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 The white-bellied pangolins (Phataginus tricuspis) harbour ecto- and 

endo-parasites. In this study we compared the bioaccumulation potentials of 

metadavinae cestode and stongylondes nematode parasites for trace metals in 

the intestine, and the lipid profile in the liver of infected and uninfected P. 

tricuspis sampled from Epe Local Government Area, Lagos State, Nigeria. 

Trace metal concentrations were determined in the pangolin and its intestinal 

parasites using a Flame Atomic Absorption Spectrometer. Total cholesterol 

levels in the infected and uninfected pangolin were determined using the 

enzymatic endpoint method. The concentrations of Al, Cd, and Cr were higher 

in the infected intestines, while Ba, Fe, and Zn were higher in the uninfected 

intestines. The levels of lipid profile in the infected intestine were 

comparatively low. The average level of cholesterol (CHOL) in the infected 

intestine was 0.87 mg/dL, while the levels of triglycerides (TRIG), high-density 

lipoproteins (HDL), and low-density lipoproteins (LDL) were all below 0.4 

mg/dL. The concentrations of the lipid profile CHOL and HDL in the 

uninfected intestines were higher than the concentrations observed in the 

infected counterparts. The concentrations of CHOL, HDL, and LDL were 2 

mg/dL, 1.7 mg/dL, and 0.85 mg/dL respectively, while TRIG below 0.35 

mg/dL. The concentrations of trace metals detected in the tissues of 

strongylondes nematodes showed significant bioaccumulation factors in the 

order of Mn (28.6)> Zn (9.7)> Ba (5.2)> Cd (3.5)> Cr (2.9)> Al (1.3). Cestode 

parasites are good biodepurative agents. The nematodes in this study exhibited 

notable biodepuration superiority. Strongyloides spp. may be a reliable 

bioindicator of the metal burden in P. tricuspis. This provides a reliable 

ecotoxicological prognosis for proactive remediations and decisions by 

lawmakers to make pragmatic plans and policies toward sustainable 

conservation of P. tricuspis. 

INTRODUCTION 

               Increased demand for pangolin scales and meat in Asia has driven the illegal 

trafficking of these animals from Africa (Challender, 2011). The ongoing trade in pangolins 

poses a severe threat to their survival and has resulted in a significant decline in their population 

(Abayomi et al., 2009; Challender, 2011).  

http://www.eajbse.journals.ekb.eg/
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               Evidence shown by Challender 

and Hywood (2012) suggests that the 

intercontinental trade in African pangolins, 

primarily to meet the demand in the Asian 

market, especially China, could potentially 

lead to the extinction of the taxon 

(Akeredolu et al., 2018). Pangolin 

trafficking from Africa to Asia has been 

documented since 2008 (Challender and 

Hywood, 2012). 

                 In West Africa, research 

consensus on the bushmeat trade and 

traditional medicinal use of pangolins 

suggests that these activities contribute to 

population declines in the three tropical 

African species (Soewu and Adekanola, 

2011; Boakye et al., 2014; Soewu and 

Adekanola, 2011). The unsustainable 

exploitation of pangolins can also lead to 

biodiversity loss (Zanvo et al., 2021). Three 

decades ago, Sodeinde and Adedipe (1994) 

reported that hunters described white-

bellied pangolins (Phataginus tricuspis) as 

rarer compared to previous years. In 

interviews with traditional medicine 

practitioners, Soewu and Adekanola (2011) 

found that pangolins had decreased in 

number and average body size over time. In 

Central Africa, available evidence indicates 

that local use and trade of pangolins are also 

likely unsustainable. As a result, all eight 

pangolin species are listed in CITES 

Appendix I, effectively banning 

international trade in pangolins and their 

derivatives. 

               The role of parasites in 

biodiversity conservation has received little 

attention until recent times. Parasites can 

cause infections that affect fecundity 

(Dobson et al.,1992; Akinsanya and 

Otubanjo, 2006), and damage or impair the 

functioning of the body systems of wildlife 

(King and Li, 2018). Certain parasites 

exhibit symbiotic relationship by 

accumulating contaminants such as heavy 

metals and organic pollutants from their 

hosts into their own tissues (Akinsanya et 

al., 2020). Goutte and Molbert (2022) 

reported reduced contamination levels, 

oxidative stress, histological alterations, 

improved survival rates, and better body 

condition in infected individuals compared 

to non-infected counterparts of the same 

species. 

              Pangolins, in general, are known to 

be entomophagous organisms whose diet 

primarily consists of ants and termites 

(Karawita et al., 2018). As a result, they are 

vulnerable to the trophic transfer of 

pollutants. Other characteristics of 

pangolins, such as their ability to inhabit 

diverse habitats, including farmland, their 

feeding mechanism involving burrowing in 

the ground and climbing trees, and even 

their ability to swim (Oguntuase and Oni, 

2018), all contribute to the potential 

exposure of these endangered wildlife 

species to environmental contaminants. 

             Pangolins are consumed in Asian 

countries, particularly in the southern parts 

of China, such as Guangdong Province and 

Guangxi Zhuang Autonomous Region, 

since 1900 (Pantel and Chin, 2009). They 

are also consumed in Africa (Bräutigam et 

al., 1994; Dickman and Richer, 2001; 

Drury, 2009; Challender and Hywood, 

2012; Boakye et al., 2015; Bobo et al., 

2015; Boakye et al., 2015; Boakye, 2016; 

Akeredolu et al., 2018; Yasmeen et al., 

2021). In Africa, pangolins are also used in 

traditional medicine practices, where the 

whole animal or its body parts are utilized 

in various concoction preparations, as stated 

by Soewu et al. (2020). The extensive 

documentation of various utilization and 

consumption practices that have increased 

the vulnerability of pangolins to extinction 

has emphasized the need for research on 

sustainable protection of these wild animals 

(Sodeinde and Adedipe, 1994; Gaudin and 

Wible, 1999; Gaubert and Antunes 2005; 

Gaudin et al., 2009; Pantel and Chin, 2009; 

Soewu and Ayodele, 2009; Isaksson, 2010; 

Soewu and Adekanola, 2011; Kingdon and 

Hoffman, 2013; Mahmood et al., 2013; 

Edet et al., 2014; Baillie et al., 2014; 

Pietersen et al., 2014; Waterman et al., 

2014; Baiyewu, 2016; Liu et al., 2016; Nash 
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et al., 2016; Karawita et al., 2018; Kumar et 

al., 2018; Willcox et al., 2019; Jansen et al., 

2020; Soewu et al., 2020; Nguyen et al., 

2021; Sexton et al., 2021;Sandri et al., 

2022). 

              Several studies have examined the 

presence of gastrointestinal parasites in 

pangolins and their impact (Sist et al., 2021; 

Barton et al., 2022). Additionally, 

Mohapatra et al. (2016) compiled a 

checklist of ecto and endo parasites found in 

pangolins. However, there have been no 

reports on the bioaccumulation of trace 

metals in parasites recovered from 

pangolins. While studies have investigated 

the bioaccumulation of trace metals in 

tissues of various mammals and amphibians 

(Ali and Khan, 2019; González-Gómez et 

al., 2021; Khairy et al., 2021; Okeagu et al., 

2022), it is challenging to draw similar 

conclusions for pangolins due to the limited 

amount of research available on this aspect 

for the species (Atkins, 2004). It is 

necessary to understand the extent of 

bioaccumulation in their tissues and the 

potential impact on their health and 

conservation. 

                 It is crucial to understand the 

parasite fauna of pangolins as a prerequisite 

for establishing facts about their health 

status, zoonotic potential, and conservation 

measures, such as captive breeding 

(Liumsiricharoen et al., 2008). Generally, 

pangolins often harbor both ectoparasites 

and endoparasites, including ticks, mites, 

helminths, bacteria, and protozoa (Ayodele 

and Akinsanya, 2022). Parasites found in 

both captive and wild pangolins include 

Amblyomma javanense in Chinese 

pangolins (Manis pentadactyla), 

Amblyomma copressum in Giant ground 

pangolins (Manis gigantea), Amblyomma 

javanense, Aponomma gerviasi, and 

Rhipicephalus sp. in Indian pangolins 

(Manis crassicaudata), Amblyomma 

cordiferum, Amblyomma javanense, and 

Aponomma varanensis in Malayan 

pangolins (Manis javanica), Amblyomma 

compressum, Ixodes rasus, Ornithodorus 

moubata, Rhipicentor longus, Rhipicentor 

muhsamae, and Rhipicephalus simus in 

Temminck's ground pangolins (Manis 

temminckii), Amblyomma compressum, 

Aponomma exornatum, Aponomma 

flavomaculatum, Aponomma latum, 

Haemaphysalis parmata, and Rhipicentor 

muhsamae in Tree pangolins (Manis 

tricuspis), Amblyomma arcanum, 

Amblyomma cordiferum, Amblyomma 

geoemydae, , Dermacentor (Indocentor) 

atrosignatus, Dermacentor (Indocentor) 

steini, and Ixodes oldi in an unidentified 

pangolin species (Manis sp.) (Ezenwaji et 

al., 2005; Opara and Fagbemi, 2008; 

Mohapatra et al., 2016; Wang et al., 2016; 

Simo et al., 2020; Sist et al., 2021; Barton 

et al., 2022).Pangolins are often heavily 

infested with ticks, and according to 

Jacobsen (1991), mites (Manitheronyssus 

heterotarsus) and tampans (Ornithodorous 

moubata) were believed to induce 

progressive paralysis in adult male 

pangolins, eventually leading to death. 

Ambloyomma compressum (Baiyewu, 

2016) is almost exclusively found in the 

other three African pangolin species. 

                Parasites are known to be useful 

bio-indicators of contaminants in various 

trophic levels of an ecosystem (Akinsanya 

et al., 2019; Ayodele et al., 2022). Several 

studies have shown the effectiveness of 

different parasite taxa in accumulating 

environmental pollutants, such as persistent 

heavy metals (Amzat et al., 2008; Le et al., 

2014; Nachev and Sures, 2016). Sures et al. 

(2017) stated in a review that four major 

endohelminth taxa, namely 

Acanthocephala, Cestoda, Digenea, and 

Nematoda, have been considered indicators 

of metal pollution. They further mentioned 

that the location and developmental stage of 

parasites are crucial in determining the 

concentration and type of pollutants that can 

be bioaccumulated. While some parasites 

can aggravate symptoms of pollutant 

toxicity in certain organisms (Marcogliese 

et al., 2010), others can help mitigate the 

impacts of pollutants in their hosts 

(Heinonen et al., 2001). 
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                Trace metals can be introduced 

into ecosystems not only through 

anthropogenic activities, such as mining, 

smelting, and agriculture, but also through 

natural means (Dube et al., 2001). They are 

classified as environmental pollutants and 

can persist in the environment (Sharma and 

Agrawal,2005; Sharma et al., 2021). Since 

heavy metals cannot be destroyed by heat 

(Mohamed et al., 2016), they can be 

transported across ecosystems, depending 

on the physicochemical properties of the 

metal and the soil (Dube et al.,2001). They 

are largely present in soil and water bodies, 

while being found in the atmosphere in 

minute proportions (Sharma and 

Agrawal,2005). They can enter organisms 

through dermal contact, inhalation, and 

ingestion of contaminated water and food 

(Fu and Xi, 2020). 

              While some heavy metals, such as 

manganese, zinc, copper, and iron, are 

required in small quantities for optimum 

growth and activation of various enzymes 

(Wintz et al., 2002), others, such as arsenic, 

lead, aluminum, mercury, and cadmium, are 

extremely detrimental to human health even 

at low concentrations (Sharma and 

Agrawal, 2005; Fu and Xi, 2020). Due to 

their persistence and bioavailability, they 

pose a threat to humans and wildlife, 

causing various health complications and 

metal toxicity (Mohamed et al., 2016). 

               It is an established fact that the 

application of agrochemicals can help 

improve agricultural yield (Oyinloye et al., 

2021) by curbing the effects of pest and 

disease outbreaks in farmland. In addition 

to this source, contaminants such as trace 

metals are incorporated into the food chain 

through a plethora of anthropogenic 

activities, such as the use of automobiles, 

generators, and the application of many 

factory-made products, which have been 

implicated in ecological and health risk 

analyses (Gwary et al., 2011). Hence, there 

is a need to evaluate the effect of trace 

metals on pangolins and explore the roles of 

endoparasites in protecting the animal from 

metal toxicity. 

              The study aimed to compare the 

bioaccumulation potentials of Metadavinae, 

Cestodes and Strongylondes nematodes for 

trace metals in the intestine of Phataginus 

tricuspis (white-bellied pangolin) sampled 

from Epe local government, Lagos. It 

sought to compare the lipid profile of the 

liver of infected and uninfected pangolins. 

MATERIALS AND METHODS 

             This study was carried out in the 

Oluwo market area in Epe local 

government, Lagos, Nigeria. Epe is situated 

in the coastal territory of Lagos. Oluwo 

market is a popular bushmeat market where 

the buying and selling of various bushmeat, 

both live and carcasses, takes place. The 

market is located close to the Lekki lagoon, 

which is between longitude 40001 and 

40151E and latitude 60251 and 60371N. 

The surface area of the lagoon is about 247 

km square with a maximum depth of 6.4m, 

occupying about 900 hectares (Akinsanya 

et al., 2019). The surroundings of the 

market are sparsely covered with a few 

trees, shrubs, and a plantain plantation. 

Other buying and selling activities, such as 

fishing and basic daily needs and household 

items, are also conducted at the market. 

1. Parasite Collection, Preservation and 

Identification: 

             Fresh pangolin specimens were 

dissected one by one, and the 

gastrointestinal tract was collected. The 

intestines were dissected longitudinally 

from the anterior to the posterior using 

sterile scissors and placed in a petri dish 

containing a normal saline solution (0.75% 

NaCl) to facilitate the release of parasites 

that adhere to the lumen. A hand 

magnifying lens was used to inspect for tiny 

parasites and distinguish them from small 

strands of tissue. Parasites that were found 

were collected using forceps. 

            All the parasites that were 

discovered were preserved and transferred 

to vials. The vials were carefully sealed and 

labelled with code names for identification 

purposes. Standard morphological 

characteristics were used to identify the 

parasites, and photomicrographs of the 
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parasites were taken for further 

identification. For ethical compliance, 85 

deceased but fresh pangolins were dissected 

one by one, and their gastrointestinal tracts 

were collected. The procedure followed the 

same steps described above, including the 

use of sterile tools and a normal saline 

solution. Parasites were collected for study 

and identification using forceps.  

2. Parasite Collection, Preservation and 

Identification: 

             All the parasites that were found 

were preserved and transferred to vials after 

being thoroughly sealed and labelled. 

Standard morphological characteristics 

were used to identify the parasites, and 

photomicrographs of the parasites were 

taken for identification purposes. In total, 

238 enteric parasites were recovered. These 

parasites were identified as 120 

Metadavinae cestodes and 118 

Strongyloidiasis nematodes, according to 

Akinsanya et al. (2007). 

3. Determination of Trace Metals and 

Lipid Profile: 

               The intestines of the sampled 

pangolins were excised and weighed. The 

organs were homogenized with 0.1 

phosphate buffer (pH 7.2) and then 

pulverized with a mortar and pestle. The 

resulting homogenate was centrifuged at 

2500 rpm for 15 minutes, and the 

supernatant was decanted and stored at -

20°C.Frozen tissues were thawed, and 

samples of two (2) grams wet weight from 

infected and uninfected intestines were 

weighed. The enteric parasites were placed 

separately in a beaker and digested with a 

1:1 ratio of hydrogen peroxide and nitric 

acid (25 mL). The mixture was heated until 

it reduced to about 5 mL and then allowed 

to cool. It was then filtered and diluted with 

distilled water to a final volume of 50 mL. 

The concentrations of the elements were 

analysed using a flame Atomic Absorption 

Spectrometer (Philips model PU 9100). The 

analytical procedures followed were strictly 

in compliance with the guidelines of 

Whiteside (1981). The total cholesterol in 

the infected and uninfected intestines of 

pangolins was determined using the 

enzymatic endpoint method described by 

Roeschlau et al. (1974). High-density 

cholesterol (HDL) was measured 

spectrophotometrically using a series of 

coupled reactions as described by Burstein 

et al. (1980). Low-density cholesterol 

(LDL) was determined using the method of 

Assman et al. (1984), which combines 

polyvinyl sulfate precipitation and an 

enzymatic method for analysing low-

density lipoprotein-associated cholesterol. 

4. Statistical Analysis for Specimens: 

              The descriptive statistics of the 

parasite abundance and trace metals in the 

parasites and intestines of infected and 

uninfected pangolins were entered into a 

Microsoft Excel spreadsheet. The data was 

then exported into SPSS to establish the 

relationship between each variable. The 

prevalence rates of each species of parasite 

found in pangolins were calculated 

separately using the following formula.  

 
RESULTS 

              Although there was no significant 

difference in the concentrations of all the 

trace metals between the infected and 

uninfected pangolins, some observable 

differences were noted that may have 

implications for the infection status of the 

animals (Fig. 1). The concentrations of Al, 

Cd, and Cr were higher in the infected 

compared to the uninfected pangolins. 

Conversely, the concentrations of Ba, Fe, 

and Zn were higher in intestine samples 

collected from uninfected indivuduals 

compared to the infected ones. 
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Fig. 1: Comparative concentrations of trace metals in the infected and uninfected intestines of 

P. tricuspis (sample size = 85) 

              

              The levels of lipid profile in the 

infected individuals (Fig.2) were 

comparatively low. The average level of 

cholesterol (CHOL) in the infected 

pangolins was approximately 0.87 mg/dL, 

while the levels of triglycerides (TRIG), 

high-density lipoproteins (HDL), and low-

density lipoproteins (LDL) were all below 

0.4 mg/dL. On the other hand, the 

concentrations of the lipid profile in the 

uninfected pangolins were notably higher 

than those observed in the infected 

counterparts, particularly in cholesterol and 

high-density lipoproteins (Fig. 3). The 

concentration of cholesterol was 2 mg/dL, 

the level of high-density lipoproteins was 

1.7 mg/dL, low-density lipoproteins were 

0.85 mg/dL, and triglycerides were below 

0.35 mg/dL. 

 

 
Fig. 2: Lipid profile for the intestine of infected P. tricuspis (sample size = 85) 
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Fig. 3: Lipid profile for the intestine of the uninfected P. tricuspis (sample size = 85) 

 

              

                The observed disparities in the 

patterns of lipid profiles in the intestines of 

infected and uninfected pangolins 

warranted further investigation into the 

actual levels of trace metals in the enteric 

parasites of the animals (Fig. 4). The 

concentrations of trace metals (except Co, 

Cu, Ni, Pb, and V) in the Strongylondes 

nematodes were significantly higher 

(p<0.005) than the concentrations in the 

metadavinae cestode. Markedly higher 

concentrations were particularly observed 

in Al, Ba, Cd, Cr, Fe, and Mn. These 

observations prompted an investigation into 

the actual bioaccumulation of trace metals 

from the intestines of pangolins into the 

sampled enteric parasites. Figures 5 and 6 

further support the differential depurative 

potentials of the two enteric parasites of P. 

tricuspis. 

               The bioaccumulation factor 

indicates the rate at which each enteric 

parasite accumulates or depurates trace 

metals from the intestines of the pangolins. 

In line with the concentrations of trace 

metals detected in the parasite tissues, the 

significant bioaccumulation factors of trace 

metals in strongyloides nematodes were in 

the order of Mn (28.6) > Zn (9.7) > Ba (5.2) 

> Cd (3.5) > Cr (2.9) > Al (1.3). Although 

Al had the highest concentration in the 

enteric parasite, the bioaccumulation factor 

was the lowest (Fig. 5).On the other hand, 

much lower bioaccumulation factors of the 

same trace metals were observed in 

metadavinae cestodes in the order of Zn 

(5.5) > Ni (5) > Mn (2) > Ba (1.6). Al also 

showed a high concentration in the parasite 

tissue, but the bioaccumulation factor did 

not correspond with the concentration (Fig. 

6).  
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Fig. 4: Comparative concentrations of trace metals in metadavinae cestodes (N= 120) and 

strongylondes nematodes (N=118) 

 
Fig. 5: Bioaccumulation of trace metals in strongylondes nematodes.  

Key: red bars indicate significant bioaccumulation factor, blue bars indicate insignificant 

bioaccumulation factor 

 

 
Fig. 6: Bioaccumulation of trace metals in metadavinae cestodes. 

Key: red bars indicate significant bioaccumulation factor, blue bars indicate insignificant 

bioaccumulation factor 
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DISCUSSION 

               The arithmetic difference between 

the infected and uninfected was considered 

a prognostic measure that warranted further 

investigation into the differential roles of 

the parasites in either mitigating or 

synergizing the trace metals in the host's 

intestine. Another prognostic indicator that 

warranted investigation into the roles of the 

intestinal parasites was the differential lipid 

profile in the infected and uninfected 

intestines. The latter shows high levels of 

lipid profiles, particularly cholesterol and 

high-density lipoproteins. The elevated 

levels of cholesterol detected in the liver 

and intestine of the pangolins may have 

resulted from their slow metabolism and/or 

their consumption of termites. The high 

density of lipids found in the intestine of the 

uninfected pangolin is more than the low-

density lipid, which is an indication of the 

cardiovascular health of the examined 

pangolins, probably due to the absence of 

interference from the parasite (Marcogliese 

et al., 2010). 

               Results indicated that the enteric 

parasite metadavinae cestodes not only 

accumulated higher concentrations of the 

trace metals from the host's intestine than 

their strongyloidiasis nematode 

counterparts, but they also showed superior 

depurative capacity. A marked 

biodepurative potential of metadavinae 

cestodes was exhibited for Mn. The 

occurrence of Al in high concentration in 

both infected and non-infected pangolins 

could have been due to the versatility in the 

use of Al for various anthropogenic 

activities such as construction, 

transportation, and packaging, which has 

made it readily available in the environment 

and easy for the animal to ingest. The 

strongyloides nematode exhibited a high 

depurative capacity for Mn (28.6) > Zn 

(9.7) > Ba (5.2) > Cd (3.5) > Cr (2.9) > Al 

(1.3) in the host pangolin, which may offer 

a dual advantage to the host. The concurrent 

interactions between the strongyloides 

nematode and trace metals exhibited mutual 

effects (Saaristo et al., 2018). While the 

presence of strongyloides nematodes 

ameliorates the metal toxicity, the metals 

may, on the other hand, alleviate the adverse 

health impact of the parasite on the host. 

Furthermore, the strongyloides nematode in 

the pangolin is a reliable bio-depurative 

agent and bioindicator for trace metals. The 

superiority of nematodes observed in this 

study corroborates earlier observations of 

notable depurative potentials reported in 

previous literature (Akinsanya et al., 2022; 

Ayodele et al., 2022). Furthermore, the 

observations in this study conform to the 

findings of Azmat et al. (2008), who 

demonstrated the depuration of Pb, Cd, Cr, 

and Ni by enteric nematodes 

(Echinocephalus spp. and Ascaris spp.) in 

fish (Liza vaigiensis) of Karachi coast. This 

implies that there are several reliable 

depurative candidates in the community of 

nematodes. Nematodes are thus notable for 

accumulating metals in their soft body 

tissues from the host. The impacts of the 

bioaccumulated metals may elicit several 

toxicity effects in the nematodes, which 

may interfere with their parasitic effects 

(King and Li, 2018). Excessive 

bioaccumulation of manganese in the 

parasite may lead to a condition known as 

manganism, a neurodegenerative disorder 

that causes dopaminergic neuronal death 

(Avila et al., 2013), which may impair the 

parasitological effects on the host. This 

trend may thus protect the pangolin in the 

polluted environment in a more sustainable 

manner than conventional bioremediation 

methods (Sharma Agrawal, 2005; Zanvo et 

al., 2021; Goutte and Molbert, 2022). 

Notably, nematodes have been previously 

recommended as sentinel bioindicators of 

trace metals in aquatic and terrestrial 

ecosystems (Yen et al., 2013; Akinsanya et 

al., 2020; Isibor et al., 2020), sharing more 

burden of environmental pollutants than the 

initially exposed host. Similarly, it has been 

reported that intestinal Acanthocephalus of 

fish exhibit the capability to accumulate 

significantly higher concentrations of metal 
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in their soft bodies than the host muscles 

(Rafia and Shahina, 2008). 

                The current findings are also 

corroborated by Ayodele et al. (2022), who 

discovered that Strongloides spp. are enteric 

parasites of roan antelope that serve as good 

biosequestration agents, alleviating the 

toxic load of cadmium and nickel from the 

antelope. They also suggested that the 

synergistic impacts of cadmium and nickel 

on the parasites might reduce the infection 

intensity in the host. Likewise, the 

synergistic effect of Mn, Zn, Ba, Cd, Cr, and 

Al may reduce the infection intensity of the 

strongyloides nematodes in the pangolin of 

the current study 

                 Although some studies have also 

reported cestode parasites as good bio-

depurative agents (Yen Nhi et al., 2013; 

Tammone et al., 2019), the nematodes, 

however, exhibited notable superiority in 

that regard in the current study. Hence, 

Strongyloides spp. may be a reliable 

bioindicator of the metal burden in roan 

antelopes. This provides a reliable 

ecotoxicological prognosis for proactive 

remediations and decisions by lawmakers to 

make pragmatic plans and policies toward 

sustainable conservation of the white-

bellied pangolin (Mohapatra and 

Panda,2014; Mohapatra et al.,2016; 

Maurice et al.,2019). Furthermore, this 

conforms to the study of Rafia et al. (2008), 

who demonstrated the metal sequestration 

potentials of two enteric nematodes, namely 

Echinocephalus sp. and Ascaris sp in Liza 

vaigiensis fish. More recently, Akinsanya et 

al. (2022) also demonstrated the 

biosequestration potential of enteric 

nematodes, Amplicaecum africanum, on 

trace metals in the toad host Amietophrynus 

regularis. As Strongyloides is a member of 

the phylum Nematoda, it indicates that 

members of the phylum may possess unique 

attributes that aid in the absorption of trace 

metals (Nachev and Sures,2016). 

              The strong indications that 

pangolins are highly parasitized suggest 

that consuming the animal poses a threat to 

the public, as consumers are at a high risk 

of parasitic infections or metal toxicity. 

Additionally, the concentration of trace 

metals that were bioaccumulated in the 

parasites at minimal levels implies that it is 

inevitable for consumers to ingest trace 

metals to a certain extent, which can 

consequently lead to metal toxicity. The 

consequences of trace metal toxicity, such 

as reproductive failure and reduced growth, 

can ultimately lead to the population decline 

of pangolins if not properly addressed. 

Therefore, it is recommended that strict 

laws and enforcement procedures be 

vehemently imposed on the harvesting of 

pangolins from the wild. The greatest 

impediment to the effective conservation of 

pangolins, which has been identified as a 

lack of biological knowledge of the species, 

must be addressed by creating awareness 

and enlightening the people about the health 

implications of consuming pangolins and 

the risk of extinction, which will ultimately 

have an impact on biological diversity 

(Maurice et al., 2019). 

Conclusion 

              The dynamic interplay between the 

parasitic organism, Strongyloides 

nematode, and trace metals underscores a 

complex relationship characterized by 

bidirectional effects. On one hand, the 

presence of Strongyloides nematodes exerts 

a protective influence by ameliorating the 

toxicity associated with trace metals within 

the host organism. Conversely, the trace 

metals, in turn, demonstrate the capacity to 

mitigate the detrimental health 

consequences imposed by the parasitic 

infestation. 

              Additionally, within the context of 

pangolin hosts, Strongyloides nematodes 

emerge as dependable bio-depurative 

agents and reliable bioindicators for trace 

metals. The superior bio-depurative 

capabilities of nematodes highlighted in this 

study align with earlier findings that 

consistently underscore their notable 

potential for the removal of trace metals, as 

documented in prior scientific literature. 

This reaffirms the significance of 

nematodes in contributing to 
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bioremediation efforts and environmental 

health, thereby adding to the growing body 

of knowledge on this subject. 
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