'(r,a(z)) =
S(r, f), where S(r, f) is any small quantity satisfying S(r, f) = o{T'(r, )}, as r — oo,
possibly outside a set of finite linear measure.

We use Ny, (r, f—ia) to represent the count of zeros of f(z) — a with a multiplicity of

up to k. We use Nk) (r, fL) to represent the corresponding count where the multiplicity

—a

is not considered. Similarly, N (r, ﬁ) represents the count of zeros of f(z) — a with

a multiplicity greater than or equal to k, and N(k (r, f—ia) represents the corresponding

count where the multiplicity is not considered.

Let’s say we have a function f and a non-negative integer (or infinity) k. We can
define Ey(a; f) as the set of all points a where f equals a. If a appears as an a-point of
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f with multiplicity m, we count it m times if m < k and k + 1 times if m > k. When
Eyx(a; f) = Ex(a; g), we say that f and g share the value a with weight k.

If f and g share (a, k), they also share (a,p) for any 0 < p < k. Furthermore, f and g
share a value of a either in terms of identity (IM) or counting multiplicities (CM) only if
they share (a,0) or (a 00) respectively.

We denote Np, (r as the counting function of zeros of f — 1 where p > ¢, with

P (F-1)
N (r, ﬁ) representing the reduced counting function. Similarly, N 119) (r, ﬁ) de-
notes the counting function of zeros of f — 1 where p = ¢ = 1. Suppose 2o is a zero of

f — 1 with multiplicity p and a zero of g — 1 with multiplicity q. We use N, (r, = 1))
to count zeros of f — 1 where p > ¢, and N, = (r, [eE) ) follows smularly Additionally,

Ng (r, _(fil)) counts those 1 points of f where p = ¢ > 2, with Ng ( ) defined in

a parallel manner.
Definition 1.1. [12] The difference polynomial and its shifts in f(z) is defined as

’(g 1)

= S @)D f (2 4 )Mz o), (1)

A€l
where degree is denoted as d(Vo) = mazrer{d(\)} and X\ = {iro0,...,ixk}, I is a finite
set of the index and meromorphic co-efficients ax(z) are satisfying T'(r,ax(z)) = S(r, f),
ANET. f(2)™0f(z+c1) M. f(2+cr)>* is monomial in f(2) and f(z+c1), ..., f(z+cx),
where ci, ..., ¢ are distinct non-zero complex constants and d(\) = ix0 + ... + ix k-

Definition 1.2.The definition of the general differential-difference polynomial of f(z)
and its shifts, as provided in [1], is as follows.

Wiz f) =D an(2) f(2)*00 f D (2)200 L f (2) 0

el
x f(z+ Cl)Al,Of(l)(Z + Cl)>\111'~-f(M)(Z + C1)>‘1*""
S+ Ck)Ak’ofu)(z + cp) et o fM (24 k) Mem (2)
=> ax2) H [179(+ e
A€l i=0j=0

where I is a finite set of multi-indices A = (X0,0, ---s A0,my AL,05 ey ALy coes Aky0y ovy Ay ),
co(= 0) and ¢1,ca, ..., ¢ are distinct complex constants. The growth of ax(z),\ € I is

S(r, f).
k m k m i
d(\) = 32 3 Aiy; denotes the degree of the monomial [ [] fY9(z + i) of W(z, f).

i=0;=0 i=0j=0

Then d(¥) = mg;({d()\)}, dr(v) = 1}1611}1{03()\)} denote the degree and the lower degree of
U(z, f) respectively.

The differential-difference polynomial ¥(z, f) is called a homogeneous if d(¥) = d* (V)
otherwise, it is a non-homogeneous.

A study on uniqueness under different conditions was conducted for f(z) and f*(z)
sharing a small function [2, 4, 6, 10, see]. In 2008, Zhang and Lu [11] concluded.

Theorem A. [11] Suppose k(> 1) and n(> 1) are integers, and f is a non-constant
meromorphic function. Moreover, consider a small meromorphic function a(z) concerning
f, where a(z) is distinct from 0 and oo. If f* and f™ share the value a(z) IM and

46(0, ) + (2k + 6)0(00, f) + 20542(0, f) > 12+ 2k — n,
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or f™ and f*) share the value a(z) CM and
20(0, f) + (k4 3)©(00, f) 4 0k+2(0, f) > 6 + k —n,
then f = f®.

In 2013, Bhoosnurmath and Kabbur extended the above result to a general differential
polynomial and obtained the following results.

Theorem B. [1] Consider a non-constant meromorphic function f and a small mero-
morphic function a(z) such that a(z) is not identically equal to 0 or co. Let ¥[f] represent
a non-constant differential polynomial in f. If f and ¥[f] share the value a IM and

(2Q 4 6)0(o0, f) + (2 + 3d(1))5(0, f) > 2Q + 2d(¥) + d(¥) + 7,
then f = Y[f].

Theorem C. [1]Given a non-constant meromorphic function f and a small meromorphic
function a(z) such that a(z) is not identically equal to 0 or oo, along with V[f] denoting
a non-constant differential polynomial in f, if f and V[f] share the value a CM and

30(o0, f) + (d(¥) +1)5(0, f) > 4,
then f = W[f].

Theorem D. [1] Suppose f is a non-constant entire function and a(z) is a small mero-
morphic function such that a(z) is not identically equal to 0 or co. Let W[f] denote a
non-constant differential polynomial in f. If f and V[f] share the value a IM and

(3d(W) +2)5(0, f) > 2d(T) + 2,
then f = W[f].

Theorem E. [1] Consider f(z) as a non-constant entire function and a(z) as a small
meromorphic function such that a(z) is not identically equal to 0 or co. Let W[f] represent
a non-constant differential polynomial in f. If f and ¥[f] share the value a CM and

(d(¥) +1)4(0, f) > 1,
then f = ¥[f].
In 2020, [3] studied ¥(z, f) instead of a differential polynomial in f and proved some
results:

Theorem F. [3] Given a non-constant meromorphic function f(z) and a small mero-
morphic function a(z), where a(z) is not identically equal to 0 or oo, let ¥(z, f) denote a
non-constant differential-difference polynomial as defined in (2). If f(z) and ¥(z, f) share
the value a IM and

O(00, f)(2Q" 4+ 6) + (0, f)(3d" (V) + 2) > 2Q™ + 2d(¥) + 8, (3)
then f(z) = ¥(z, f).

Theorem G. [3] Assume f(z) is a non-constant meromorphic function and a(z) is a small
meromorphic function such that a(z) # 0,00. Let ¥(z, f) be a non-constant differential-
difference polynomial as defined in (2). If f(z) and ¥(z, f) share the value a CM and

30(o0, f) 4+ 8(0, f)(d* (L) +1) > 4, (4)
then f(z) = ¥(z, f).
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Theorem H. [3] Consider f(z) as a non-constant entire function and a(z) as a small
meromorphic function such that a(z) is not identically equal to 0 or co. Let W(z, f) denote
a non-constant differential-difference polynomial as defined in (2). If f(z) and ¥(z, f)
share the value a IM and

5(0, £)(3d" (W) 4 2) > 2d(V) + 2, (5)
then f(z) = ¥(z, f).

Theorem 1. [3] Given f(z) as a non-constant entire function and a(z) as a small mero-
morphic function, where a(z) is not identically equal to 0 or oo, let W(z, f) represent
a non-constant differential-difference polynomial as defined in Definition 1. If f(z) and
U(z, f) share the value a CM and

(d () +1)6(0, f) > 1, (6)
then f(z) = ¥(z, f).
Question 1.What happens if the non-constant meromorphic function f(z) and the
differential-difference polynomial ¥(z, f) share a value a with finite weight?

Question 2. When examining a meromorphic function f within a polynomial p(f)
and a differential-difference polynomial ¥(z, f), what conclusions can be drawn regarding
the uniqueness of p(f) and ¥(z, f) when they share a value a CM(IM)?

In this paper, we try to answer these two questions. Indeed, the following theorems
are the main results of the paper.

Theorem 1.1. Let f(z) be a non-constant meromorphic function andl be a non-negative
integer. Suppose a(# 0,00) is a meromorphic function satisfying T'(r,a) = o(T(r, f)) as
r — 0o such that f(z) and ¥(z, f) share (a,l). If 1 > 2 and

O(o0, f) (Q7 +3) +20(0, f) + (0, /)d(¥) > Q" + 2d(¥) — 2d"(¥) + 5, (7)

orl=1 and

0. ) (@ +3 ) +00.0)3 +50.N(¥) > () + Q" =’ (W) 40, ()
orl =0 and

O(c0, f)(2Q™ + 6) +40(0, f) + 6(0, £)2d(¥) > 4d(V) + 2Q™ — 2d" (V) + 10,  (9)
then f(z) = ¥(z, f).
Example 1.1. Let U(z, f) = —f(z)f<1>, where f(z) = e*. Then V(z, f) and f share
(0,00) all the conditions (7) - (9) of Theorem 1.1 are satisified but VU(z, f) # f(2).
This example shows that the condition a Z 0 is necessary for Theorem 1.1.

Theorem 1.2. Suppose f(z) is a non-constant meromorphic function and a(z) is a small
function where a(z) # 0,00. Let p(z) be a non-zero polynomial of degree n > 1, and
U(z, f) be a non-constant differential-difference polynomial. If p(f) and ¥(z, f) share the
value a IM and

O(00, £)(2Q™ + 6) + (0, f)(3d" (¥) + 2n) > 2Q" + 2d(V) + 2n + 6, (10)
then p(f) = ¥(z, f).
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Theorem 1.3. Given a non-constant meromorphic function f(z) and a small function
a(z) with a(z) # 0,00, let p(z) denote a non-zero polynomial of degree n > 1. Additionally,
consider ¥(z, f) as a non-constant differential-difference polynomial. If p(f) and ¥(z, f)
share the value a CM and

30(o0, f) + (d"(¥) +n)6(0, f) > 3 +n, (11)
then p(f) = ¥(z, f).

Theorem 1.4. Considering f(z) as a non-constant entire function and a(z) as a small
function with a(z) # 0,00, let p(z) represent a mon-zero polynomial of degree n > 1.
Furthermore, let U(z, ) be a non-constant differential-difference polynomial. If p(f) and
U(z, f) share the value a CM and

5(0, £)(d*(¥) +n) > n, (12)
then p(f) = ¥(z, f).

Theorem 1.5. Given f(z), a non-constant entire function, and a(z), a small function
with a(z) # 0,00, along with p(z), a non-zero polynomial of degree n > 1, and ¥(z, f), a
non-constant differential-difference polynomial, suppose p(f) and ¥(z, f) share the value
a IM and

(3d™(¥) +2n)4(0, f) > 2d(¥) + 2n, (13)
then p(f) = ¥(z, f).

1

Example 1.2. Let p be a polynomial of degree one and f = e*, ¥(z, f) = f(Z)(z)2f(z +
27rz‘)%. Here, by definition of (1.1) and by ¥(z, f) we observe that d(¥) = Xo1 + A1,0 =
1+1 =1 ke, d¥) =1, d(¥) = X1+Mo=132+2%=1,de, d(¥) =1 and
Q" =3Xo,1 + Mo =2, de, Q" =2. Also N(r,f) = S(r, f) and N(r,0; f) = N(r,0;€*) ~
T(r, f). Then ©(c0, f) =1 and 6(0, f) = 0. The deficiency conditions in (10), (11), (12),
and (13) are not satisfied, but p(f) = ¥(z, f).

Hence, this example demonstrates that the conditions we have obtained are sufficient
but not necessary for ensuring p(f) = P(z, f), in Theorems 1.1, 1.2, 1.3 and 1.4

Remark 1. Let’s examine the cases where i =0 ori = 1. Assuming c1 = 0, according to
the definition of ¥(z, f), we obtain

Uz, f) = Za)\(Z)f(Z)AO’O+>\1’0f<1)(Z)A0’1+>\1’1 _”f<m)(z)>\0,m+>\1,m

A€l

= aa(2)f(2) 0 f D (2)" L (2) = W],

el

where nio = X0,0 + A1,0,7i1 = Ao,1 + ALLs e, Rim = Ao,m + Aim, @ = 0,1. Then taking
d(¥) =d(¥), and d*(¥) = d(¥), we get
(1) In theorem 1.2, we get
O(c0, £)(2Q 4 6) + 6(0, £)(3d(¥) + 2) > 2Q + 2d(F¥) + 8,
this signifies an advancement upon the outcome presented in Theorem. B.
(2) In Theorem 1.3, we get
30(00, f) + (d(¥) + 1)8(0, f) > 4,
which aligns with Theorem C.
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(3) In Theorem 1.4, we get
(d(¥) +1)6(0, ) > 1
which aligns with Theorem F.
(4) In Theorem 1.5, we get
(3d(¥) +2)5(0, f) > 2(¥) +2,
which aligns with Theorem D.

2. Lemmas

Lemma 2.1. [8] Suppose f(z) is a non-constant meromorphic function.

1 1
N (rig ) =N ( }) 10, £9) = T, ) + S £), (14)
1
N, 1iGl 2 f)- (15)
Lemma 2.2. [9] Consider the expression ¢ = (};— - %) - (Cé—/l - %), where F' and
G are two non-constant meromorphic functions. If F' and G share 1 IM and ¢ # 0, then
NP (1) £ Mg+ 50:F) + 5. 6), (16)

Lemma 2.3. [7] Suppose f(z) is a transcendental meromorphic function of zero order,
and let ¢ and n be two non-zero complex constants. Then

T(r, f(az+n)) = T(r, f(2)) + S(r, f),
N(r,00; f(gz +m)) < N(r,00; f(2)) + S(r, f),
N(r,0; f(gz +m)) < N(r,0; f(2)) + S(r, f),
N(r, 005 f(qz +m)) < N(r,00; f(2)) + S(r, f),
N(r,0; f(az +m)) < N(r,0: f(2)) + 8(r, ).

Lemma 2.4. [3] Suppose f(z) is a meromorphic function and U(z, f) is a differential-
difference polynomial in f. Then

m (n B D) < @) - @ @)t )+ 5(0.1). a7

Lemma 2.5. [3] Consider f(z) as a meromorphic function and U(z, f) as a differential-
difference polynomial in f. Then

m <r, q;fj@) < (d(V) — d*(T))m (n %) +S(r, f). (18)

Lemma 2.6. [3]Consider f(z) as a meromorphic function and V(z, f) as a differential-
difference polynomial in f. Then

N(r,¥(z, f)) <d(O)N(r, f) + Q"N(r, f) + S(r, f). (19)
Lemma 2.7. [3] Consider f(z) as a meromorphic function and a differential-difference

polynomial ¥(z, f) in f. Then

N (n 2 <@ (Ko + ¥ (ng)) + @) -0 @)n (n 1) +56:) @0
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Lemma 2.8. [3]Consider f(z) as a meromorphic function and a differential-difference
polynomial ¥(z, f) in f. Then

N (n FEE) < @) - )N )+ @ (N + 8 (7)) #5600 @

Lemma 2.9. [3] Consider f(z) as a meromorphic function and a differential-difference
polynomial V(z, f) in f. Then
T(r,¥(z, ) <dW)T(r, f) + Q"N(r, f) + S(r, f), (22)

where @* =  max {1+ 2 2+ ... +mAim}.
0<i<kAel

Lemma 2.10. [3] Consider f(z) as a meromorphic function and a differential-difference
polynomial V(z, f) in f. If U(z, f) £ 0, then we have

N (T’ ﬁ) ST, W(z, ) = T, ) + (d(¥) = d" (¥)m (T’ %) (23)
N ( ﬁ) +5(r, ),

N (rgig ) S QNG + @) = a0y (13 ) + 8 (r 7oty ) + 56, (20)

where Q" = maxo<i<iaer {Ai;1 +2Xi2 + ... + MAim}
Lemma 2.11. [3] Consider f(z) as a meromorphic function and a differential-difference
polynomial U (z, f) in f of degree d and let Q" = Xo,1 + 2Xo,2 + ... + MAo,m. Then
T(r,¥(z, f)) = O(T(r, f)), S(r,¥(z, f)) = S(r, f).

Lemma 2.12. [3] Consider f and g a non constant meromorphic functions
1) if f and g share (0,1), then

N (1) <N+ N (r,2) + 50, (25)
f-1 f

Here, as r approaches infinity, S(r) = o(T(r)), where T'(r) = maxT(r, f),T(r,g).
1) if f and g share (1,1), then

— 1 — 1 — 1
2N 2N —— ) —N
(st 1)

Proof of Theorem 1.1. Consider F = 5 and G = Y& Then F -1 = f;’l and
G-1= ‘I’(va)*'l.
a

Given that f(z) and ¥(z, f) share (a,l), we can conclude that F' and G share (1,1)
except at the zeros and poles of a. Additionally, observe that

N(h F) = N(h f):
N(r, G) = N(T,\I/(Z,f) = N(r, f)+s(r, f).
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F' aF CH el
g"‘(F’_F—1>_<G/_G—1>’ @7
Claim ¢ =0,

suppose on the contrary that ¢ # 0. Theerefore from (27), we have
m(r, f) = S(r, f).

By the Nevanlinna Second fundemental theoerm of, we have

Define,

T(r,G)+T(r,F) <N (7’7 %) +2N(r, )+ N (T’ é) N (r’ ﬁ)

—&—N(r, G£1> — No (r,%) — No (né) + S(r, ).

No (T, Fﬂl-) represents the counting function of zeros of F’ that are distinct from the zeros

of F(F —1). Similarly Ny (r, é) is defined.

(28)

Case 1. From (28), when [ > 1, we have

N2 (rge) <8 (R 1) 4500 SN 00 + 50

1
_ 1 _ _
< —
_N(2<T7F)+N(T7F)+N(2<T,G>+NL(T,F 1)
+Np|(r ! + N ri +No(r ! +S(r, f)
L 7G_1 0 ) 7 0 7G/ ) )
and so,
— 1 — 1 D) 1 —(2 1 — 1
N(T,G_ >+N<T,F_1)—NE (T,F_1>+NE (T’F—l)JrNL(T’F—l)
— 1 — 1
4 (ngty )+ W (ngty ) #5000,

Subcase 1.1. When [ = 1, we have,

_ 1 1 , 1—/( 1\ 1—
- V< =z < Z = it
N. (r, F71> < 2N(r,1/F |F7£0) <N (r, F) + 5N F), (30)

Here, N (r, l/F, |F # O) represents the zeros of F' excluding those of F. Combining (26)
and (30), we obtain

— 1 —(2 1 — 1 — 1
2N, (r,—F_1>+NE <T7F— >+2NL (T’_G—1>+N(T’G—1)

<N {r, Gl_l) +% (N (r%) +N(r,F)) +S(7‘,f()3.1)

—_
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Thus, from (31) and (30), we have

NC«,%) —|—N<r7 Gi 1) <N (r%) +N(r,f)+Ne (ré) +%J_V(r,f)

+S(r, f)-

From (28), (32), and using (24), we have

T(rF) < N )+ N (n g ) + 38 (r ) + 50,

T f) < [(1- (0. ) (Q+ 5 ) + (1= 00.0)F + (1= 30, )W) + (d(¥) — a'(¥)
T(r,f) + S(r. ),

O (o0, f) (Q* + g) +0(0,f) g +38(0, f)d(¥) < Q" +2d(¥) — d*(¥) + 5,

This contradicts the assertion in (8).

Subcase 1.2. For [ > 2, under these circumstances, we have

— 1 — 1 —(2 1 — 1
2N (T,F_1)+2NL (T,G_1)+NE (T’F—1>+N(T7G—1>

<N (r, Gl_l) + 80, f).

Derived from (29), we acquire,

_ 1 — 1 — — 1 1 — 1
- < - -
N<T7F—1>+N<T’G—1> <N(r, f)+ N (T,G)+N<7",G_1)—|—N(2 (T,F)
1

<N(rf)+Ne (r, é) + N (r, %) +T(r,G)

. (3

1
+N0 (T,a) +N0 <T7F> +S(T,f)
Now from (28), (24) and (33), we obtain

T(r,F) <3N (r, f) + 2N (r, %) +N <r, é) +S(r, f)

<(Q"+3)N(r, f)+2N (7“, %) +N <r, %) d(¥) +m (n %) (d(T) — d*(T))
+S(r, f),
T(r, f) <[1=© (00, /) (Q"+3) +2(1 =0 (0, f)) + (1 = (0, £))d(¥) + (d(¥) — d"(¥))]
T(r, f)+S(r, f),

© (00, /) (Q"+3) +20 (0, f) + (0, f) d(¥) < 2d(¥) + Q" — d"(¥) +4,
This contradicts the assertion in (7).

Case 2. In the case where [ = 0, we then have:

1 1 — 1 — 1
N (rpy ) = 6 (rogm )56 W (ngty ) = W8 (ro gy ) #5000
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And also, from (3.2), we have
- 1 - 1 0 1 @ 1 - 1
N —_— N <N N —_— N
— 1 — 1
N N T
+ L(T>G71)+ (r,G71>+S(nf),

1 (2 1
N
T’F—1)+ E (T’F—1>

From (25), (26), (28), and (8), we get

T(r,G)+T(r,F) < 2N(r,f)+ﬁ(r,é) +N(r,%> +N(r, Fl_ 1) +N(r, Gl—l

- (NO (n FL> + No (r, Gi>) +S(r, f),

T(r,F) < 4N (r, %) 6N (1 f) + 2N (r, é) +S(r, f),

T(r, f) <[(1=6(c0, f)) 2Q" +6) + (1 = ©(0, ) 4+ (1 = 6(0, f)) 2d(¥) + 2 (d(¥) — d* (¥))]

T(r, f) + S(r, f).
‘We obtain,
O(00, f) (2Q" +6) + O(0, )4 + (0, £)2d(¥) < 4d(¥) +2Q" — 2d™ (V) + 9.

This contradicts the assertion in (9).

This confirms the assertion, demonstrating that ¢ = 0. Thus, according to (27) , we
deduce that

G 2¢ _F' oF

@G 1T F FoT

so on integrating twice, we obtain

—_— = +B. (35)
A # 0 and B are constant.

In this context, three possible cases can emerge:
Subcase 1.1. When B # 0, —1, from (35), we get

F-1 G-1 = 1 —
= N ——— | =N .
B+1-BF A (T’F——By) (r, )
Under these conditions, the Nevanlinna Second fundamental theorem provides:

T(T‘,f) :T(TvF) +S(va)y
<N (n %) +N(F)+N (m ﬁ) +5(r, 1),
<[ =0(0, 1) +2(1 = 6(c0, NIT(r, f) + S(r, f),

O(0, f) +20(o0, f) < 2.
This contradicts the assertion in (7), (8) and (9).
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Subcase 1.2. Assuming B = 0, according to (35), we get:
G=AF—-(A-1). (36)
Our assertion is that A = 1. Suppose A # 1. Then, based on (36), we obtain:

— — 1
N(T7G):N<T7m>-

A

Using the Nevanlinna second fundamental theorem and (24), we obtain

T(va):T(TvF)+S(T7f)

<N (r, %) +N(r,F)+ N (r, ﬁ) + S(r, f),
<1 =6(c0, /) (Q" +1) = O(0, f) + (1 = 4(0, f)) d(¥) + d(¥)
- d*(\ll) + 1]T(T7 f) + S(T’ f)7
O(o0, I Q" +1)+06(0, f) + (0, £)d(¥) < 2d(¥) + Q* — d*(¥) + 1.
Thus A = 1, and in this case, from (3.11)

F =G,
and so f(z) = ¥(z, f).

Subcase 1.3. Suppose B = —1 from (35),

1 A
- " 1
F-1 G-1 ’ (37)
A
F = 38
A-G+1 (38)
IfA#-1
— 1 — 1
N(rn—t )=% ( _) |
9y A )
< F- A_+1> ¢
Applying the same reasoning as in subcase 1.2 leads to a contradiction. Hence, A = —1.
From (38), we have:
GF =1,
ie., f(2).[¥(z, f)] = d°. (39)

Therefore, under these conditions, we have N (r, )+ N (r, %) =S(r, f),

Based on (38) and (39), along with the first fundamental theorem,
1
A+dW)NT(r, f)=T <T, W) ;

<m (r, ‘P(Z’f)) N (n Wfi@f)) + 50, f),

<T(r, f)(d(P) —d"(¥)) + S(r, [),
(14+d" () T(r, f) < S(r, f).

Which is a contradiction.
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Proof of theorem 1.2. v
a a
Given that p(f) and ¥(z, f) share a IM, it implies that F' and G also share 1 IM.
Now, utilizing lemmaLemma 2.11 and from (1), we can deduce

T(r,G) <T(r, f)+S(r, f), (41)

T(ﬁF):T(ﬁ‘I’(Zaf)ZJ_V(ﬁf)*‘S(?ﬁf)a (42)

N(r,G) = N(r, )+ S(r, f),

vy r,F11> _ WY (T,Gil) +S(r ), (43)

N r7Fi1) NG (T’Gi1> +S(r, f), (44)
N (rpeg) <8 (g ) + NP+ 5(0), (45)

1
+ NL (7‘, m) +S(7’, )
Suppose that ¢ # 0. Then we have,

1 — 1 1
N(r,¢) < N (ﬁf) + N(r,G) + N2 (7’75) + Ng (hﬁ)

1 1 1
+ Ng <7“,G_1>+N0 (T,F)-FNo(T,a)’

Here, Ny (r, —1r> represents the counting function for the zeros of F ' excluding those

(47)

F
shared with F and F — 1. Similarly, No (r, é) is defined similarly.
Applying the second fundamental theorem yields

T(r,G) +T(r, F) SW(nF)JrW(hG)JrN(T%) +N(“é) +N(’"’ F1—1>

1 1 1 (48)
+ N (T7m> — No (7}?) — No (Ta a) +S(T7f)
Given that F' and G share 1 IM, we deduce from (46)
- 1 - 1\ o 1 1
Sort) Rogt) o (rr) )

1 —(2 1
+ 2Np, (T’G—l) +2Ng <T’F—1>'
From this, (16) and (47), we get

— 1 — 1 1 — 1 1
— )< - — —
N(Tijl)—’_N(T?Gfl) < Nez <T,F) + N(r,G)+ N2 <T,G> + No (r, F')
1 1 0 1
+3NL<T,F_1)+3NL(T‘, _1)+NE (T’F—l)

+ 2N (r, ﬁ) + No (7‘, é) +S(r, f).

Q

(50)
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We now note that

1 @ 1 1 " 1
N, 2N 2N N
L(T’F*1>+ E<T’F*1>+ L<T’G*1)+ E(T’Ffl)
e

Combining (50) and (51) yields
N L V4w L <N, Din 1 + N(r,G) + 2N, L
e "Fo1)=te\hF e\"aG " \"F
1 1
+ Nip, (T, m) —|—T(r, G) + No (r, F)

+ No (r7 é) + S(r, f)-

(51)

Employing (52) within (48) and (42), results in

— 1 1 1 1
< — — -
T(r,F)<3N(r,G)+ N <r, F) + N (r, G) + 2Ny, (r, F2 1) + Nz, (r, e 1) (53)
+S(r, f)-
Utilizing (53) and (23) yields

T(r,¥(z f) <N (r, ﬁ) +3N(r,G)+ N (r, %) + 2Ny, (r, %) + Ng, (n %)
+S(r, f),

T(r, f)d(¥) <nN (r, %) 3N f) + (d(W) — m (T, %) 4" (V) + N (r, ﬁ)
+ 2N, <r, Fl—l) + Ng (r, %) +S(r, f).

From (15), (23), and (40), we get
1 1
2N (7‘, F) + N (T, a)

o (r s )+ 0 (n )
< N(r, /)(2Q* + 3) + (2d(¥) + n)N (r, %) (55)

IN

1 *
+2m <r, ?) (d(T) —d* (V) + S(r, f).

Again using (55) in (54), we get

T )W) < (13 ) + 38 6) + @)~ @y (77 ) + 8 (71 )

f f
_ . 1
+ N (207 +3) + N (r, ?) (2d(¥) + n)
+2(d(T) — d*(T))m (r, %) +S(r f),
T(r, f)(3d" () — 2d(¥)) < N(r, )(2Q" 4 6) + N (r, %) (34" (O) + 2n) + S(r, f).

Therefore, we obtain
O(00, /)(2Q" 4 6) + 6(0, f)(3d"(¥) + 2n) < 2(Q" + n + d(¥)) + 6, (56)
which contradicts (10).
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Thus, ¢ = 0.
Integrating ¢ results in

1 A
_G—li_F—1+B’ (57)
Here, (A # 0) and B are constants. Consequently,
B+1)F+(A-B-1) Fﬁ(B—A)G-ﬁ-(A—B—l)
BF + (A — B) ’ N BG — (B+1) '
We examine the following three cases.
Case 1.Suppose B # 0, —1. According to (58), we have

o

N (T,@) :N(T, F) (59)
B

From this, along with the second fundamental theorem, we have

— 1 — — 1
T(r,G) <N ( @) +0.6)+F (n g ) + 50,

nT(r, f) < (2Q" + 6)N(r, f) + (3d" (¥) + 2n)N (n %) 4 S(r f),
Therefore, we have
O(00, £)(2Q™ 4+ 6) + (0, f)(3d" (¥) + 2n) < 3d"(¥) +2Q" + 7,
which contradicts (10).
Case 2.If B = 0, then according to (58), we have

F+(A-1)
A
Our assertion is that A = 1. Assuming A # 1, then from (60), we obtain

N (n %) - N (n G+AT”> . (61)

With this and the Nevanlinna second fundamental theorem, we obtain

T(T7G) SN(Taé) +N (r’G—+AAl>> +N(’I’,G) +S(rv f):

<N )+ N (r, %) N (r, ﬁ) +5(r, f),

[ — d(¥) + & (DT, f) < (Q° + DN(r, ) + (n + d(W))N ( %) S f)-

G= , F=AG—(A-1). (60)

So, we have
Q"+ 1)8(00, f) + (n +d(¥))3(0, f) < Q" +2d(¥) — d"(¥) + 1,
this contradicts (10).
Hence, A = 1. According to (60), we have G = F.
Thus, p(f(2)) = ¥(z, f).
Case 3. If B = —1, then according to (58), we have

. A 1+ AG-A
G*—F+A+1’ F= G ‘ (62)

In case A # —1, we deduce from (62) that

1 1
N|r,——— :N(r—). (63)
b A b
< G_(A_+1>> F
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Using the same reasoning as in case 2, we arrive at a contradiction.
Hence, A = —1.
From (62), we obtain

GF = 1. (64)
That is,
p(f)-9(z, f) = a”. (65)
From (65), we have
N (r, %) N ) = S(r, f). (66)

Employing (62), (65), Lemma Lemma 2.10, and the Nevanlinna first fundamental theorem,
we derive

T(r, f)(d(W) +n) = T (r, JMTIW)
7 ( M) + S0 )

T fA(T) g2

1 %
<7 ( ?) (d(T) — d" (D)) + S(r, ).

We have,

(@ (¥) +n)T(r, f) < S(r, f), (67)
This leads to a contradiction.
Thus, the proof of Theorem 1.2 is complete.

Proof of Theorem 1.3. Consider the definitions of F' and G as given in (40).
From the theorem’s hypothesis, it follows that F' and G share 1 CM. Hence,

Ni <r, Fl_ 1) =N (r, %) =0. (68)

Continuing similarly to the Proof of Theorem 1.1, we arrive at (54), which is:

T(r, f)d(¥) <nN (’r, %) +3N(r,G)+m (n %) (d(¥) —d*(¥)) + N (n ﬁ)

1 1
+2Np, (r, 1 1) + N (r, —G_1> +5(r, f)-

Using (68) in (54), we get

T(r, )d() <N (n %) +3N(r,G) +m (
+S(r, f)

r, %) (d(¥) — & (V) + nN (n %)

T(r, f)d" (V) < (d* (V) + n)N (n %) +3N(r, f) + S(r, f).

Thus, we have
30(00, f) +6(0, /)(d"(¥) +n) <3+,
This contradicts (11).
Therefore, ¢ = 0. Following a similar approach to the Proof of theorem 1.2, we establish
Theorem 1.3.
Thus, the proof of Theorem 1.3 is concluded.
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3.1. Proof of Theorem 1.4. Given the hypothesis that f(z) is a non-constant entire
function, we can employ N(r, f) = S(r, f) in the Proof of Theorem 1.2 to derive the proof
of Theorem 1.4.

3.2. Proof of Theorem 1.5. Given the hypothesis that f(z) is a non-constant entire
function, we can utilize N(r, f) = S(r, f) in the Proof of Theorem 1.3 to derive the proof
of Theorem 1.5.

Open Question 1.1. Considering the non-constant meromorphic function ffp(f1),
where fi = z — ¢ for some ¢ € C, along with the differential-difference polynomial ¥(z, f),
what implications arise if they share a value a with finite weight?
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