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ABSTRACT 

 

In the current study, the soil characteristics, secondary metabolites, and biological activity 

(antioxidant, antibacterial, and anticancer activities) of four Mediterranean halophytes (Atriplex 

halimus, Arthrocaulon macrostachyum, Limbarda crithmoides, and Tamarix nilotica) from Egypt 

were determined. The results showed that the studied halophytes favored soil with a coarse-sandy 

texture, slightly alkaline, and highly saline, with low contents of organic matter and macronutrients. A. 

macrostachyum showed the highest concentration of total phenols (181.75 mg GAE g
-1

 dry extract) 

and flavonoids (13.90 mg CE g
-1

 dry extract), while T. nilotica had the highest concentration of 

alkaloids (6.43 mg g
-1

 dry extract). Lower contents of soil sulfates, phosphorous, and calcium could 

induce a greater accumulation of total phenols and flavonoids in these halophytes. The extract of A. 

macrostachyum exhibited the highest scavenging activity against DPPH (IC50= 0.26 mg/ml) and 

ABTS (71.16% inhibition). The methanolic extracts of four halophytes exerted a pronounced effect 

against both Bacillus subtilis and Staphylococcus aureus, while extracts of A. macrostachyum and T. 

nilotica released an antibacterial effect against Escherichia coli and Pseudomonas aeruginosa. 

Moreover, A. macrostachyum extract exhibited moderate cytotoxicity against liver hepatocellular 

carcinoma (HePG2), mammary gland carcinoma (MCF-7), and prostate cancer (PC3). The findings of 

the current study recommend that the studied halophytes are candidates for green use as food or feed 

supplements or in various biological applications against antibiotic-resistant bacteria and human 

cancer cells.  
Keywords: Anticancer, Antimicrobial, Antioxidant, Halophytes, Secondary metabolites. 
 

 

INTRODUCTION 

 

The demand for food, fodder, medicines, and raw 

materials has increased due to the progressive rise in 

world population, and it is predicted that the major 

cultivated lands will need to yield 50% more in the 

future (Godfray et al., 2010). Agricultural coastal areas 

in arid and semi-arid countries are annually decreasing 

by 1% to 2% due to salinity and drought (Patterson et 

al., 2013). Moreover, the climate change patterns in 

arid lands are noticeably influencing terrestrial 

ecosystems, agricultural lands, and soil properties by 

impacting soil salinity (Corwin, 2021). Accordingly, 

salinity is recognized as the main environmental factor 

for plant growth and agricultural productivity. Appro-

ximately 10% of the earth's surface comprises saline 

and salt-affected areas that are broadly distributed 

worldwide and support the growth of a wide group of 

halophytes (O’leary and Glenn, 1994). Therefore, 

scientists should look for unconventional plants that 

can survive or stand in highly saline-soils. This goal 

could be achieved by restoring and rehabilitating salt-

affected regions for agriculture by using halophytes 

that respond to salt stress factors in a short time 

(Abdellaoui et al., 2023). 

Halophytes are salt-tolerant plants that have the 

remarkable ability to survive in extreme saline 

conditions. These plants are found all over the world 

and play a crucial role in maintaining the ecological 

balance of saline environments. A study conducted by 

Joshi et al. in 2015 shed light on the life cycles of halo- 

 

phytes, particularly their ability to complete their life 

cycles in high salt concentrations In response to 

salinity tolerance, halophytes display a variety of 

morphological, anatomical, and biochemical adapt-

ations that are connected to the synthesis and accum-

ulation of a wide range of metabolites (Hasanuzzaman 

et al., 2019). In addition, halophytes exhibit an 

efficient radical oxygen scavenging system that can 

neutralize the harmful effects of reactive-oxygen 

species (Stanković et al., 2023). Halophytes can be 

developed and reaped as raw constituents for food, 

feed, and medications despite having a great salt 

content. Also, they are distinguished by the presence of 

bioactive compounds (polyphenols and terpenes), 

which may have therapeutic applications and be used 

as food additives (Hasanuzzaman et al., 2019). 

Egypt encompasses six biogeographical sectors, 

namely: Libo Nubian, Nilotic, Marioutico Arishian, 

Sinaico Arabian, Elbanian, and Suezian (Abdelaal et 

al., 2020). The salt-affected lands are almost evenly 

distributed among the six biogeographical sectors. As a 

biodiversity hotspot, the Mediterranean coastal region 

of Egypt is in both the Nilotic and Marioutico-Arishian 

sectors. The saline areas in Egypt are distinguished into 

different habitats, including coastal salt marshes, 

wetlands, and lakes (Zahran and Willis, 2009). Along 

the Mediterranean coastal strip of the Nilotic sector 

(the Nile Delta), halophytes play a crucial role in 

protecting the coastal ecosystem and ensuring ecol-

ogical stability. Among dominant halophytes, four 

species were selected in the current study, namely: 
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Atriplex halimus L., Arthrocaulon macrostachyum 

(Moric.) Piirainen & G.Kadereit, Limbarda crithm-

oides (L.) Dumort. and Tamarix nilotica (Ehrenb.) 

Bunge. The abundance of these halophytes varies 

depending on their salt-tolerance capacity, distance 

from the Mediterranean Sea, and human threats. 

Therefore, the objectives of this study were to (i) 

evaluate the physicochemical properties of the soil in 

which the studied halophytes are growing; detect the 

primary type of secondary metabolites produced by 

these halophytes; (iii) establish the correlation between 

soil characteristics and secondary metabolites. (iv) 

assess the biological activities, including antioxidant, 

antibacterial, and anticancer activities, of these 

halophytes. 
 

MATERIALS AND METHODS 
 

Study area 

 

Egypt is distinguished by its sole geographical 

location between Africa and Asia and coastlines on the 

Mediterranean Sea and the Red Sea (Zahran and Willis, 

2009). Egypt's Mediterranean coastal land extends 

eastward from Sallum to Rafah, with an average width 

of 15–20 km, and is subdivided into three subsectors: 

western (Marioutic subsector), middle (Deltaic 

subsector), and east (Arishian subsector). The Deltaic 

subsector (the study area) extends for ca. 180 km from 

Port-Said to Alexandria with a width of ca. 12 km and 

receives ca. 100–200 mm of annual rainfall (Figure 1). 

Despite the importance of the Mediterranean coastal 

region as a major natural resource, it is threatened by 

serious issues such as urbanization, mining and 

quarrying, tourism activities, climate change, etc. 
 

 
 

Figure (1): Map of Egypt shows the study area and sampling sites 

along the middle Mediterranean coast (Google Earth, accessed 
April 2023). 

 

Plant materials collections 

Based on their dominance in the study area, four 

halophytes, namely Atriplex halimus, Arthrocaulon 

macrostachyum, Limbarda crithmoides, and Tamarix 

nilotica were collected from five populations/sites each 

and selected for the current study (Photo-plate 1). The 

identification of these halophytes was carried out by 

the first author, according to Boulos (2009), Täckholm 

(1974) and POWO (2022). Voucher specimens from 

each halophyte plant were kept in the herbarium of 

Mansoura University. The floristic features of the 

selected halophytes are displayed in Table (1). Atriplex 

halimus L., is a nitrophilous, halophytic perennial-

shrub that can survive under harsh conditions (Walker 

et al., 2014). In the Mediterranean zone, A. halimus 

offers livestock feed or silage (Khattab, 2007). Arthro-

caulon macrostachyum (synonymous: Arthrocnemum 

macrostachyum) is a perennial halophytic shrub native 

to the Mediterranean coastal territory. The value of A. 

macrostachyum is owing to its nutritional, health 

benefits and phytoremediation potential (ElNaker et 

al., 2020). Limbarda crithmoides (synonymous Inula 

crithmoides L.) is a perennial succulent halophyte 

belnging to family Asteraceae. L. crithmoides is a salt-

tolerant plant with antioxidant and biological activity 

that is widely used in traditional medicine (Bucchini et 

al., 2013; Jallali et al., 2020). Tamarix nilotica (Family 

Tamaricaceae) is a perennial evergreen halophyte 

growing naturally in Mediterranean salt marshes. The 

leaves and young branches of T. nilotica are used to 

treat spleen edema and mixed with ginger to treat 

uterine infections (Bakr et al., 2013). During April-

May 2022, the aerial parts of selected halophytes were 

collected, washed with dist-illed water, air-dried at 

room temperature until full dryness, then ground, and 

finally kept in polyethylene bags. 
 

Soil sampling and physicochemical analysis 

From each halophyte canopy, bulk soil samples were 

collected at 0-30 cm depth. The samples were air-dried, 

sieved, and stored. Soil texture, porosity, and water-

holding capacity were evaluated by Piper’s procedures 

(Piper, 1966). Organic carbon was determined using 

the Walkley-Black method (Jackson, 2005). An electric 

pH meter was used to determine the soil pH in 1:5 

(w/v) aqueous solutions. Electric conductivity (EC) 

was measured by the conductivity meter (Apera AI209-

T, Apera). Chlorides, sulfates, bicarbonates, total 

phosphorus (TP), and total nitrogen (TN) were 

estimated according to Burt's manual (Burt, 2004). Na
+
 

and K
+
 were valued using a flame photometer (Han-

chen FP-6431, UK), while Ca
2+

 and Mg
+2

 were 

analyzed by an atomic absorption spectrophotometer 

(Perkin-Elmer, USA). 
 

Preparation of plant extracts 

To prepare plant extracts, the aerial-dried powdered 

samples of four halophytes (10 g each) were macerated 

in methanol to extract the secondary metabolites. The 

samples were placed in a water-bath shaker and 

preserved at a temperature of 40°C for 4 hrs at 200 

rpm. Afterward, the extracts were filtered using What-

man filter paper No. 1, evaporated under vacuum cond-

itions at 40°C, and then stored at 5°C. 
 

Phytochemical investigation 

Total phenolic was quantified by the Folin-Ciocalteu 

assay (Wolfe et al., 2003) and reported as mg gallic 

acid (GAE)/g dry extract. The flavonoid content (in mg 

catechin equivalent (CE)/g dry extract) was estimated 

by using the aluminum chloride colorimetric assay 

(Zhishen et al., 1999). For tannins, the vanillin-hydro-

chloride technique was applied (Burlingame, 2000) and 

conveyed as mg tannic acid equivalent (TAE)/g dry 

extract. Alkaloids content (mg g
-1

 dry extract) was esti- 
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Photo-plate (1): Morphology of the studied halophytes: (A) Atriplex halimus; (B) Limbarda crithmoides; (C) Arthrocaulon macrostachyum; 

and (D) Tamarix nilotica. 

 

 

Table (1): List of the investigated halophytes and their floristic features 

 

Voucher 

number 
Species Synonymous Family 

Life span 

and form 
Chorotype 

Habitat-

type 

MANS2022106 Atriplex halimus L. 
Chenopodium 

halimus Thunb. 

Amaranthaceae 

P, Ph ME+SA-SI 

Salt 

marshes 

and lakes 

MANS2022107 

Arthrocaulon 

macrostachyum 

(Moric.) Piirainen & 

G.Kadereit 

Arthrocnemum 

macrostachyum 

(Moric.) 

K.Koch 

P, Ch ME+SA-SI 

Salt 

marshes 

and lakes 

MANS2022206 
Limbarda crithmoides 

(L.) Dumort. 

Inula 

crithmoides L. 
Asteraceae P, Ch 

ME+ER-

SR+SA-SI 

Salt 

marshes 

and saline 

drainage 

canals 

MANS2022306 
Tamarix nilotica 

(Ehrenb.) Bunge 

Tamarix 

arabica Bunge 
Tamaricaceae P, Ph SA-SI+S-Z 

Dry salt 

marshes 

and saline 

sand 

mounds 
 

The codes for life span and life forms are as follows: P, perennial; Ph, phanerophytes; Ch, chamaephytes; chorotypes include: ME, Mediterranean; 

SA-SI, Saharo-Sindian; ER-SR, Euro-Siberian and S-Z, Sudano-Zambezian. 
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imated by using an ammonium hydroxide solution 

(Harborne, 1998). Saponins content (mg g
-1

 dry 

extract) was estimated by consecutive solvent 

extractions (Obadoni and Ochuko, 2002). The details 

were covered in our previous work (Mahdi et al., 

2023). 
 

Biological potency 

Antioxidant scavenging activity 
 

The antioxidant scavenging activity of the meth-

anolic extracts of the selected halophytes was tested by 

two methods: the 2,2-diphenyl-1-picryl-hydrazyl 

(DPPH) colorimetric assay (Kitts et al., 2000) and the 

2, 2′-azinobis- (3- ethylbenzothiazoline-6- sulfonic 

acid) (ABTS
+
) (Re et al., 1999). From the plotted 

graph corresponding to the inhibition percentage of 

DPPH against extract concentrations, the extract conc-

entration offering 50% inhibitory (IC50) was 

computed. The DPPH-IC50 is inversely prop-ortional to 

the antioxidant ability of the tested samples (Parejo et 

al., 2000). Regarding the ABTS, the anti-oxidant 

potential of each extract was evaluated based on its 

ability to inhibit the ABTS. Ascorbic acid was consi-

dered a reference antioxidant. 
 

Antibacterial activity 

The methanolic extracts of the selected halophytes 

were tested against four bacterial strains: two gram-

positive (Staphylococcus aureus and Bacillus subtilis) 

and two Gram-negative (Escherichia coli and Pseudo-

monas aeruginosa) bacteria. In this test, the agar-well 

diffusion technique was applied (Prabuseenivasan et 

al., 2006). Spreading a certain amount of inoculum 

across the agar surface, then, using a sterile cork-borer, 

eight mm-diameter holes were aseptically created, and 

40 µL of tested extracts were added at the desired 

concentrations. The agar plates were then incubated 

under appropriate conditions based on the inoculum. 

Each inhibitory zone's diameter was measured in 

millimeters, and the average results were considered. 

Cefoperazone and clarithromycin anti-biotics were 

used as positive controls. 
 

Anticancer potential 

Three human tumor cell lines: HePG2 (liver hepato-

cellular carcinoma), MCF-7 (mammary gland carcin-

oma), and PC3 (prostate cancer) were used in the 

current study. The colorimetric assay of MTT (3- [4, 5-

dimethylthiazol-2-yl] -2, 5-diphenyl- 2H-tetrazolium 

bromide) reduction from yellow to purple was used to 

test the anticancer activity of selected halophytes 

(Bondock et al., 2012). With a density of 5.0 x 10
3
 

cells/well and 100 µl of RPMI- 1640 medium at 37°C, 

the cells were seeded in 96-well plates for 48 h under 

5% CO2. After incubation, cells were treated with 

various concentrations of the methanolic extracts of 

target halophytes and incubated for 24 hrs MTT 

solution (20 µl) was added and allowed to stand for 4 

hrs. Then, the medium was removed from the plates, 

and 100 µl of DMSO was poured into each well. To 

estimate the reduction in cell growth, the absorbance 

(at 570 nm) of each well was measured. The IC50 

values for each extract were calculated. For 

comparison, doxorubicin was considered as a reference 

anticancer drug. All compounds were prepared or 

solubilized in dimethyl sulfoxide (DMSO, 10 mM 

stock). The antitumor potency of each extract was 

evaluated depending on the IC50 inhibitory concen-

tration (µg) as follows: 1-10 (very strong), 11-20 

(strong), 21-50 (moderate), 51-100 (weak), and greater 

than 100 (non-cytotoxic) (El-Zayat et al., 2021). 
 

Statistical analysis 
 

The results of this study were expressed as means± 

standard errors. The one-way ANOVA followed by the 

Kruskal-Wallis analysis was applied to test the signif-

icance at p≤ 0.05. The correlation between soil factors 

and secondary metabolites of four halophytes was 

tested using Canonical Correspondence Analysis (CC-

A) and Pearson’s correlation. All statistical analysis 

was carried out by the XLSTAT program (2016) and 

package "metan” in R software version 4.2.3. 

 

RESULTS 

 

Soil physicochemical properties supporting the 

target halophytes 
 

The soil data of the represented habitats of the four 

halophytes showed no significant variations at p≤ 0.05 

except for total phosphorus (TP) and calcium (Table 2). 

The soil texture in the habitats of four halophytes is 

coarse-sandy with little clay content. Porosity and 

water holding capacity were the highest in the soil of L. 

crithmoides (42.86% and 43.93%, respectively), and 

the lowest in the soil of T. nilotica (37.34% and 

36.48%, respectively). The soil pH, collected from all 

studied halophytes was weakly alkaline or alkaline 

ranging from pH7.4 to 8.3. Electrical conductivity (EC) 

displayed values between 0.50 and 0.94 mmhos/cm, 

indicating high and variable salinity levels. The soil of 

L. crithmoides had high levels of calcium carbonates, 

organic carbon, sulfates, total phosphorus, and calcium. 

Furthermore, the highest concentrations of bicar-

bonates (0.21%) and total nitrogen (29.89 mg/100g dry 

soil) were recorded in the soil of A. halimus. The soil 

of A. macrostachyum had the highest content of Cl
-
 

(0.53%), Na
+
 (147.28 mg/100g dry soil) and K

+
 (19.82 

mg/100g dry soil). 
 

Phytochemical compounds content 

  Except for saponins, the results showed that total 

phenols, flavonoids, tannins, and alkaloids in meth-

anolic extracts significantly varied (p≤ 0.05) among 

four halophytes (Figure 2). The highest contents of 

total phenols (181.75 mg GAE g
-1

 dry extract) and 

flavonoids (13.90 mg CE g-1 dry extract) were 

observed in A. macrostachyum. T. nilotica attained the 

highest value of alkaloids (6.43 mg g-1 dry extract). 

Furthermore, A. halimus attained the highest concen-

trations of tannins (12.41 mg TAE g
-1

 dry extract) and 

saponins (2.39 mg g
-1

 dry extract). In contrast, L. 

crithmoides attained the lowest contents of total 

phenols (127.82 mg GAE g
-1

 dry extract), flavonoids 

(7.28 mg CE g
-1

 dry extract), tannins (4.45 mg TAE g-

1 dry extract), and saponins (1.46 mg g
-1

 dry extract), 

while A. halimus exhibited the lowest content of 

alkaloids (3.43 mg g
-1

 dry extract). 
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Correlation between soil characters and secondary 

metabolites of four halophytes 

The correlation between soil features and the 

secondary metabolites of four halophytes is illustrated 

through CCA and Pearson-correlation diagrams (Figure 

3). Total phenols and flavonoids content showed a 

negative significant correlation with sulfates, total 

phosphorus, and calcium; and tannins concentration is 

positively correlated with bicarbonates, total nitrogen, 

and potassium. Regarding the studied halophytes, A. 

halimus showed a positive correlation with bicarb-

onates, total nitrogen, and pH; T. nilotica displayed a 

positive correlation with sulfates, sand, and pH; L. 

crithmoides was closely related to sodium, magnesium, 

total phosphorous, and calcium; and A. macrostachyum 

showed a positive correlation with water–holding 

capacity, organic carbon, chlorides, and electric 

conductivity (EC). 
 

Antioxidant scavenging activity 
 

The results of antioxidant scavenging activity, based 

on the reduction of both DPPH and ABTS by 

methanolic extracts of four halophytes, are 

demonstrated in Table (3). The methanolic extract of A. 

macrostachyum expressed the highest antioxidant 

potential (DPPH IC50= 0.26 mg extract/ml), followed 

by T. nilotica (IC50= 0.30 mg extract/ml) and A. 

halimus (IC50= 0.38 mg extract/ml). Meanwhile, L. 

crithmoides displayed the lowest antioxidant activity. 

Similarly, regarding the ABTS
+
 inhibition, A. macros-

tachyum extract was the top effective one as it 

scavenged 71.10% ABTS
+
, followed by T. nilotica 

(60.90%), A. halimus (55.81%), and L. crithmoides 

(40.16%). 
 

Antibacterial activity 

The inhibitory effect of methanolic extracts of 

studied halophytes on four pathogenic bacterial isolates 

is shown in Table 4. Regarding the Gram-positive 

isolates, the extract of A. macrostachyum, followed by 

T. nilotica, A. halimus, and L. crithmoides, showed an 

inhibitory effect against both S. aureus and B. subtilis. 

On the other hand, the extracts of both A. macros-

tachyum and T. nilotica were active against E. coli 

(inhibition zones of 14.60 and 10.50 mm, respectively) 

and P. aeruginosa (inhibition zones of 16.35 and 12.30 

mm, respectively). No inhibitory effect was detected 

against E. coli and P. aeruginosa by methanolic 

extracts of A. halimus and L. crithmoide.  
 

Anticancer potential 

The cytotoxic effects of the methanolic extracts of 

the studied halophytes against three human tumor cell 

lines: HePG2, MCF-7 and PC3 are illustrated in Figure 

4. According to the potency scale, the results displayed 

that, A. macrostachyum exhibited moderate activities 

against three human tumor cells, HePG2, MCF-7, and 

PC3, with IC50 values of 32.0± 3.01, 42.67± 2.78, and 

49.20± 4.61 µg ml
-1

, respectively, while the extract of 

T. nilotica showed moderate potency against both HeP-

G-2 (IC50= 38.33± 3.93) and MCF-7 (IC50= 39.0± 3.23) 

and a weak potency against PC3 (IC50= 65.05± 1.69). 

On the other hand, the extracts of A. halimus and L. 

crithmoides showed relatively weak cytotoxic potency 
against the three tumor cell lines. 

 

Table (2): Comparative analysis of soil physiochemical characteristics attributes of A. macrostachyum, A. halimus, L. 

crithmoides, and T. nilotica in Mediterranean ecosystems.  

 

Soil characteristics 
Soil sample collected from halophytes' habitats 

A. macrostachyum A. halimus L. crithmoides T. nilotica 

Physical properties 
Soil texture 

Sand (%) 95.12±0.85a 95.9±2.88a 96.00±0.63a 96.66±1.43a 

Silt (%) 3.62±0.47a 3.30±0.55a 2.53±0.51a 2.48±0.04a 

Clay (%) 1.25±0.32a 0.80±0.14a 1.47±0.26a 0.66±0.09a 

Porosity (%) 41.99±1.21a 42.36±0.86a 42.86±0.44a 37.34±1.40a 

WHC (%) 43.27±2.12a 38.13±3.05a 43.93±1.39a 36.48±2.34a 

Chemical properties 

pH 7.5±0.08a 8.3±0.09a 8.1±0.03a 7.4±0.38a 

EC (mmhos/cm) 0.94±0.26a 0.50±0.07ab 0.54±0.19ab 0.70±0.04b 

CaCO3 (%) 5.07±0.43a 4.07±0.78a 5.79±0.52a 3.10±0.45a 

OC (%) 1.04±0.17a 1.20±0.12a 1.26±0.04a 0.55±0.11a 

Cl- (%) 0.53±0.12a 0.34±0.04ab 0.36±0.09ab 0.42±0.06b 

SO4 (%) 0.12±0.05a 0.47±0.16a 0.70±0.11a 0.18±0.09a 

HCO3 (%) 0.14±0.00a 0.21±0.02a 0.15±0.00a 0.17±0.01a 

TN (mg/100g dry soil) 21.47±4.61a 25.89±3.44a 29.63±1.26a 24.58±3.45a 

TP (mg 100g-1 dry soil) 7.27±0.70a 15.05±2.73ab 26.97±3.76ab 10.46±2.86b 

Na+ (mg 100g-1 dry soil) 147.28±3.90a 114.10±1.21ab 106.14±1.09ab 122.76±1.45b 

K+ (mg 100g-1 dry soil) 19.82±1.02a 18.52±0.72a 13.16±0.45a 16.32±0.90a 

Ca++ (mg 100g-1 dry soil) 28.18±2.94a 42.20±0.81ab 50.49±4.83ab 34.11±1.83b 

Mg++ (mg 100g-1 dry soil) 21.94±1.91a 18.87±1.57a 19.00±1.53a 32.81±3.97a 
 

WHC: water holding capacity, EC: electric-conductivity, OC: organic-carbon, TN: total  nitrogen, and TP: total phosphorous. 
Different lowercase letters in each row specify significant differences among studied halophytes (p≤ 0.05). 
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Figure (3): Correlation between soil physicochemical parameters and secondary metabolites in the studied halophytes: (A) Canonical 

Correspondence Analysis (CCA); and (B) Pearson’s correlation matrix with the p-value. Eigenvalues of 65.86% for CCA 1 and 15.95% for CCA 
2. Soil parameters abbreviations include: TN, total nitrogen; TDP, total phosphorous; OC, organic carbon; WHC, water holding capacity; and EC, 

electric conductivity. 

Figure (2): Boxplots display the 

detected secondary metabolites of 
four investigated halophytes, 

including: A, total phenols; B, flavo-

noids; C, tannins; D, alkaloids, and 
E, saponins. Boxplots with different 

lowercase letters are significantly 

different at a significance level of p 
≤0.05 when comparing among the 

studied halophytes. 
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Table (3): The antioxidant scavenging activity of the studied halophytes as compared with ascorbic acid as positive 

control. Data are in mean values± standard errors. 
 

 

Studied Halophyte 
DPPH ABTS 

IC50 (mg extract/ml) % inhibition 

A. halimus 0.38 ±0.011ab 55.81 ±0.90 ab 

A. macrostachyum 0.26 ±0.00 ab 71.10 ±1.50 ab 

L. crithmoides 1.12 ±0.024b  40.16 ±1.10 a 

T. nilotica 0.30 ±0.00 ab  60.90 ±2.05 ab 

Ascorbic acid
†
  0.02 ±0.00 a 89.50 ±0.68 b 

 

Means with different lowercase letters per column are significant different at 

 level p≤ 0.05. 
†
, Positive control. 

 

 

 

 

Table (4): Antibacterial activity of methanolic extracts of the investigated halophytes against human pathogen 

including Gram-positive, Staphylococcus aureus and Bacillus sutilius; and Gram-negative, Escherichia coli and 

Pseudomonas areginosa. Data are in mean values± standard errors. 

 

Studied Halophyte 

Diameter of inhibition zone (mm) 

Human pathogens 

Gram-positive  Gram-negative isolates 

S. aureus B. subtilis E. coli P. aeruginosa 

Positive control (Standard antibiotics) 

Clarithromycin 20.0±0.50b 25.6±0.33b - - 

Cefoperazone - - 28.0±0.88b 34.66±0.80b 

Negative control (DAMSO) - - - - 

A. halimus 11.0±0.50ab 14.0±0.57ab - - 

A. macrostachyum 18.0±0.57ab 20.0±0.33ab 14.60±1.76ab 16.35±2.02ab 

L. crithmoides 8.90±0.08a 12.0±0.57a -   - 

T. nilotica 15.10±1.00ab 15.0±0.58ab 10.50±0.88a 12.30±0.88a 
 

-, negative result; means with different lowercase letters, per column, are significant different at level p≤ 0.05. DMSO, dimethyl  

sulfoxide. 
 

 
 

 

Figure (4): Cytotoxicity of halophyte extracts on different cancer cell lines, .HePG2, liver hepatocellular  

carcinoma; MCF-7, mammary gland carcinoma; and PC3,  prostate cancer. The data expressed as IC50.  

Data is shown as mean ± standard error (SE), n=3.  
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DISCUSSION 
 
 

To face the global challenges due to the growing 

human population, scarcity of fresh-water, and decline 

of arable land, scientists should search for alternative 

plants to conventional crops. Among these alternatives 

plants are halophytes, which do not need fresh-water or 

arable soils. These halophytes can grow on non-arable, 

salt-degraded soils and be watered with seawater. 

Moreover, these plants can produce large amounts of 

active chemicals that are not just defense mechanisms 

but also vital for humans. 

To optimize the yield and biomass of alternative 

halophytes for economic use, it is important to address 

the soil features that support their growth and 

persistence. The soil analysis is a set of analyses that 

refer to the nutrient status and availability for plant 

growth (Cardoso et al., 2013). Among environmental 

factors, soil is the most crucial variable in stimulating 

secondary metabolites, as it regulates the movement 

and availability of water, air, and nutrients in plants 

(Chaouqi et al., 2023). The soil conditions of the four 

investigated halophytes are in the range of what has 

been informed about the habitats of halophytes on the 

Mediterranean coast of Egypt (Serag, 1999; Zahran and 

Willis, 2009). In the current study, the coastal soil 

supporting the studied halophytes was featured by its 

coarse sandy texture, alkaline range, low water holding 

capacity, low fertility (low organic matter, TN, TP, K
+
, 

Ca
2+,

 and Mg
2+

), and high salinity. These findings were 

in agreement with reports that displayed that, the 

Mediterranean region hosts different types of soils with 

low amounts of organic matter, an acidic to alkaline 

range, and high salinity (Abdelaal et al., 2018; 

Ciccarelli, 2015; El-Sherbeny et al., 2021). 

Specifically, such low fertility and deficiency of 

organic matter along the coastal salt marshes habitat 

may be attributed to limited nutrient retention capacity 

and minerals bioavailability, degradation and erosive 

processes, scarce or irregular rainfall, and long, hot 

summers (Sardans and Peñuelas, 2013). In such 

habitats, salinity gradients, soil moisture, and 

biological interactions were recognized as the key 

factors influencing plant distribution and abundance 

(Caravaca et al., 2005). 

Under abiotic stresses, including salinity, as a 

chemo-defense mechanism, halophytes trigger the 

synthesis of a variety of secondary metabolites such as 

phenolics, tannins, alkaloids, terpenoids, etc. (Agrawal 

and Konno, 2009). Moreover, these metabolites play a 

vital role for humans as antimicrobials, anticancer 

agents, and other biological activities. The conc-

entration of secondary metabolites in the studied 

halophytes greatly varied depending on species and 

extraction solvents. In the current study, the methanol 

solvent scavenged high levels of all secondary 

metabolites in the studied halophytes. Methanol is a 

good solvent for most polyphenolics and bioactive 

compounds with strong antioxidant capacity due to its 

good solubility and polarity (Galanakis et al., 2013; 

Mahdi et al., 2023; Oalđe Pavlović et al., 2021; Bakr et 

al., 2013). The current results disclose that the 

analyzed halophytes can be ranked according to total 

phenols and flavonoids as follows: A. macrostachyum> 

T. nilotica > A. halimus > L. crithmoides, while for 

alkaloids, T. nilotica> A. macrostachyum > L. 

crithmoides > A. halimus. The sequence of both tannins 

and saponins regarding the studied halophytes is A. 

halimus > T. nilotica > A. macrostachyum > L. 

crithmoides. The variation in the bioactive metabolites 

and their bioactivity among the studied halophytes 

could be attributed to the effects of environmental 

factors, genetics, age, and nutrients in the soil. Previous 

research found that the rise in salinity increases the 

content of polyphenols in plants (Bartwal et al., 2013; 

El-Sherbeny et al., 2021). The total phenols of A. 

macrostachyum from the current study showed greater 

phenols content than ethanol extract of A. 

macrostachyum collected from the United Arab 

Emirates (45.6 mg GAE g
-1

 dry extract) (Jitan et al., 

2018), hexane extract of A. macrostachyum from 

Portugal (39 mg GAE g
-1

 dry extract) (Rodrigues et al., 

2014), and different solvents of A. macrostachyum 

collected from Algeria (Chekroun-Bechlaghem et al., 

2019), but lower flavonoids than the Portuguese type 

(Barreira et al., 2017). This variation is attributed to 

biogeography, plant organs, solvent type, and 

extraction process (Chekroun-Bechlaghem et al., 2019; 

ElNaker et al., 2020). According to Zengin et al. 

(2018), A. macrostachyum has different phenolic acids 

such as gallic acid, rosmarinic acid, caffeic acid, etc. 

On the other hand, the methanolic extract of A. halimus 

showed more total phenols, tannins, alkaloids, and 

saponins than the Algerian species (Benhammou et al., 

2009). In addition, the total phenols and flavonoids 

reported for T. nilotica in this study were greater than 

the previous study estimating total phenols and 

flavonoids in T. nilotica (Bakr et al., 2013). Previous 

literature reported that L. crithmoides contains 

significant levels of secondary metabolites such as 

phenolic acids, flavonoids, terpenoids, and essential 

oils (Adorisio et al., 2020; El-Sherbeny et al., 2021). 

Concerning soil physicochemical features associated 

with phytochemical components of the studied 

halophytes, lower concentrations of soil sulfates, total 

phosphorous and calcium induce a greater 

accumulation of total phenols and flavonoids in the 

studied halophytes. This finding was consistent with 

many authors (Lea et al., 2007; Martins-Noguerol et 

al., 2023; Stewart et al., 2001), who revealed the 

negative correlations between phenols and flavonoids 

yields and soil nutrients. Moreover, tannins content is 

triggered by increasing soil bicarbonates, total nitrogen 

and potassium. Based on carbon nutrient-balance, the 

total phenols should rise in nutrient poor soils and 

decrease in nutrient-rich soils, which was in agreement 

with our results (Martins-Noguerol et al., 2023). 

Therefore, nutrient limitation (particularly organic 

matter, nitrogen, and phosphorous) and coarse-textured 

saline soils in the current coastal study area induce a 

high yield of total phenols and flavonoids in the studied 

halophytes. This finding has been well documented by 
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Lea et al. (2007) and Stewart et al. (2001). As a result, 

the depletion of nutrients such as nitrogen, phosphorus, 

and organic matter could be an intriguing and cost-

effective strategy for halophytes to produce higher 

levels of polyphenols. Alteration of macronutrient 

levels has already been recommended as a mode for 

modifying the levels of these desirable compounds and 

improving plant quality (Lillo et al., 2008). Similar 

results have been reported for Cakile maritima, 

whereby, with increasing salinity in arid conditions, the 

polyphenols and antioxidant activity increase (Ksouri 

et al., 2007). However, in response to salinization, the 

phenol accumulation in halophytes is varied, depending 

on species genotype, organ-specific factor, ontogenetic 

state, and duration and intensity of salinization (Pungin 

et al., 2023). 

Currently, safe antioxidant supplements of natural 

origin are required not just for their use in stopping the 

oxidative deterioration of food products but also for 

inhibiting oxidative damage at a cellular level (Salehi 

et al., 2018). In terms of the extract’s antioxidant 

power based on the neutralization of synthetic DPPH 

and ABTS
+
 radicals, the antioxidant potentials of 

methanolic extracts of four halophytes were sequenced 

as follows: A. macrostachyum> T. nilotica> A. 

halimus> L. crithmoides. In fact, several studies that 

examined the relationship between antioxidant activity 

and bioactive constituents in halophytes, medicinal 

plants, and fruits addressed the positive correlation 

among phenols, flavonoids, and in-vitro antioxidant 

activity (Ebrahimzadeh and Bahramian, 2009; Mahdi et 

al., 2023; Mohammed et al., 2021). Consequently, the 

variation in antioxidant capacity among four 

halophytes might be related to either the difference in 

their phenolic content, flavonoids, or the presence of 

specific metabolites unique to this plant. Although 

halophytes, T. nilotica and A. halimus, contain almost 

the same amount of phenols, T. nilotica showed higher 

antioxidant activity. In this case, the differences were 

perhaps due to the amount of flavonoids, and alkaloids, 

which were higher in T. nilotica, or the presence of 

unique compounds in T. nilotica extract. On the other 

hand, under abiotic stress, including saline conditions 

and nutrient deficiency in coastal areas, reactive 

oxygen species (ROS) are produced, which are toxic to 

the cell (Miller et al., 2010). Hence, the application of 

high levels of NaCl to Thymus vulgaris and Glaux 

maritima cultures triggers the production of phenols 

and flavonoids, which improve the antioxidant 

potential (Bistgani et al., 2019; Pungin et al., 2023). 

The IC50 scavenging activity of A. macrostachyum was 

noticeably higher than the one reported earlier for the 

same species by other authors (Lopes et al., 2016; 

Rodrigues et al., 2014). A similar observation was 

recorded for T. nilotica leaves collected from Sudan, 

with significant antioxidant activity (Hassan et al., 

2014). As agreed with our results, the higher 

scavenging activity of A. macrostachyum recommends 

its use as a potent source of antioxidants (Chekroun-

Bechlaghem et al., 2019; Custódio et al., 2012; Zengin 

et al., 2018). As compared with L. crithmoides 

collected from South Portugal, the Egyptian species 

contained higher flavonoids and lower levels of total 

phenols (Lopes et al., 2016). 

Antibiotic misuse, combined with antibiotic-resistant 

bacteria and a lack of new medication development, 

has compelled the search for natural antimicrobials 

solely or in combination with antibiotics. In the current 

study, the methanolic extracts of A. macrostachyum 

and T. nilotica showed broad antibacterial spectra 

against S. aureus, B. subtilis, E. coli, and P. aerug-

inosa, while the extracts of A. halimus and L. 

crithmoides exhibited an inhibition effect against only 

S. aureus and B. subtilis. Previous similar findings 

(Ahmed et al., 2022; Al-Saleh et al., 1997) have elabo-

rated on the antibacterial activity of A. macrostachyum 

against B. subtilis, E. coli, and P. aeruginosa. 

However, the study of Ferreira et al. (2022) addressed 

the importance of plant parts and solvents during the 

antimicrobial investigation of halophytes. The 

alcoholic extract of T. nilotica leaves exhibited 

significant antioxidant, antiviral, and antitumor activity 

(Abdelgawad, 2017). A similar finding was also 

reported by Rahman et al. (2011), who revealed the 

antibacterial potency of A. halimus against S. aureus. 

On the other hand, due to its phenolics and flavonoids-

rich solvents, L. crithmoides greatly contributed to 

antibacterial and antifungal activities as well as 

cytotoxicity effects (Adorisio et al., 2020). 

Based on the MTT assay and cell viability, the in-

vitro cytotoxic potency of four halophyte extracts 

against three human cancer cells (HePG2, MCF-7, and 

PC3) was evaluated. The methanolic extracts of A. 

macrostachyum and T. nilotica displayed moderate 

cytotoxicity against both HepG2 and MCF-7, and only 

A. macrostachyum against PC3. A. halimus and L. 

crithmoides showed weak cytotoxicity against the three 

cell lines. The difference in cytotoxicity among the 

four halophytes might be attributed to their phenolic 

content and bioactive compound specificity. The 

present study confirms the selective cytotoxicity of the 

studied halophytes towards the three human tumor 

cells. In this context, selective cytotoxicity might be 

released from an interaction between active metabolites 

unique to each plant extract and specific cancer 

associated receptors or molecules in cancer cells that 

cause the death of cancer cells (Harada et al., 1997; 

Hassan et al., 2014). The cytotoxicity of A. macro-

stachyum against HepG2, and Hela (human cervical 

adenocarcinoma) was also previously reported 

(ElNaker et al., 2020; Rodrigues et al., 2014). Bakr et 

al. (2013) documented the cytotoxicity of T. nilotica 

against Huh-7 (liver carcinoma) and A549 (lung 

carcinoma). The ethanolic extract of A. halimus leaves 

exhibited a significant reduction against Hepg2, MCF-

7, and A549 (Al-Senosy et al., 2018), while L. 

crithmoides aerial parts showed an anticancer potency 

against OCI-AML3 (acute leukemia) (Adorisio et al., 

2020). 
 

CONCLUSION 

 

The results of the present study provide evidence 
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that the methanolic extracts of four halophytes have the 

potential to serve as valuable sources of secondary 

metabolites with strong antioxidant, antibacterial, and 

antitumor properties. These halophytes were 

investigated for their content of secondary metabolites 

and biological potency, and can be ranked accordingly 

as follows: A. macrostachyum> T. nilotica> A. 

halimus> L. crithmoides. Among these halophytes, A. 

macrostachyum exhibited the highest biological 

potency, which can be attributed to its antioxidant 

activity. This high biological potency may be attributed 

to the combined contribution of total phenols and 

flavonoids. This is the first study addressed the linkage 

between 18 soil physicochemical parametes and 

secondary metabolites yield in these halophytes. In 

particular, lower levels of soil sulfates and macro-

nutrients (TP and Ca
+2

) under saline conditions could 

promote a greater production of phenols and 

flavonoids. 
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  منطقة لنباتية والفعالية البيولوجية لأربع نباتات ملحية مصرية فيتفضيل الموطن والمكونات الكيميائية ا

  البحر الأبيض المتوسط

 
محمد عبدالعال

1*
،ايمان مصطفى

1,2
، عبير يوسف العطار

1
، غادة الشربينى

1
، إبراهيم مشالى

1
، أيه يحيى

1
 

1
 ، مصر 35516 قسم النبات، كلية العلوم، جامعة المنصورة، المنصورة

2
 قسم النبات، كلية العلوم، جامعة بنغازى، ليبيا

 

 

 الملخص العربـــــي
 

 

للسرطان(  اتللبكتيريا، ومضاد اتللأكسدة، ومضاد اتالثانوية، والنشاط البيولوجي )مضاد والنواتجفي الدراسة الحالية، تم تحديد خصائص التربة، 

 Atriplex halimus، Arthrocaulon macrostachyum،Limbarda crithmoides،Tamarix سط لبحر المتولأربعة نباتات ملحية في ا

nilotica)  الرملي الخشن، القلوية قليلا، وعالية الملوحة، مع محتوى  القوامأظهرت النتائج أن النباتات الملحية المدروسة تفضل التربة ذات . من مصر

،  مجم( 13.90مجم( والفلافونيدات ) 181.75أعلى تركيز للفينولات الكلية ) A. macrostachyumأظهر  ى.ذيات الكبرمنخفض من المواد العضوية والمغ

والكالسيوم  فاتيمكن أن تؤدي المستويات المنخفضة من كبريتات التربة والفوس .مجم( 6.43كان لديه أعلى مستوى من القلويدات ) T. niloticaفي حين أن 

كان للمستخلصات مضاد للاكسده. أعلى نشاط  A. macrostachyumأظهر مستخلص  فينولات والفلافونيدات في هذه النباتات الملحية.للإلى تراكم أكبر 

 .A مستخلصات اظهرت، في حين Staphylococcus aureusو Bacillus subtilisملحية تأثير واضح ضد كل من النباتات للالميثانولية 

macrostachyum وT. nilotica  تأثيرًا مضاداً للبكتيريا ضدEscherichia coli وPseudomonas aeruginosa.  علاوة على ذلك، أظهرA. 

macrostachyum ( سمية خلوية معتدلة ضد سرطان الكبد(HePG2( وسرطان الغدة الثديية ،(MCF-7 وسرطان البروستاتا ،(. (PC3نتائج ال اثبتت

أعلاف أو في تطبيقات بيولوجية مختلفة ضد البكتيريا المقاومة للمضادات أو ستخدام كمكملات غذائية/للإ مؤهلهسة ادرالموضوع بأن النباتات الملحية  الحالية

 .و ذلك بعد إجراء المزيد من الدراسات الحيوية والخلايا السرطانية البشرية


