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ABSTRACT 
 
This paper presents an overview of selected modeling techniques of vibro-impact 
dynamics. Vibro-impact dynamics has occupied a wide spectrum of studies by 
dynamicists, physicists, and mathematicians. These studies may be classified into 
three main categories: modeling, mapping and applications. The main techniques 
used in modeling of vibro-impact systems include phenomenological modeling, 
Hertzian models, and non-smooth coordinate transformations developed by 
Zhuravlev and Ivanov. One of the most critical situations impeded in vibro-impact 
systems is the grazing bifurcation. Grazing bifurcation is usually studied through 
discontinuity mapping techniques, which are useful to uncover the rich dynamics in 
the process of impact interaction. Complex dynamic phenomena of vibro-impact 
systems such as sub-harmonic oscillations, chaotic motion, and coexistence of 
different attractors for the same excitation and system parameters but under different 
initial conditions will be discussed. 
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INTRODUCTION 
 
Vibro-impact systems are well known to laymen and children. Simple toys include a 
skipping stone on the water surface and the woodpecker toy. For skipping to be 
successful, one has to impart spin to a flat stone with a given angle of attack, which 
is considered as the most crucial factor. Skipping is associated with slow down due 
to energy dissipation during collision. The collision process is also associated with 
angular destabilization. The woodpecker toy operates by self-excited vibrations due 
to the combined effects of friction, impact and weight. The dynamics of this toy is 
greatly influenced by simultaneous impacts which cause discontinuous bifurcations. 
A mass-spring oscillator against one-sided barrier, see Fig. 1, and an inverted 
pendulum oscillating against two-sided barriers are two classical examples of vibro-
impact dynamical systems. Practical engineering applications include ship roll motion 
against one-sided barrier, rotor-stator rubbing/impact, heat exchanger tube fretting 
due to adjacent tubes interaction, slamming of ocean waves on offshore structures, 
automotive braking systems, pipes conveying fluid with end-restraints, loosely fitting 
joints, vocal folds collision, micro-actuators, contact micro-electro-mechanical 
systems (MEMS) and impact dampers. Generally, vibro-impact systems involve 
multiple impact interactions in the form of jumps in state space. In most cases, there 
is energy loss due to impacts and the coefficient of restitution usually measures the 
degree of energy dissipation associated with an impact event. The time scale 
involved during impact is much smaller than the time scale of the natural frequency 
of oscillation. The dynamics of vibro-impact systems are described by strongly 
nonlinear non-smooth differential equations. These systems usually experience 
discontinuities in time of the state space due to velocity reversals. The theory of 
vibro-impact dynamics has been documented in several research monographs (see, 
e.g., [1, 2]). This paper provides an overview of selected analytical techniques, 
numerical algorithms, and discontinuity mapping.  
 
 
POWER-LAW PHENOMENOLOGICAL MODELING 
 
For an assumed rigid impact one must have to introduce the constraint, i.e., , 
where x is the system response displacement and xi is the barrier location (see Fig. 
1). One can introduce a phenomenological modeling that describes the interaction 
between the system and barrier with a special potential field of interaction, which is 
very weak in the region between the body surface and the barrier, , but 
becomes fast growing in the neighborhood of the point, . The force of 
interaction can thus phenomeno-logically represented by the power function 
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where  is an integer and b is a positive constant parameter usually estimated 
from experimental measurement. Such representation was proposed in vibro-impact 
problems by Hunt and Crossley [3] and in simulating liquid sloshing impact in moving 
containers [4-5].  

 
Figure 2 shows the dependence of the impact force on the spatial coordinate, x/xi, 
for different values of n for the case of two-sided barrier. For the case of , we 
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have the case of absolutely rigid body interaction, where the corresponding potential 
energy takes the square well form. For finite and large values of n, the interaction 
field is not absolutely localized at the points, . This implies that both the 
system and barrier are not absolutely rigid, but admit a small deformation at the 
regions of impact, , for two-side barriers.  
 
The damping effects during impact are spatially localized around the region, . 
The localized dissipative force may also be phenomenologically represented by the 
expression 
 

2 p

d
i

x
F d x

x

 
=  

 
&

 

(2) 

 

where d is a constant coefficient to be determined experimentally, p>>1 is a positive 
integer, and a dot denotes differentiation with respect to time.  
 
 
ZHURAVLEV NONSMOOTH COORDINATE TRANSFORMATIONS 
 
The non-smooth coordinate transformation introduced by Zhuravlev [6] assumes 
perfectly stiff constraints and converts the vibro-impact system into an oscillator 
without barriers such that the equations of motion do not contain any impact terms. 
With reference to Fig. 3, the ship roll equation of motion may be written in the form, 
[7, 8],  
 

'' ' ' ' ( )q q q q q C q C q Z3 5
53+ ζ + γ + + + = τ  (3) 

 

where / cq = φ φ , φ  is the ship roll angle, and cφ  is the roll capsize angle. The 

coefficients 3 0C < , 5 0C >  are usually determined experimentally. ζ  and γ  are the 

coefficients of linear and nonlinear damping moments, respectively. The third term of 
the left hand side is to capture the effects of flow separation and onset of turbulence. 
Note that the modulus operation, | ' |q , makes the damping function always odd 

despite of the presence of its quadratic form. ( )Z τ  represents the wave excitation 

and ntτ = ω  is the non-dimensional time parameter, where nω  is the ship linear roll 

natural frequency. 
 
Note that the ship model may experience impact when its roll angle reaches the 

impact angle, iφ = −φ  (see Fig. 3). For perfectly elastic impact, Zhuravlev 

transformation may be written in the form 
 

izq q= −  , / ci iq = φ φ  (4) 
 

where z  is a new coordinate, which is free from any constraints. This transformation 

shifts the barrier to the axis 0z =  and unfolds the domain iq q> −  of the phase plane 

trajectories on the original plane '
( , )q q  to the infinite phase plane '

( , )z z . To account 

for the damping associated with inelastic impact, one has to introduce the condition 
' '( )q eq+ −= − , where e is the coefficient of restitution, and   and  are the velocities 
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just after and before impact, respectively. Note that the additional damping 
associated with inelastic impact may be more significant than the inherent system 
linear and nonlinear damping terms. In this case, the ship equation of motion may be 
written in the form 
 

( ) ( )' ' ''' ' 'sgn( )[ ] (1 ) ( ) ( )sgn( )i i iz zz z z z q C q C q e z z z Z zz z τ
3 5

53 −+ ζ + γ + + − + − + − + − δ =  (5) 

 

where ( ) a sinZ τ ντ= , a  is the non-dimensional excitation amplitude, / nν ω= Ω  is the 

excitation frequency ratio, −δ  stands for specific distribution applied to some testing 

function ( )tϑ  such that ( ) ( ) (0 )t t dt
∞

∞ ϑ δ = ϑ∫ −− − . In contrast to the conventional Dirac 

delta function, ( )tδ−  takes the value of ( )tϑ  on the left of zero but not exactly at zero. 

Note that using the classic Dirac delta function in equation (5) would be unjustified 

due to the discontinuous factor ' 'z z  at 0z = . Accordingly, the term ' '(1 ) ( )e z z z−− δ  

provides only approximate description for the energy loss at the barrier, 0z = , which 
is justified under the condition (1 ) 1e− << . Although the model still includes singularity 

due to the localized energy dissipation, the corresponding term (the last one on the 
left-hand side of equation (5)) has a relatively small integral effect due to the factor 
(1 )e− . This enables one to consider the dissipative term as a perturbation when 

using averaging tools. Note that, even though impact events have been effectively 
eliminated by the non-smooth coordinate transformation, direct executions of 
numerical codes with respect to equation (5) still require conditioning due to the 
presence of singular dissipation term. In such situation, one may try using the idea of 
averaging to spread the localized damping over one cycle of motion.  

 
 
IVANOV NON-SMOOTH COORDINATE TRANSFORMATION 
 
For the case of inelastic impact, Ivanov [9] introduced a non-smooth transformation 
of state variables including both displacement and velocity. Equation (3) can be 
written in terms of the state vector form 
 

'
u q= ,        

' ' ' ' ( )u q q q q C q C q Z
3 5

3 5= −ζ − γ − − − + τ  (6) 

 
Adopting Ivanov non-smooth coordinate transformation in the form 
 

sgn( )
i

q s s q= − ,           sgn( )[1 sgn( )]u s K  s  = − υ υ  (7) 
 

where s  and υ  are the new coordinates whose values are not restricted, 
(1 ) / (1 )K e e= − + . Alternatively, equations (7) may be written in the form 
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2
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Taking the time derivative of equations (8), using equations (6) and (7), and consider 
sinusoidal excitation ( ) a sinZ τ = ντ , gives the ship equation of motion in terms of s  

and υ  coordinates 
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Equation (9) describes the ship roll dynamics with one-sided inelastic barrier on the 
entire time interval, where conditions of reflection from the barrier and impact energy 
loss are already included through transformation (8). The results generated using the 
two transformations are compared based on the study conducted by Grace et al. [7]. 
Figs. 4(a) and 4(b) are obtained for the two models and display the ship time history 
response record, its FFT plot and the system path on the coordinate-velocity plane 
for the same parameters and initial conditions. A comparison between the plots of 
Figs. 4(a) and 4(b) reveals that the two transformations yield periodic oscillations in 
which Fig. 4(a) experiences one impact event per one excitation period, while Fig. 
4(b) exhibits two impacts every three excitation periods. For different initial 
conditions the two models predict different response regimes. For example, for initial 

conditions 0.39oz =  and ' 0.35oz = − , Zhuravlev model yields unstable ship roll 

motion in the form of ship capsizing, while Ivanov model yields multi-period oscilla-
tions with occasional impacts (2 impacts per 3 excitation periods). 
 
The bifurcation diagrams shown in Figs. 5(a) and 5(b) for Zhuravlev (model 1) and 
Ivanov (model 2), reveal the coexistence of different solutions for the same excitation 
level depending on initial conditions. The excitation amplitude at which the 
unbounded motion (ship capsizing) occurs defines the ship stability boundary and 
depends on the excitation frequency ratio, ν . The stability boundaries for elastic, 

1e = , and inelastic, 0.8e = , impact cases are shown in Fig. 6. It is seen that the 
bounded region of the inelastic impact is expanded than that of the purely elastic 
impact region due to the inherent damping associated for all cases of 1e < . It is more 
expanded for model 2 than model 1 for the same coefficient of restitution 0.8e = .  
 
 
UNCERTAINTY OF RESTITUTION COEFFICIENT 
 
The dependence of the coefficient of restitution on the relative velocity of impacting 
bodies was studied in several papers. The velocity dependence of the restitution 
coefficient was experimentally measured from a collision between two pendulums 
with a suspension of 2-m [10]. The restitution coefficient was found to decrease with 
an increase in the colliding velocity as shown in Fig. 7. The analytical results are 
shown by solid curves by using the experimental values at velocity of 0.5 m/s. The 
analytical results of reference [10] was found in close agreement with experimental 
results for 1e ≈ , and the dependence of the coefficient of restitution was given by the 
relationship  

1 B

ie Av= −  (10a) 
 

where A  and B  are positive constants, and iv  is the impact velocity. The agreement 

was violated for small values of e . Note that this relationship was derived from 
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models of purely viscoelastic behavior. In reality, there are often other mechanisms 
of dissipation to consider as well. At high impact velocities, the energy dissipated in 
the form of elastic waves increases, as does the loss of energy due to plastic 
deformation [11]. At low impact velocities, the effects of phenomena such as 
adhesion [12] and gravity become significant [11]. Roux and Dickerson [13] showed 
that the dependence of the coefficient of restitution on the initial velocity of a tennis 
ball is governed by a relationship similar to equation (10a) but with uncertainties in its 
constants. For example, they expressed equation (10a) in the form 
 

( )( )
(0.5 0.1)

1 0.18 0.07 ie v
±

= − ±  (10b) 

 
It is seen that the uncertainty in the constants is as much as 40% for the coefficient 
and 20% for the exponent. 
 
In the kinetic theory of non-adhesive granular matter, it is assumed that the 
coefficient of restitution is either a constant or monotonically decaying function of the 
impact velocity (see, e.g., [14-16]). Later, Müller et al. [17] showed that this 
assumption is not always sufficient to describe the dynamics of collision accurately, 
since, at least for a certain time part of the kinetic energy of the relative motion can 
be stored in colliding bodies' vibrations. This conclusion was based on bouncing ball 
experiments, which revealed unexpected equidistant step-like features in the 
coefficient of restitution as a function of impact velocity.  
 
The coefficient of restitution was measured from impact tests of small ship wood 

model against rigid steel barrier [8] using the basic definition e /+ −= φ φ& & , where +φ&  

and −φ&  are the ship model velocities just after and before impact, respectively. It was 

found that the coefficient of restitution e  depends also on the velocity just before 
impact and its value is unrepeatable in every cycle and in every test. Some studies in 
other applications confirmed this observation. For example, in impact analysis of 
multibody dynamics considered by Schiehlen and Seifried [18], the multiple impacts 
in every test were found to be the source of the uncertainty of the coefficient of 
restitution and depend on the velocity. It was shown that for the case of rod impacts, 
the coefficient of restitution decreases monotonically with increasing initial 
velocity. Ronsse and Sepulchre [19] showed that the acceleration of the table with a 
bouncing ball at impact is an important parameter for the robustness of the feedback 
system to model uncertainty, in particular to the uncertainty on the coefficient of 
restitution. Fig. 8 shows the dependence of the coefficient of restitution on the 
velocity of the model just before impact. It is seen that the dependence is scatter. 
The curve fitting of the measured points reveal a monotonic decrease with the 
impact velocity. The curve fitting was based on selecting the exponential form: 
  

{ }2

1 2e Exp ς φ ς φ− −= +& &

 
(11) 

 
where the coefficients   and  were chosen to satisfy the boundary conditions e=1  

at    and e=0  at .  
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DISCONTINUITY MAPPINGS 
 
The study of vibro-impact systems has been facilitated by the concept of 
discontinuity mappings introduced by Nordmark [20]. These mappings approximate 
the near-grazing impacting dynamics using a discrete dynamical system obtained 
solely from the conditions at the grazing contact. Chin et al. [21] provided an 
exhaustive examination of the Nordmark [20] map, and predicted the occurrence of a 
series of transitions from a non-impacting period-1 orbit to period- M  orbits, with 

2,3,...M =  De Weger et al [22] called this series by period-adding transitions. They 

were able to explore these period-adding transitions experimentally. De Weger, et al. 
[22] called the M-periodic orbits with one impact per period as “maximal” periodic 
orbits. Maximal orbits imply the occurrence of a single impact per period in M-
periodic orbits. 
 
Mappings that possess a particular form containing a square root term occur as local 
Poincaré mappings of the type considered by Nordmark [20]. One can develop a 
mapping for the linear oscillator, see Fig. 1,  
  

2

n nx 2 x x f sin t0+ ζω + ω = Ω&& &  (12) 

 

Setting ( )2t /π τ= Ω , equation (12) may be written in the form 
 

( )'' ' 2
x x x f sin 20+ ς + ϖ = πτ  (13) 

 

where 2 2

0 04f f /= Ωπ , 2 2 2 2
4 n /ϖ π ω= Ω , and ( )4

n
/ς πζ ω= Ω . The mapping from nτ =  

to 1nτ = + , where n  is an integer is a Poincaré map on the plane ( 'x x, ) with 

constant phase and thus has the same set of eigenvalues as the Jacobian matrix of 
the linear map [20], 
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+

 = − + + ℜ
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where ℜ  is a parameter related to the amplitude of the external excitation and e  is 
the coefficient of restitution which measures the energy loss at impact. The 
parameters α  and γ  depend on the intrinsic properties of equation (13) such that 

the limit 0γ →  corresponds to large damping coefficient, and 2 1eγ =  corresponds to 

zero dissipation. These parameters were derived by Chin et al. [21] in the form  
  

e−ς = γ ,     /2 2 2
2 cosh 4e

−ς ς − ϖ = α  (15a,b) 
 

For positive values of 0ς > , we have from equations (15) the bounds 0 1< γ < , and 

0 1< α < + γ . 
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Equation (14a) is the mapping of a system with no impact within one time interval, 
while equation (14b) belongs to the case of impact occurrence within that period. 

The term nx−  signals the effect of impact. Since equations (14a,b) are 

continuously differentiable except at 0 0x = , the term nx−  is referred to as square-

root singularity because its Jacobian matrix is singular. Chin et al. [21] numerically 
generated the bifurcation phenomena for the Nordmark map given by equations 
(14a,b) as the bifurcation parameter ℜ  increases through 0ℜ =  (grazing impact). 
Figs. 9(a) and 9(b) show the bifurcation diagrams for 1e = , and two sets of the 
system parameters ( , ) (0.05, 0.65)γ α =  and (0.01, 0.25) , respectively. Three basic 

bifurcation scenarios were reported. The first exhibits bifurcation from a stable 
period-1 orbit for 0ℜ <  to reversed infinite period adding cascade as ℜ  increases 
through zero. For example, Fig. 9(a) shows a cascade where chaos appears in 
bands between successive windows of periodic behavior. On the other hand, Fig. 
9(b) reveals a cascade with hysteresis. The second case is characterized by 
bifurcation from a stable period-1 orbit in 0ℜ <  to chaotic attractor as ℜ  increases 
through zero. The third scenario belongs to collision of an unstable period-M 
maximal orbit (which is a regular saddle, and is created, together with a stable 
period-M maximal orbit in a saddle-node bifurcation in 0ℜ < ) and the period-1 orbit 
at 0ℜ = .  
 
The value of the bifurcation parameter ℜ  was obtained, using nonlinear and lengthy 
analysis by Molenaar et al. [23], in the form 
 

1 2

2
2

2 1

1

2 | | (1 ) ( ) / ( )s s
A e e e s s

− α + γ
ℜ =

 + − + − 

 (16) 

 
where A  is the acceleration of the particular solution of the oscillator when the 

excitation amplitude, 0F , approaches its value, gF , at grazing impact, i.e., when 

0( ) /g gF F Fσ = − . ( )2 2

1 2

1
4

2
,

s = −ς ± ς − ϖ . Molenaar et al. [23] observed that the fixed 

negative sign that precedes the square root in equation (14b) prohibits period-one 
maximal periodic orbits for the underdamped oscillator. Their nonlinear analysis 
yielded the modified form of the transformed map 
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where  
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(18) 
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One may observe a significant difference between the two maps given by equations 

(14) and (17). For example, the sign factor, 1C , of the square-root guarantees the 

presence of maximal period-one orbits. The extra term, 2 n
C x , in the first equation of 

(17b), provides a quantitative understanding of the loss of stability of maximal 

periodic orbits due to an additional impact. The coefficient 3C  is different from that of 

Nordmark [20].   
 
For the case of flexible barrier the impact mass will penetrate the barrier in a form of 
elastic deformation. In this case the coefficient of restitution must be within the 
range, 0 1e≤ ≤ . For low-velocity impact, the barrier will have influence when it 
absorbs energy, which is measured by the value 1e < . For this case, Molenaar et al. 
[23] obtained the same mapping equations (17) but with the following coefficients 
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s s
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(19) 

 
For a non-impact regime the map is linear. However, the impact orbit possesses a 
square-root singularity. Close to grazing, the acceleration near impact can be 
considered constant and the square-root is simply the relationship between elapsed 
time and traveled distance in systems with constant acceleration. The square-root 
singularity and the associated extreme stretching of phase space near the point of 
grazing impact lead to highly non-trivial dynamics.  
 
 
CONCLUSIONS 
 
Three different and powerful modeling techniques of vibro-impact dynamics have 
been represented in this article. Other techniques less frequently employed in the 
literature include Hertzian contact, non-smooth time transformation and time-wise 
mapping. These methods are well documented and demonstrated by Ibrahim [2]. 
Experimental measurements of vibro-impact systems under sinusoidal excitation 
revealed that the coefficient of restitution is uncertain parameter and is monotonically 
decreasing with the impact speed. In modeling vibro-impact systems, the coefficient 
of restitution must be represented by a random variable dependent on the impact 
velocity. The analysis of vibro-impact systems in this case must be performed 
numerically using Monte-Carlo simulation.  
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Fig. 1. Schematic diagrams of mass-spring systems with one-sided barrier 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Spatial dependence of impact for different exponent values for one sided barrier. 
 

 

 
 

Fig.3. Ship rolls against one-sided barrier. 
 

0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

2n =

3

4

6
11

/ iφ φ

iF

b

n = ∞

0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

2n =

3

4

6
11

/ iφ φ

iF

b

0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

2n =

3

4

6
11

/ iφ φ

iF

b

n = ∞

/ ix x
0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

2n =

3

4

6
11

/ iφ φ

iF

b

n = ∞

0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

2n =

3

4

6
11

/ iφ φ

iF

b

0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

2n =

3

4

6
11

/ iφ φ

iF

b

n = ∞

/ ix x



12 DV  Proceedings of the 16th Int. AMME Conference, 27-29 May, 2014 

  

 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(a)                                                 (b) 
Fig. 4. Ship time history records, FFT plots, and phase portraits, according to (a) Zhuravlev, 

and (b) Ivanov, for 0.94ν = , a 0.08= , 0.8e = , and initial conditions 0 0
0.01, ' 0.01z  z= = . [7] 

 

 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 

 

 
 

(b) 

Fig. 5. Bifurcation diagrams for 0.94ν = , and 0.8e = ; according to (a) Zhuravlev model,  
                and (b) Ivanov model. � Period-one response, ▲Period - one response experiencing
                impact, ∆ Period doubling, ◊ Modulated response, □ Multi - periodic response,  
                and RM= Rotational Motion. [7] 
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Fig. 6. Estimates for stability boundaries due ship elastic impact, ( 1)e = , and 

inelastic impact ( 0.8)e = as predicted by Zhuravlev Model 1 and Ivanov Model 2. 

Unbounded motion is shown by grey area. [7] 
 
 
 
 
 

 
 

Fig. 7. Dependence of the coefficient of restitution on the velocity. - - - measured values, 
_____ estimated results: (a) Collision between steel sphere of mass 0.154 kg,m = radius 

0.0165 mR = ; (b) glass spheres 0.0333 kg,m = 0.0196 mR = (fractured at high velocity); (c) 

brass spheres 0.119 kg,m = radius 0.015 mR = (plastic deformation at high speed); (d) cork 

spheres 0.0317 kg,m = (with a lead core), 0.0166 mR = ; (e) glass and cork spheres; (f) steel 

sphere and cork plate (0.01 m thick and backed by a heavy iron block. [10] 
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Fig. 8. Dependence of the coefficient of restitution on the impact velocity (the fitting 

curve is exponential: { }2
Exp 0.209 0.0296e φ φ− −= − −& &  [8] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 9. Bifurcation diagrams for 1.0e = : (a) ( , ) (0.05, 0.65)γ α =  and (b) ( , ) (0.01, 0.25)γ α = , 

[21]. 

 


