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ABSTRACT 
 
The important step in studying the qualitative behavior of non-linear dynamical 
system is how to detect the presence of chaos. There are several methods that used 
to determine the presence of chaos signature. This paper presents a proposed 
method in detecting the presence of chaos. This method combines two techniques 
namely: the normal form analysis and largest Lyapunov exponent (LLE). Computer 
programs were generated to investigate these two techniques and the proposed 
detecting method. An example was given to furnish the herein given computer 
algebra techniques based on real applications. The obtained results in this work 
were verified with that published by other researchers. The proposed method can 
provide highly active and efficient ability when studying the nature of non-linear 
dynamical systems and its chaotic presence. 
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INTRODUCTION 
 

Many tools can be used to study the qualitative behavior of linear or non-linear 
dynamical systems. In general, non-linear systems cannot be analyzed completely in 
a systematic manner [1]. Therefore, some approaches and techniques can be used 
to represent the non-linear system such as: the use of describing function approach 
can be used when a transfer function of the linear part of the non-linear system is 
available; the use of Volterra series [2] in case of weakly non-linear systems, or the 
use of harmonic balance when single non-linearity exists. Other numerical 
techniques with advantages and disadvantages to analyze non-linear systems were 
developed [3]. Many problems and limitations arise when using the above 
approaches and techniques. The biggest problem is how to find an algorithm that 
enables the solution of the non-linear dynamical system and keeps minimum errors; 
besides, it should also offer simplicity in use as well as quick convergence [4].  
 
This paper focuses on two approaches for studying the qualitative behavior of the 
non-linear system. The first one is the normal form theory [5],[6],[7],[8] and the 
second is the LLE technique [11]. The normal forms are used to facilitate and help in 
diagnosing the onset of chaos in non-linear systems while calculations of Lyapunov 
exponents are a way to study where a system is chaotic or not. In the speaking 
about Lyapunov exponents, the largest one is meant. A positive LLE indicates that 
the system is chaotic, while a negative one indicates the non-chaotic behavior.  The 
LLE can also be used to analyze the stability of non-linear systems [12],[13],[14]. A 
proposed algorithm was created to satisfy the idea of the suggested methodology.  
 
In the following, the outline of the normal forms method for non-linear dynamical 
systems and the computation procedures for the LLE are presented. In addition, the 
proposed method for detecting the chaotic behavior in dynamical systems is 
illustrated and a comparative study for validating this method is presented. 
 
 
NORMAL FORM FOR NON-LINEAR DYNAMICAL SYSTEM 
 
Consider the autonomous non-linear system given by the following state equation 
[2]: 

( )
( ) ( ( ))                                         (1)= +

n

dx t
Ax t BF x t

dt
 

 
where A and B are real matrices of constant coefficients and compatible dimensions, 
and Fn (x (t)) is the vector of non-linear functions that satisfy some regularity 
conditions such as smoothness, continuity, and should be totally Lipchitz. 
 
The normal form theory depends upon successive coordinate transformations to 
construct a simple form and to find a new system with a topologically that conjugates 
to the original system in a simple canonical form. However there are many 
techniques for finding the normal forms and most of these techniques lack generality. 
Hartman-Grobman method uses the eigenvalues of the linearized system [5]. If one 
of the eigenvalues lies on the imaginary axis, the linearization fails, and the process 
is terminated.  The Poincare’ method does not work when there are resonance 
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relation between the Eigenvalues [8.]. Both Poincare’ and Taken methods give the 
same result for vector fields having a diagonalizable linear part [10]. Poincare’ 
method not applied to non-diagonalizable vector fields. Ushiki normal form method 
which is the most suitable technique; is based on the Lie brackets and the K-jets [6-
7-8].   
 
Ushiki method may be considered as a refinement of Takens’ method. The 
advantage of this method is that it does not need an eigenvalue decomposition 
technique. In what follows the adaptation of the Ushiki method in the calculation of 
the normal form of non-linear system described by equation (1) is presented. The Kth 
order normal form of the non-linear system in (1) can be obtained by solving the 
following equation [8]: 
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 is the bracket of Y k -1 and V k -1 ,
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is the vector space of all smooth vector fields (i.e., C∞ ), 
0
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LYAPUNOV EXPONENTS 
 
There is dependency between Lyapunov exponents and the chaotic properties of 
dynamical systems. There are several techniques for finding the Lyapunov 
exponents of the non-linear systems given by equation (1) [11-16]. However, no 
single technique appears to be optimal for calculating the Lyapunov exponents. For 
calculating the LLE depending upon the time domain solution of the state equation, 
some methods can be described as: 
 
Standard Method 
 
This method is most popular method to compute the Lyapunov exponents that 
combines the numerical integration of the linear evaluation equation with the Gram-
Schmidt reorthonormalization process applied periodically. To find the approximate 
exponents λi (t) at time t = τ, the renormalization internal T was picked, so that   τ = 
rT with r ∈ N, the linear evaluation equation is integrated over T and the Gram-
Schmidt process applied. This is repeated a total r times keeping the norms from the 
Gram-Schmidet (GS). The GS ensures that the direction and rates of growth are 
measured correctly. The Lyapunov exponents are [12]: 
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where Ni (m) is the norm of the distance between two trajectory points, r is the 
number of  iterations, and T  is the interval period of renormalization. 
 
This method needs a good choice of T and large number of iterations since a bad 
choice of T may cause the algorithm to fail. 
 
Q –R Algorithm 
 
 It is another technique for finding the Lyapunov exponents. This method depends 
upon decomposition of the fundamental solution of the system. The fundamental 
solution is expressed as M(t) = Q(t) R(t) , where Q(t) is an orthogonal matrix and R(t) 
is an upper triangular matrix which are functions of both Q(t) and the Jacobian matrix 
of the system (1) [11-15]. The Lyapunov exponents are obtained from the diagonal 
elements of the matrix   R (t) and are given by [15]: 
 

1
lim log ( ),1                             (4)λ → ∞= ≤ ≤

i t ii
R t i n

t
 

 
This method needs accurate evaluation of the orthogonal matrix, since the error in 
orthogonality leads to a break down in the computations of Lyapunov exponents due 
to numerical over and under flows. The two methods require rescaling, 
reorthogonalization and large number of iterations. 

 
A proposed algorithm based on combining the normal form theory and the numerical 
calculation of the LLE to satisfy the qualitative behavior of non-linear systems is 
illustrated in the next section. 
 
 
PROPOSED METHOD FOR DETECTING THE CHAOTIC OF A DYNAMICAL 
SYSTEM 
 
This method don’t need rescaling or re-orthogonalization so it lends itself to fast 
computation, easy implementation and reliable for all systems of higher order.  It also 
avoids numerical over flow and takes the advantage of making use of all available 
data in the time series solution of the differential equation. Figure 1 illustrates the 
proposed algorithm procedures as follows: the normal form expressions obtained 
from the system of differential equations are used to convert the non-linear 
dynamical system to simple equivalent one. Time series data were generated from 
the equivalent system to evaluate LLE. Then the presence of chaos can be detected.  
 
The proposed approach proceeds as follows:- 
 
- Obtain the normal form expressions as given in (2). 
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Fig. 1. Block diagram of the proposed algorithm. 
 
 
- Use the normal form expressions to obtain the time domain solution with the 

advantage of fast conversion.  
- Calculate the LLE from time domain solution. 
 
The outcome of this algorithm is the Lyapunov exponents of the system, the largest 
of which λi is of special interest in diagnosing dynamical systems, while zero values 
of λi indicate periodic behavior. Negative values of λi indicate stable fixed points, 
while positive values of λi indicate chaotic behavior and presence of chaos [12, 
13,14, 15]. The ith Lyapunov exponent is given by [15]: 
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where N is the number of solution points obtained by direct integration, do is the initial 
separation between two nearby points along the trajectory and di is the ith distance 
between two nearby points on the trajectory. Examples for attractors of a three 
dimensional system are given in Table.1. 
 
Some examples illustrating the procedure will be introduced in next section. A 
computer algebra program is designed using package (Maple) to find normal forms. 
The calculation of the LLE is carried out using an algorithm designed specially in C++ 
to handle the computation task. 
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Table 1. Examples of attractors of a three-dimensional system. 

 

Attractor 
Sign of Lyapunov 

exponents 
Asymptotic dynamics 

Stable equilibrium (-,-,-) Stationary 

Stable periodic orbit (0,-,-) Periodic 

Attracting torus (0,0,-) Quasi-periodic 

Strange attractor (+,0,-) Chaotic 

 

APPLICABLE EXAMPLES 
  
These examples introduce a comparative study for each of Chua's dynamical system 
and Coupled quartic oscillators system as follows: 
 
Chua's Dynamical System 
 
This example introduces a studying Chua’s system as follows: 
  

a) Comparison between the analytical solution as normal form and numerical 
computing one as Runge-Kutta-4 method.  

b) Comparison between the calculated LLE using the previously explained 
methods (standard method and Q-R algorithm) and that calculated based on 
the proposed method. 
 

Chua’s oscillator 

  
Chua’s oscillator is one of the simplest electronic circuits that are capable of 
producing chaos. It can exhibit a wide array of behavior including a great variety of 
attractors, bifurcations, and routes to chaos [17]. 
 
Chua’s system representation  
 

The Chua’s system with cubic nonlinearity is described by [17]:       
       

3( )

                                                     (6)

α

β

= + −

= − +

= −

dx
y cx x

dt

dy
x y z

dt

dz
y

dt

 

 

where α, c and β are system parameters. For the set of parameters (α =10, β =16, 
and c=0.143), the system was shown to display Chaos (double scroll attractor) [17]. 
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The local Lyapunov exponents can be calculated from the Jacobian matrix at 
equilibrium point (x=y=z=0) which is given by: 
 

0

1 1 1                                              (7)

0 0

α α

β

− 
 = − 
 − 

c

J
                                                                                          

 
The sum of the Lyapunov exponents is given by [14]: 
 

3

1 0

1
lim sup ( ( ))                      (8)λ → ∞

=

=∑ ∫
t

i t
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Trace J s ds
t

 

 
The result of the calculation gives,  
 

43.21
3

1

−=−−=∑
=

c
i

i αλ  

 
According to [14], this result indicates that the system is dissipative.     
 
Normal form of Chua’s system 
 
For the Chua's system, the 3rd order normal form is given by: 

3 ( ) ( )       (9)ν ω δ σ
∂ ∂ ∂ ∂ ∂

= + + − +
∂ ∂ ∂ ∂ ∂

x y y x z
x y x y z

 

where: ω, θ and σ are arbitrary constants obtained from the integration of the Ushiki 
normal form[8]; this results is in agreement with results that obtained in [9].   
 
System behavior using normal form method 
 
To check the validity of the proposed algorithm, a further illustration of the phase 
plane and time domain solution using the normal form expressions were illustrated in 
Fig. 2: 

-0.1

-0.05

0

0.05

0.1

-0.6 -0.1 0.4
x(t)

y(t)

 
Fig. 2a. The phase plan plot (x(t), y(t)) of Chua's  system using Normal form method. 
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Fig. 2b. The time response x(t) of Chua's  system using Normal form method. 

 

System behavior using Runge-Kutta-4 method: 
 
The numerical solution of the system using the Runge-Kutta-4 method [4] with step 
size h=0.01 is shown in the phase plane plot and time domain solution of Fig. 3. 
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Fig. 3a. The phase plane plot (x(t), y(t)) of Chua's  system using Runge-Kutta-4 

method. 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Fig. 3b. The time response x(t) of Chua's  system using Runge-Kutta-4 method. 
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Figures 2, 3 illustrate that the qualitative behavior of analytical solution is the same 
as that obtained by the numerical methods with the advantages of fast convergence 
to steady state behavior. However solutions give the same response, the solution 
satisfied by the normal form (Fig.2) is free from transient that shown in Fig. 3. 
 
LLE calculations for Chua's  system 
 
Both the standard method and the Q-R algorithm are used to calculate the LLE 
(N=10000 iterations), respectively. Comparisons between their results and the 
proposed method are listed in Table 2.  
 
Table.2. Comparisons between existing techniques and the proposed approach. 
 

Algorithm Standard method Q-R algorithm 
Proposed 
approach 

LLE 0.1332 0.1328 0.1317 

Run time  (sec) 3.09 3.99 1.84 

 
From this table; the percent of reduction in Run time about 49% to 59%. The 
calculations give positive value of the LLE which indicates chaotic behavior (double 
scroll attractor) and is in agreement with the results of [17]. 
  
It is seen from Table 2 that the calculated λ1 as LLE by using the proposed approach 
is in good agreement with the existing algorithms with the advantage of minimum run 
time.  
 
 
Coupled Quartic Oscillators 
 
The Coupled quartic oscillators is given by [12]:            

                        
3 2

3 2

                                                      (10)

(4 2 )

(4 2 )

α

α

=

=

= − +

= − +

dx
z

dt

dy
w

dt

dz
x xy

dt

dw
y yx

dt

    

 
The system is integrable for   α =0,2 and α =6; The sum of Lyapunov exponents is 
given by: 

                      0.0
4

1

=∑
=i

iλ                          

 

This result indicates that the system is conservative [12]    
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Following the same procedure given in the previous example, the results are shown 
in Fig.4. and Fig. 5.  

(i) The solution using Normal form method is shown in Fig.4. 
(ii) The solution using Runge- Kutta method is shown in Fig.5. 

                                                                                           
Normal form of coupled quartic oscillators system 
 
For Coupled Quartic Oscillator, the 4th order normal form is given by: 

 

4 2 2( ) ( ) ( ) ( )                           (11)           ν α β σ θ
∂ ∂ ∂ ∂

= + + + +
∂ ∂ ∂ ∂

y z wz y wx
x y z w

 

 

where, α, β, σ and θ are the arbitrary constants from the integration of the Ushiki 
normal form [8]. 
 
System behavior using normal form: 
 
To check the validity of the proposed algorithm a further illustration for the phase 
plane and time domain solution using the normal form expressions are obtained and 
presented in Fig.4.  
 
 

 
 

 
Fig.4a. The phase plan plot (x(t), y(t)) of Coupled quartic Oscillators system  using  

Normal form. 
 

                                 
 

Fig.4b. The time response x(t) of Coupled Quartic Oscillators using  Normal form. 
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System behavior using Runge-Kutta method: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5a. The phase plane plot (x(t), y(t)) Coupled quartic Oscillators system   
using Runge-Kutta method  , h=0.01.    

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5b. The time response x(t) of Coupled quartic Oscillators  system  using 

Runge-Kutta method  , h=0.01. 
 

   
Again the qualitative behavior using Normal form method is the same as that 
obtained by the numerical methods with the advantages of fast convergence to 
steady state and transient free behavior; and is in agreement with the results in [12].  
 
LLE calculations for coupled quartic oscillators 
 
The standard method and the Q-R algorithm are both used to calculate the largest 
LLE, N=10000 iterations the results is shown in Table 3.  
 
From this table, the % reduction in run time about 44% to 48%. The calculations give 
positive value of the LLE which indicates chaotic behavior and is in agreement with 
the results in [12].  
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Table.3. Comparison between existing technique and the proposed approach 
 

Algorithm 
Standard 
method 

Q-R algorithm 
Proposed 
approach 

LLE 0.1738 0.1793 0.1811 

Run time  (sec) 4.01 4.43 1.92 

 
 
It is seen from Table (3) that the calculated λi by using the proposed approach is in 
agreement with the existing algorithms with the advantage of minimum run time.   
 
 

CONCLUSIONS 
 

• Many numerical techniques are used to investigate the qualitative behavior of 
the non-linear systems and computing the LLE. 

• Most of the used methods have the disadvantages of lack of generality, less 
accuracy, difficult implementation, and numerical overflows/underflows for 
higher dimensional systems and give unreal behavior especially in chaotic 
systems.  

• The proposed algorithm that combined the normal form method and the 
numerical method can provide active solutions to many challenges, avoids most 
computational errors encountered in other  numerical methods, besides  it is 
fast (reduction in run time up to 45%) ,transient free, and easily implemented.  

• The results of the proposed algorithm indicate it gives some advantages as: fast 
convergence to steady state solutions, reliable for higher dimensional systems, 
and low number of iterations required. 
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