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Abstract: This paper integrates medical science and artificial intelligence, focusing on using 

convolutional neural networks (CNNs) to improve skin cancer diagnosis accuracy. Given the 

rising global incidence of skin cancers such as melanoma and basal cell carcinoma, this re-

search is becoming increasingly important. This study uses the HAM10000 and PH2 da-

tasets, which are known for their diverse skin cancer images, and employs a CNN-based 

approach informed by previous research findings. 

The proposed methodology includes extensive preprocessing and augmentation to increase 

the dataset's variability, allowing for thorough training and evaluation. The CNN model, 

which was developed using advanced training methods and includes convolutional and 

pooling layers, is the result of previous research demonstrating the efficacy of CNNs in skin 

lesion detection. Furthermore, the U-NET-based segmentation model contributes to the 

comprehensive analysis by precisely delineating lesion boundaries, which improves the un-

derstanding of skin cancer. The CNN model's performance is evaluated using a variety of 

metrics, including accuracy, classification reports, confusion matrices, and segmenta-

tion-specific metrics like the Dice coefficient and IOU. These metrics provide valuable in-

sights into the changing landscape of skin cancer diagnosis, allowing for the development of 

effective, precise, and accessible healthcare solutions in the dynamic field of dermatology. 

The experimental results for skin cancer classification are promising, indicating that the 

proposed approach outperforms other models. The best-trained classification model had an 

impressive 99.5% accuracy, 99.5% precision, and 99.5% recall. The test data was 97.204% ac-

curate, 97.5% precise, and 97.2% recall. In addition, the U-NET model performed admirably 

in skin cancer lesion segmentation, with segmentation metrics such as an accuracy of 96.68%, 

precision of 95.39%, recall of 94.24%, Dice coefficient of 93.58%, and IOU of 97.09% for train-

ing data and an accuracy of 96.14%, precision of 93.44%, recall of 94.09%, Dice coefficient of 

92.55%, and IOU of 96.43% for testing data. 
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Abbreviation Definition 

CNN Convolutional Neural Network 

VGG Visual Geometry Group 

Resnet Residual Network 

IOU Intersection over Union 

Lr Learning Rate 

SSD-KD Single Shot MultiBox Detector with Knowledge Distillation 

Xception Extreme Inception 

SVM Support Vector Machine 

1. Introduction 

To improve diagnostic approaches for skin cancer, it is critical to understand the significant global concern 

caused by the disease's rising prevalence. Skin cancer, including types such as melanoma and basal cell carci-

noma, represents a significant public health challenge, with its prevalence on the rise worldwide. Skin cancer, 

including types such as melanoma and basal cell carcinoma, represents a significant public health challenge, 

with its prevalence on the rise worldwide. Early detection and classification of skin lesions are critical for effec-

tive intervention and treatment. With sunlight exposure, genetic factors, and lifestyle choices all contributing 

to rising rates of skin cancer, there is an urgent need for novel solutions that can keep up with the growing 

demand for precise diagnostics. 

This research is especially important considering this context, as it harnesses the capabilities of Convolutional 

Neural Networks (CNNs) and utilizes the HAM10000 and PH2 datasets to address the challenges of skin can-

cer diagnosis. By integrating medical expertise with innovative technology, the proposed study has the poten-

tial to revolutionize the field. Additionally, with the incorporation of the segmentation model, which precisely 

delineates lesion boundaries, this research offers a comprehensive approach to improving skin cancer diagno-

sis accuracy. In the broader context of dermatological healthcare, this study aims to make a significant contri-

bution to the ongoing fight against skin cancer. By incorporating advanced deep learning techniques into the 

diagnostic process, we hope to provide a solution that not only addresses the current challenges posed by skin 

cancer but also anticipates and adapts to the changing landscape of this complex health issue. 

Panda et al. [1] compared various deep learning models using a transfer learning approach, emphasizing the 

method's effectiveness in skin lesion classification. Similarly, Wang et al. [2] investigated deep learning-based 

melanoma segmentation and classification, with the latter developing the SSD-KD method, a self-supervised 

approach for lightweight classification. Sirotkin et al. [3] proposed an improved recognition system using a 

self-supervised curricular deep learning approach, while Aldhyani et al. [4] created a multi-class skin lesion 

classification system using a dynamic kernel deep-learning-based CNN. Maqsood and Damaševičius [5] pro-

posed a framework for localizing and classifying multiple skin lesions, focusing on feature fusion and selection 

for smart healthcare applications. Similarly, Baig et al. [6] presented novel CNN-based diagnostic tools for 

multi-class skin lesions, emphasizing lightweight and machine-learning-based approaches. 
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Shetty et al. [7] and Ali et al. [8] emphasized the use of convolutional neural networks (CNNs) in skin lesion 

classification, leveraging machine learning techniques to improve accuracy. Zhuang et al. [9] and Hosna et al. 

[10] provided thorough overviews and introductions to transfer learning, a critical technique in this field. Ad-

ditional studies by Mohammed and Kora [11], Nie et al. [12], and Popescu et al. [13] investigated the opportu-

nities and challenges of ensemble deep learning, advances in dermoscopic image diagnosis, and neural net-

work collective intelligence, respectively. Khan et al. [14] and Anand et al. [15] investigated the extraction and 

optimal selection of features for skin lesion classification via multi-model deep neural networks and enhanced 

transfer learning-based classification systems. Alam et al. [16], Aladhadh et al. [17], and Jain et al. [18] made 

additional contributions to the field by addressing issues with imbalanced datasets, the use of medical vision 

transformers, and transfer learning in skin cancer classification. Finally, Al-masni et al. [19] and Panthakkan et 

al. [20] proposed integrated deep convolutional networks and a novel hybrid approach that combines Xception 

and ResNet50 for accurate skin cancer prediction, respectively, building on the foundation laid by RD Seeja 

and A Suresh [21], who used deep learning for skin lesion segmentation and melanoma classification using 

SVM, and the diagnostic tool developed by A Tajerian et al. [22], who used machine learning for dermatoscop-

ic skin cancer image differentiation, recent advances have significantly improved the field. Researchers have 

made significant progress by addressing challenges such as imbalanced datasets, integrating medical vision 

transformers, and leveraging transfer learning techniques. 

This paper addresses the need to improve skin cancer diagnostic methods by combining medical science and 

artificial intelligence, with a focus on Convolutional Neural Networks (CNNs) for improved accuracy. Using 

the large HAM10000 dataset, which is known for its diverse skin cancer images, a CNN-based approach in-

formed by previous research is employed. The dataset's variability is increased for training and evaluation 

through extensive preprocessing and augmentation. 

 

2. Methodology 

2.1. Data Collection 

 

The datasets employed in this research are the "HAM10000" dataset and the "PH2" dataset. The "HAM10000" 

dataset comprises skin cancer images depicting various skin lesions. This dataset comprises a total of 10,015 

images, each with dimensions (450, 600, 3). Each image is linked to a specific diagnosis, categorized into seven 

classes: Melanocytic nevi (nv), Melanoma (mel), Benign keratosis-like lesions (bkl), Basal cell carcinoma (bcc), 

Actinic keratoses (akiec), Vascular lesions (vasc), and Dermatofibroma (df). The dataset also provides addi-

tional information for each image, including diagnosis and age. The "PH2" dataset is another dataset used in 

this research, which consists of skin lesion images as well. It includes a total of 200 images, with dimensions of 

768 × 560 pixels. These images were acquired in RGB color as BMP files. 

 

2.2. Data Preprocessing 

 

HAM10000: Following the retrieval of image files, all images were resized from 450x600 pixels to 28x28 pixels. 

Subsequently, the dataset was partitioned into training and testing sets, with 80% of the data allocated to the 

training set and the remaining 20% to the test set. Both the training and test sets were normalized to ensure 

consistency in the data distribution. Additionally, a label mapping was created, consisting of a dictionary that 

associates the names of the seven classes with key values ranging from 0 to 6, facilitating classification tasks. 
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PH2: All images were resized from 768x560 pixels to 224x224 pixels. Subsequently, the dataset was partitioned 

into training and testing sets, with 80% of the data allocated to the training set and the remaining 20% to the 

test set, ensuring a balanced distribution for training and evaluation. This resizing process enables compatibil-

ity with models that expect input images of uniform dimensions. 

 

2.3. Data Augmentation 

 

HAM10000: To address the class imbalance and augment the training dataset, various methods were em-

ployed. Skin images were augmented using transformations such as rotation, width shift, height shift, shear, 

horizontal flip, and vertical flip. This augmentation strategy increased the number of images from 10,015 to 

45,756, while preserving identical dimensions of twenty-eight pixels in width, twenty-eight pixels in height, 

and three-color channels. By introducing variability into the training set, this augmentation approach enhances 

the model's generalization and robustness to different skin lesion variations. 

 

PH2: Random rotation and horizontal flipping were applied to augment the PH2 dataset. These transfor-

mations introduce variations in the dataset, which helps in improving the model's ability to generalize to un-

seen data and enhances its robustness. This augmentation strategy diversifies the dataset while maintaining 

consistency in dimensions, facilitating more effective training of the model. 

 

2.4. Model Architecture:  

Classification using the HAM10000 dataset: The model consists of twelve layers. The model initiates with 

convolutional layers, proficient at capturing intricate patterns within images. The initial layer deploys sixteen 

filters, followed by a max-pooling layer strategically down-sampling spatial dimensions. This pattern iterates, 

progressively escalating complexity with 32, 64, and 128 filters in subsequent convolutional layers. The corre-

sponding max-pooling layers strike a balance between preserving crucial features and reducing spatial dimen-

sions, culminating in a final convolutional layer followed by a flattening operation. This transition readies the 

data for the fully connected layers, establishing a connection between spatial hierarchies and the dense layers. 

The subsequent dense layers, featuring 64 and 32 neurons, act as a potent feature extractor, refining the learned 

representations. The output is realized through a dense layer with seven neurons, each representing a distinct 

class in the present classification task. The SoftMax activation function ensures the model provides 

well-calibrated probabilities for each class, facilitating confident predictions. This comprehensive architecture 

carefully considers both spatial intricacies and hierarchical feature extraction, contributing to the model's ro-

bust performance in computer vision tasks. Figure 1 shows the used classification model architecture. Table 1 

shows the hyperparameters for Classification Methodology. 

Figure 1: Proposed Classification Model Architectural Framework. 
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Table 1: Hyperparameters for classification process. 

Hyperparameter Value Description 

Learning Rate 0.001 The rate at which the model adjusts its weights during training. 

Rotation Range 10 Range (in degrees) for random rotations applied to the images. 

Width Shift Range 0.2 Range for random horizontal shifts applied to the images. 

Height Shift Range 0.2 Range for random vertical shifts applied to the images. 

Shear Range 0.2 Shear intensity (in radians) for geometric transformations. 

Horizontal Flip TRUE Randomly flip images horizontally during training. 

Vertical Flip TRUE Randomly flip images vertically during training. 

Batch Size 64 Number of samples processed per gradient update during training. 

Epochs 20 Number of complete passes through the entire training dataset. 

 

Segmentation using the PH2 dataset: The model architecture includes one encoder and one decoder pathway. 

The encoder pathway initiates with four convolutional layers, followed by max-pooling layers for 

down-sampling, progressively increasing the complexity with deeper layers. Each convolutional block is 

composed of two convolutional layers with batch normalization and ReLU activation, ensuring effective fea-

ture extraction while mitigating the risk of overfitting. Additionally, spatial dropout is incorporated to enhance 

the model's robustness by introducing randomness during training.  

The decoder pathway mirrors the encoder in terms of the number of layers, with four transposed convolution-

al layers for up-sampling. These layers are used to sample the feature maps to the original image resolution. 

This symmetric architecture facilitates the precise localization of skin lesion boundaries. Furthermore, the final 

layer employs a 1x1 convolution followed by a sigmoid activation function. Figure 2 shows the used Segmen-

tation model architecture.  

The Jaccard distance loss function is used to train the model by calculating the difference between predicted 

and ground truth segmentation masks. The segmentation model is trained for 100 epochs with the Adam op-

timizer and a learning rate of 0.003. Throughout the training process, different evaluation measures such as 

Intersection over Union (IoU), Dice coefficient, precision, recall, and accuracy are tracked to assess the model's 

performance on both the training and validation sets. Table 2 shows the hyperparameters for Segmentation 

Methodology. 
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Figure 2: Segmentation Model Architectural Framework. 

 

 

Table 2: Hyperparameters for Segmentation process. 

Hyperparameter Value Description 

Rotation Range -40 to 40 Range (in degrees) for random rotations applied to the images. 

Horizontal Flip TRUE Randomly flip images horizontally during training. 

Dropout 0.4 Dropout rate for spatial dropout applied to convolutional layers. 

Learning Rate 0.003 The rate at which the model adjusts its weights during training. 

Optimizer Adam Optimizer algorithm used for training the model. 

Batch Size 16 Number of samples processed per gradient update during training. 

Epochs Variable Number of complete passes through the entire training dataset. 
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3. Dataset Insights 

The HAM10000 dataset [23], also known as the Human Against Machine with ten thousand training images 

dataset, features high-quality images of skin lesions. It encompasses several types of skin lesions, ranging from 

benign to malignant. The lesions are categorized into seven distinct classes. However, there is an imbalance 

among the classes in the dataset, as illustrated in Table 3 and Figure 3. 

 

Table 3: Class Distribution Analysis of the dataset. 

Class Counts 

Melanocytic nevi (nv) 6705 

Melanoma (mel) 1113 

Benign keratosis-like lesions (bkl) 1099 

Basal cell carcinoma (bcc) 514 

Actinic keratoses and intraepithelial carcinoma (akiec) 327 

Vascular lesions (vasc) 142 

Dermatofibroma (df) 115 

 

 

Figure 3: Class Distribution Analysis of the dataset.  

 

To address the challenge of an unbalanced dataset within the HAM1000 dataset, a strategy of duplicating im-

ages was employed for augmentation purposes. This duplication process did not result in any new augmenta-

tion transformations, and to preserve the NV class's integrity in the HAM1000 dataset, no augmentation tech-
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niques were used. During data preparation for training and testing, augmentation transformations such as ro-

tation, shifting, and flipping were applied to the training set only, leaving the original dataset unchanged. 

 

Table 4 and Figure 4 summarize the data augmentation strategies used to address the unbalanced dataset in 

HAM1000. The approach involved duplicating images for augmentation without introducing new transfor-

mations, while maintaining the integrity of the NV class. Augmentation techniques such as rotation, shifting, 

and flipping were exclusively applied to the training set. 

 

Table 4: Class Distribution after using the factor. 

Class Counts Factor used Counts + (Counts*factor) + Counts 

Melanoma (mel) 1113 4 6678 

Benign keratosis-like lesions (bkl) 1099 4 6594 

Basal cell carcinoma (bcc) 514 11 6682 

Actinic keratoses and intraepithelial 

carcinoma (akiec) 

327 17 6213 

Vascular lesions (vasc) 142 45 6674 

Dermatofibroma (df) 115 52 6210 

 

 
Figure 4: All Class Distribution after using the factor.  
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The PH2 dataset [20] is a well-known dataset in the field of dermatology and medical image analysis. It con-

sists of 200 high-resolution images acquired in RGB color format as BMP files, with dimensions of 768 × 560 

pixels. 

 

4. Evaluation Metrics for both classification and segmentation 

Before we delve into the results obtained from training various deep learning algorithms on the HAM10000 

and PH2 datasets for predicting skin cancer, it is essential to understand the significance of each metric used in 

the evaluation process. Accuracy, precision, and recall for classification and Jaccard Distance, Intersection over 

Union (IoU), Dice Coefficient, precision, recall, and Accuracy for segmentation. 

 

4.1 Accuracy [24] 

Definition: Accuracy is a measure of the overall correctness of the model. It calculates the ratio of correctly 

predicted instances to the total instances. 

           
                               

                 
                                                          (1) 

Usefulness: While accuracy provides a general sense of how well the model is performing, it might not be the 

best metric for imbalanced datasets. In the case of skin cancer classification, where the occurrence of malignant 

cases might be significantly lower than benign cases, accuracy alone may not provide a complete picture. 

 

4.2 Precision [24] 

Definition: Precision measures the accuracy of positive predictions. It calculates the ratio of true positives to 

the total predicted positives. 

           
               

                                 
                                                             (2) 

Usefulness: Precision is crucial in scenarios where false positives are costly. In skin cancer classification, high 

precision means that when the model predicts a sample as malignant, it is likely to be correct. It is particularly 

important in medical contexts where misdiagnosing benign cases as malignant could lead to unnecessary 

treatments. 

 

4.3 Recall [24] 

Definition:  Recall measures the ability of the model to capture all the relevant instances. It calculates the ratio 

of true positives to the total actual positives. 

Equation: 

         
             

                              
                                                              (3) 

Usefulness: Recall is vital when the cost of false negatives is high. In the context of skin cancer classification, 

high recall indicates that the model is effective in identifying malignant cases, minimizing the chances of 

missing potentially dangerous lesions. 

4.4 Jaccard Distance [25] 

Definition: The Jaccard distance, also known as the Intersection over Union (IoU), quantifies the dissimilarity 

between the predicted and ground truth segmentation masks. It measures the ratio of the intersection to the 

union of the two masks. A lower Jaccard distance indicates better segmentation accuracy. 
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|     |

|      
                                                                        (4) 

                                                                                              (5) 

Where: 

●   and   are the ground truth and predicted segmentation masks, respectively. 

●         denotes the number of pixels common to both masks. 

●         represents the total number of pixels in both masks. 

Usefulness: Jaccard distance is useful for evaluating the similarity between two segmentation masks. It pro-

vides a measure of how well the predicted segmentation aligns with the ground truth. A lower Jaccard dis-

tance indicates better segmentation accuracy. 

 

4.5 Intersection over Union (IoU) [25] 

Definition: IoU is a measure of the overlap between the predicted and ground truth segmentation masks. It 

calculates the ratio of the intersection to the union of the two masks, providing insights into the model's ability 

to accurately delineate skin lesion boundaries. Higher IoU values signify better segmentation performance. 

           
       

       
                                                                               (6) 

Where: 

●   and   are the ground truth and predicted segmentation masks, respectively. 

●         denotes the number of pixels common to both masks. 

●         represents the total number of pixels in both masks. 

Usefulness: IoU is commonly used in image segmentation tasks to assess the quality of segmentation results. 

Higher IoU values indicate better agreement between the predicted and ground truth segmentation masks, 

reflecting improved segmentation accuracy. 

 

4.6 Dice Coefficient [25] 

Definition: The Dice coefficient assesses the similarity between the predicted and ground truth segmentation 

masks. It computes the ratio of twice the intersection to the sum of the volumes of the two masks. A higher 

Dice coefficient indicates greater overlap and similarity between the predicted and ground truth masks. 

Equation: 

          
        

         
                                                                             (7) 

Where: 

●   and   are the ground truth and predicted segmentation masks, respectively. 

●         denotes the number of pixels common to both masks. 

●    and | |denotes the total number of pixels in each mask. 

Usefulness: The Dice coefficient is particularly useful in evaluating the performance of segmentation models. It 

provides a robust measure of segmentation accuracy, especially in scenarios with class imbalance, where ac-

curately capturing small structures is essential. 
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5. Results and Discussion 

5.1. Results for classification 

As shown in Table 5 and Figure 5, DeepConvNet achieved the highest accuracy, precision, and recall scores, 

indicating its effectiveness in accurately classifying skin cancer lesions. Auto Encoder, while having a relative-

ly high precision score, exhibited lower accuracy and recall scores compared to DeepConvNet, suggesting that 

it may have struggled with correctly identifying some instances of skin cancer. CNN decay lr, VGG16, Res-

Net50, InceptionV3, and Xception all demonstrated varying degrees of performance, with accuracy, precision, 

and recall scores falling below those of DeepConvNet but still showcasing some level of effectiveness in skin 

cancer classification. 

 

Table 5: Performance Analysis: Metric Comparison across Training Algorithms. 

Training Metrics 

Model Name Accuracy Precision Recall 

DeepConvNet 99.5 99.5 99.5 

Auto Encoder 70.17 82.26 58.09 

CNN with decay lr 81.23 89.72 73.28 

VGG16 67.13 84.03 54.65 

ResNet50 66.99 66.99 66.99 

InceptionV3 66.97 85.86 54.2 

Xception 66.8 85.92 54.31 

 

Figure 5: Performance Analysis: Metric Comparison across Training Algorithms. 
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Table 6 and Figure 6 show that the DeepConvNet outperformed all other testing algorithms in terms of accu-

racy, precision, and recall, demonstrating its ability to accurately categorize skin cancer lesions. 

 

Table 6: Performance Analysis: Metric Comparison across Testing Algorithms. 

Testing Metrics 

Model Name Accuracy Precision Recall 

DeepConvNet 97.204 97.5 97.2 

Auto Encoder 70.17 82.49 58.17 

CNN with decay lr 73.64 81.1 67.9 

VGG16 66.99 83.52 60.03 

ResNet50 66.83 66.83 66.83 

InceptionV3 66.89 85.19 60.58 

Xception 66.73 83.29 61.04 

 

Figure 6: Performance Analysis: Metric Comparison across Testing Algorithms. 

 

Figure 7 illustrates the progressive enhancement in accuracy over time, showcasing the positive trend in per-

formance as training progresses. 
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Figure 7: Tracking Progress: Evaluation of Accuracy for Proposed Model Architecture. 

 

Figure 8 demonstrates the concurrent decline in loss over time, highlighting the iterative refinement and 

optimization of the model. 

 

Figure 8: Tracking Progress: Evaluation of Loss for Proposed Model Architecture. 
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Figure 9 provides a visual representation of the model's performance through a confusion matrix graph for 

each class of data on the test set, including its performance on the unbalanced classes, as presented in Table 

and Figure 3. Each row in the confusion matrix corresponds to the actual class labels, while each column rep-

resents the predicted class labels. The values in the cells of the matrix indicate the number of instances that 

were classified into each class. 

 
Figure 9: Visualizing Model Performance: Confusion Matrix Graph for Test Data. 

 

This research paper provides a comprehensive overview of recent advances in skin lesion classification using 

deep learning models. The complexities of improving diagnostic accuracy and efficiency in skin disease detec-

tion are examined in detail using a variety of methodologies demonstrated by leading researchers, including 

transfer learning, knowledge distillation, and innovative network architectures. 

 

1. S Panda et al. [1]: The research paper on skin lesion classification utilizing Deep Learning models employed 

various methods to achieve its objectives. The study utilized transfer learning with pre-trained models such as 

VGG16, ResNet50, InceptionV3, and Xception to classify skin lesions into different categories. The models were 

trained on a dataset consisting of images of various skin diseases, including melanoma, nevus, and seborrheic 

keratosis. The training process involved 30 epochs with a batch size of 16 for training and 10 for validation. 

 

2. Y Wang et al. [2]:  In a comparative study of skin lesion classification methods, deep learning models, tradi-

tional machine learning algorithms, and knowledge distillation techniques have been evaluated for their effec-

tiveness in improving diagnostic accuracy. Deep learning models have shown promise in achieving higher ac-

curacy rates due to their ability to learn complex patterns. Knowledge distillation techniques aim to enhance 

the performance of lightweight models by transferring knowledge from larger models. These methods have 

demonstrated improvements in accuracy, sensitivity, and specificity in skin lesion classification tasks. Lever-
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aging advanced techniques like knowledge distillation can enhance the diagnostic accuracy of skin disease 

classification, contributing to more efficient diagnostic tools for skin diseases. 

 

3. TH Aldhyani et al. [4]: The study focuses on the development and implementation of a lightweight dynamic 

kernel deep-learning-based convolutional neural network for multi-class skin lesion classification. The meth-

odology employed in the research includes the use of variable size kernels and activation functions in the net-

work, with a strategic allocation of fewer kernels in the initial layers for efficient utilization. Additionally, 

class-wise data balancing was performed to ensure unbiased training. 

 

4. S Maqsood & R Damaševičius [5]: In this study on multiclass skin lesion localization and classification using 

deep learning, a novel approach was developed to enhance the accuracy and efficiency of skin cancer detec-

tion. The methodology involved the utilization of a customized Convolutional Neural Network (CNN) for au-

tomatic feature extraction, incorporating well-known networks such as Xception, ResNet-50, ResNet-101, and 

VGG16 to reduce computation time. The feature selection process was optimized using a unique Univariate 

Measurement of Pairwise Dependence (UMPD) approach, which effectively selected the best features for 

recognition. 

 

5. B Shetty et al. [7]: In this research study on skin lesion classification, a variety of methods were employed to 

enhance the accuracy of the classification models. Machine learning models including Decision Tree, Random 

Forest, Support Vector Machine, K-Nearest Neighbor, Logistic Regression, Gaussian Naïve Bayes, and Linear 

Discriminant Analysis were evaluated, with Random Forest exhibiting the highest accuracy among them. 

 

6. MS Ali et al. [8]: The research focuses on utilizing a deep convolutional neural network (DCNN) model 

combined with transfer learning techniques to enhance the classification of skin cancer based on dermoscopy 

images. The proposed DCNN model was developed to accurately classify skin lesions, particularly in the early 

stages of cancer. By training the model on a large dataset and fine-tuning it over multiple epochs, the re-

searchers achieved significant improvements in classification accuracy compared to existing deep learning 

models. The results demonstrated that the DCNN model outperformed traditional transfer learning models 

such as AlexNet, ResNet, VGG-16, DenseNet, and MobileNet in terms of accuracy and execution time. 

Through a comprehensive evaluation on the HAM10000 dataset, the DCNN model showed superior perfor-

mance in distinguishing between benign and malignant skin lesions, with promising implications for early de-

tection and treatment of skin cancer. 

 

7. V Anand et al. [15]: The research focuses on enhancing the classification of skin cancer through a transfer 

learning approach using the VGG16 architecture. The proposed model incorporates additional layers, includ-

ing a flatten layer and dense layers with LeakyReLU and sigmoid activation functions, to improve accuracy. 

Data augmentation techniques are employed during pre-processing to increase dataset randomness and stabil-

ity. 

 

8. TM Alam et al. [16]: In their study of an Efficient Deep Learning-Based Skin Cancer Classifier for an Imbal-

anced Dataset, Alam et al. used a comprehensive methodology to address the challenges posed by imbalanced 

data. 
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9. S Aladhadh et al. [17]: In their research employed a two-tier framework to address the challenges associated 

with accurate skin cancer classification. The first stage involved data augmentation techniques to enhance the 

training dataset, mitigating issues related to insufficient labeled data. Subsequently, they developed a Medical 

Vision Transformer (MVT)-based classification model for skin cancer. This innovative approach involved split-

ting input images into patches and feeding them to the transformer in a sequence structure, akin to word em-

bedding. The final classification was performed using a Multi-Layer Perceptron (MLP). The experimental re-

sults, conducted on the Human Against Machine (HAM10000) dataset, demonstrated the superiority of the 

proposed MVT-based model over existing state-of-the-art techniques. 

 

10. RD Seeja & A Suresh [21]: The study focuses on utilizing deep learning technology for skin lesion segmen-

tation and classification of melanoma. The methodology employed in this research involves the initial seg-

mentation of dermoscopy images using a Convolutional Neural Network (CNN) based U-net algorithm. Sub-

sequently, color, texture, and shape features are extracted from the segmented images using techniques such as 

Local Binary Pattern (LBP), Edge Histogram (EH), Histogram of Oriented Gradients (HOG), and Gabor meth-

od. These extracted features are then fed into various classifiers including Support Vector Machine (SVM), 

Random Forest (RF), K-Nearest Neighbor (KNN), and Naïve Bayes (NB) for the diagnosis of melanoma or be-

nign lesions. 

 

11. A Tajerian et al. [22]: In this study, we employed a methodological approach that leveraged dermoscopy 

images from the HAM10000 dataset to develop a machine-learning-based diagnostic tool for the classification 

of dermatoscopic skin cancer images. The process involved image pre-processing techniques such as labeling, 

resizing, and data augmentation to enhance the dataset. Transfer learning was utilized to create a model archi-

tecture based on EfficientNET-B1, incorporating a global average pooling 2D layer and a softmax layer with 7 

nodes for classification. 

 

Table 7 and Figure 10 present a comparison between the proposed method, implemented through the Deep-

ConvNet architecture, and several previous research papers. Various training metrics, including accuracy, pre-

cision, and recall, are used for each model. 

 

Table 7: Comparison between the proposed method and the other papers. 

Training Metrics 

Paper Accuracy Precision Recall 

S Panda et al. [1] - 97 95.2 

Y Wang et al. [2] 84.6 - - 

TH Aldhyani et al. [4] 97.8 98.1 98 

S Maqsood & R Damaševičius [5] 98.57 - - 

B Shetty et al. [7] 91.77 - - 

MS Ali et al. [8] 93.16 96.57 93.66 

V Anand et al. [15] 89.09 - - 
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TM Alam et al. [16] 91 - - 

S Aladhadh et al. [17] 96.14 96 96.50 

RD Seeja & A Suresh [21] 85.19 42.59 50 

A Tajerian et al. [22] 94 88 85 

Current Proposed Method DeepConvNet 99.5 99.5 99.5 

 

Figure 10: Benchmarking Proposed Method Against Existing Papers: A Comparative Study. 

5.2. Results for Segmentation 

In Table 8 and Fig 11, the U-Net model's performance metrics are examined across both training and testing 

datasets. The U-Net model achieves high accuracy, precision, recall, Dice Coefficient, and IoU scores, under-

scoring its efficacy in accurately segmenting skin cancer lesions. 

Table 8: Performance Analysis: Metric Comparison across Training and Testing Sets. 

Training Metrics 

Model Name Accuracy Precision Recall Dice Coefficient IoU 

U-NET 96.68 95.39 94.24 93.58 97.09 

Testing Metrics 

Model Name Accuracy Precision Recall Dice Coefficient IoU 

U-NET 96.14 93.44 94.09 92.55 96.43 
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Figure 11: Performance Analysis: Metric Comparison across Training and Testing Sets. 

 

Figures 12, 13, and 14 illustrate the progressive enhancement in accuracy, accompanied by a concurrent decline 

in Jaccard loss and improvement in Dice Coefficient, IoU, precision, and recall over time. These visuals repre-

sent the iterative refinement and optimization of the model, showcasing a positive trend in performance as 

training progresses. 

 

 

Figure12: Tracking Progress: Evaluation of Jaccard Loss and Accuracy for the Model Architecture. 
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Figure 13: Tracking Progress: Evaluation of Dice Coefficient and IoU for Proposed Model Architecture. 

 

 

Figure 14: Tracking Progress: Evaluation of precision and recall for Proposed Model Architecture. 

 

5.3 Proposed Model Prediction 

In Fig 15, several predictions from the suggested model are showcased. This visual representation offers a 

model's performance by displaying examples of its predictions for skin cancer lesions. These predictions pro-

vide insights into how the model categorizes and classifies different types of lesions. The suggested model 

performs well across all seven classes, despite the imbalance in data distribution as illustrated in Figure 3. 

When the model predicts accurately, the confidence level typically falls within the 97%–100% range. Figures 16 

and 17 show several predictions from the U-net segmentation model. 
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Figure 15: Sample classification predictions from the suggested model. 

 

 

Figure 16: Sample predictions from the segmentation model. 

 

Combining segmentation and classification models represents a promising approach to improving skin cancer 

diagnostic systems. In this integrated framework, the segmentation model precisely defines the lesion bounda-

ries of skin cancer, effectively isolating the affected areas. These segmented regions are then localized or 

cropped and sent to the classification model for further analysis and diagnosis. Figure 17 illustrates this pro-

cess by depicting the sequential workflow in which segmented lesions are accurately identified and then clas-

sified to determine the specific type of skin cancer. By combining these two methodologies, we can leverage 

the strengths of segmentation for precise delineation and classification for accurate diagnosis, ultimately im-

proving the efficiency and reliability of skin cancer detection systems. 
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Figure 17: Segmentation-Driven Skin Cancer Diagnosis Model 

 

7. Conclusion 

The research highlights the significant advances made at the intersection of medical science and artificial intel-

ligence, particularly in skin cancer diagnosis. The study found that integrating convolutional neural networks 

(CNNs) and leveraging the HAM10000 and PH2 datasets improved the accuracy and reliability of skin cancer 

classification and segmentation. The research proposed DeepConvNet architecture emerged as a front-runner, 

outperforming existing algorithms in accurately identifying several types of skin cancer lesions. With accuracy, 

precision, and recall scores of 99.5%, our model demonstrated its ability to accurately diagnose skin cancer le-

sions with unprecedented precision. The results obtained from the segmentation phase of our study under-

score its pivotal role in advancing skin cancer diagnostics. Through segmentation, we achieved precise deline-

ation of lesion boundaries, enabling accurate localization and isolation of affected areas. This level of precision 

not only enhances the efficiency of subsequent diagnostic processes but also facilitates targeted analysis by fo-

cusing exclusively on relevant regions of interest.  

Finally, our research adds significantly to the ongoing efforts in dermatology healthcare by providing an in-

novative and accessible solution for skin cancer diagnosis. By leveraging the power of CNNs and advanced 

deep learning techniques, our proposed method paves the way for efficient, precise, and scalable solutions to 

reduce the global burden of skin cancer. 
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