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ABSTRACT 
 
The statics and dynamics of mechanical systems with contact dry friction, 
representing the nonlinear mechanism of the energy dissipation, is a new actual 
direction in the nonlinear mechanics of deformable solids. Damping effects of this 
sort can appear on the boundaries of rough layered environments or in relative 
movements of one body along a surface of another. Such kind of tasks come to 
consideration of the hyperbolic type equations of a nonlinear system and connected 
with distribution and attenuation of nonlinear waves. Analytical results for the 
distribution of nonlinear waves in the system with contact dry friction under the 
influence of cyclic loads were obtained. The class of loads under which the system 
shows subharmonic and ultraharmonic oscillations was determined. Based on the 
results of obtained decisions the following conclusion has been made: there is a 
class of cyclic loads with the frequency to arbitrary integer times which differs from 
the frequency of its own fluctuation of system under the action of which the system 
performs established or resonant fluctuations. 
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NOMENCLATURE 
 

a Velocity of wave propagation in the rod 
Е Elasticity modulus 

H(z) Heaviside’s unit function 
q Friction force 

U(x, t) Displacement of sections of the rod 

( )t,xυ  Velocity function 

( )t,xσ  
Normal stress on section x 

ρ 
Density of the material 

 
 
INTRODUCTION 
 
The propagation of nonlinear waves in a mechanical system with dry friction under 
cyclic loading with a period that is integrally greater or less than the system’s natural 
period of oscillation was investigated analytically. Problems of this sort reduce to an 
investigation of nonlinear systems of hyperbolic-type equations and are connected to 
the investigation of the propagation and attenuation of nonlinear waves [1, 2]. 
Nonlinearity is due to the presence of dry contact friction. In the case of dynamic 
deformation, the nonlinearity of the dissipation mechanism provides an a priori 
unknown nonlinear velocity function. In the case of movement, the friction assumes a 
maximum value with a plus or minus sign; at standstill, it takes any value between its 
positive or negative maximum. The main complexity consists of determining the 
expression of the friction’s sign function, which significantly depends on both the 
boundary and initial conditions, of the law of dry friction. The dependence domain for 
resolving problems of this sort is determined by the kappa-function method of Nikitin-
Turekhodjayev [3]. Applying the kappa-function method in many problems of this sort 
can determine the nonlinear function of friction and record it as an infinite sum of 
Heaviside functions with shifted arguments. Then, the nonlinear velocity function 
becomes a function of independent arguments, and the problem becomes linear. 
Thus, it can be resolved using one of the standard methods for solving linear 
equations. Analytical results were obtained for a class of problems wherein the 
frequency of the external load is n times greater or less than the system’s free 
frequency. The analysis of results obtained for 4;3;2;1n =  allowed us to construct 

solutions at the whole area of the dependence domain of the problem solution (

∞<≤ t0 , l≤≤ x0 ). The general solution of the problem is recorded by progressive 
waves that covered the travel way. The record of solutions in characteristic regions 
gives a pictorial view of the functions of displacement, stress and velocity.  
 
 
NONLINEAR STEADY OSCILLATIONS OF A MECHANICAL SYSTEM WITH DRY 
FRICTION UNDER CYCLIC LOADING 

 
An analytical investigation was performed on the pattern of nonlinear steady wave 
propagation in mechanical systems caused by the presence of a nonlinear 
mechanism of energy dissipation. Analytical results were obtained on the longitudinal 
oscillations of a terminal flexible rod, the surface of which interacted with the 
environment by Coulomb’s dry friction law, during dynamic agitation as a 
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“rectangular harmonic load” with a frequency integrally greater than the system’s free 
frequencies.  
 
The specificity of the investigation is that the problems with contact dry friction are 
incorrect to the extent that nonlinearity does not allow us to generalize the results of 
one problem into a class of problems. Thus, each type of loadings must be 
investigated separately. We shall demonstrate the method of solution with an 
example investigating longitudinal oscillations of a terminal flexible rod under the 
effect of an oscillatory step load with a frequency four times greater than the 
system’s free frequencies. 

 Suppose that we have a rod, the end l=x  of which is plugged, and a periodic stress 

is applied on the end 0x =  (Fig. 1). 

( )








−−−σ=σ ∑
∞

=0k

k

0 )ak
2

1
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Normal stress )t,0(σ  is pictured in the Fig. 1.  

 
At the initial instant, the rod is assumed to be at rest and unstressed:  
 
 0=ϑ ,    0=σ ,  0t ≤ .                                                                               (2)                                    

 
The equation of motion and Hooke’s law can be generally recorded as follows:  
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tx
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x

E
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,                                                                    (3)                          

where the sign of the velocity )(sign ϑ=ℵ if 0≠ϑ  and [ ]1;1−∈ℵ  if motion occurs with 

stops.  
 

The system (3) is highly nonlinear due to presence of the functionℵ. The difficulty in 
solving this nonlinear problem can be overcome because the frictional force, in the 
investigated problem, being passive, cannot change the sign of the velocity. In the 
result of the counting direct and reflex waves we get the following result for the 
functionℵ: 
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where a  is the velocity of wave propagation in the rod. 
 
Figure 2 provides the signs of velocities in areas restricted by wave fronts. 
Substitution of (4) into the system (3) reduces the initial nonlinear problem to a linear 
equation  

  ( )t,xq
t

U
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2

2
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∂
                                                                       (5) 

 

where U(x, t) is the displacement of sections of the rod. 
 
We can use the Laplace transform to solve this equation. After transformation, taking 
zero initial conditions into account, equation (2) and the boundary conditions assume 
the following form: 
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where p is transformation parameter. 

Solution of the problem (6) - (8) in images has the following form: 
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This bulky generalized solution of the problem acquires very compact expressions if 

they are recorded in appropriate characteristic areas. On the basis of (9), solutions 

for a number of the first specific areas – in the case of this problem, for 51 areas – 

were recorded, and then, using the method of mathematical induction, solutions for 

all areas covering semi-infinite strips 0t,x0 >≤≤ l  were determined. Investigation of 

the solutions allows us to distinguish 26 areas that characterize one full oscillation of 

the system. Solutions of problems on the areas that characterize the two subsequent 

full oscillations were obtained. They are omitted for the sake of brevity. Solution of 

the problem at ∞<< t0   is written in subsequent specific areas. In general view, let 

us represent them correspondingly as )1k(26,,2k26,1k26 +++ K  ( )K,2,1,0k = , 
see Fig.3. 
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Solutions have the following expressions 
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08k26 −−ϑ=ϑ + 	.	

 

In areas 9k26 +  

( )l3x
2

q
09k26 −−σ−=σ +   ,  ( )( )l3k4at

E2

aq
09k26 +−+ϑ−=ϑ + . 

 

In areas 10k26 + we have 
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x
2

q
010k26 −σ−=σ + ,   ( )lk4at

E2

aq
010k26 −+ϑ−=ϑ + .                            

Analysis of the solution in areas 11k26 +  gives: 

( )l3x
2

q
011k26 −+σ=σ +  ,         ( )( )l1k4at

E2

aq
011k26 +−−ϑ=ϑ +  .                     

 

In areas 12k26 +  we have 

x
2

q
012k26 +σ=σ +  ,         ( )( )l1k4at

E2

aq
012k26 +−−ϑ=ϑ +  .                           

 

In specific areas  13k26 +  the required functions are 

lq
8

7
2 013k26 +σ−=σ +  ,         013k26 =ϑ +  .                                    

In areas 14k26 + : 

lq
8

5
2 014k26 −σ=σ +  ,          014k26 =ϑ +  . 

 

In areas 15k26 + , solutions are defined by the following expressions: 

x
2

q
015k26 −σ−=σ +  ,         ( )lk4at

E2

aq
015k26 −+ϑ−=ϑ +  .           

In areas 16k26 +  we obtain 

x
2

q
016k26 +σ=σ +  ,         ( )( )l1k4at

E2

aq
016k26 +−−ϑ=ϑ +  .                     

 

In characteristic areas 17k26 +  solutions have the following expressions 

lq
8

5
x

2

q
17k26 +−=σ +  ,         
















−−+ϑ−=ϑ + l

4

1
k4at

E2

aq
2 017k26  . 

In areas 18k26 +  

( )l−=σ + x
2

q
18k26  ,         
















++−ϑ=ϑ + l

2

1
k4at

E2

aq
2 018k26  . 

 

In areas 19k26 +  solutions are  









−−=σ + l

4

5
x

2

q
19k26

  ,   















+−+ϑ−=ϑ + l

4

5
k4at

E2

aq
2 019k26 .  

 

In areas 20k26 + : 

( )l3x
2

q
020k26 −+σ=σ +  ,         ( )( )l1k4at

E2

aq
020k26 +−−ϑ=ϑ +  .                           

 

In 21k26 +  the required functions are 
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lq2 021k26 +σ−=σ +  ,         021k26 =ϑ +  .                                    

 

In areas 22k26 +  

lq
4

3
2 022k26 −σ=σ +  ,        022k26 =ϑ + . 

 

In areas 23k26 +  

lq
4

3
2 023k26 +σ−=σ +  ,        023k26 =ϑ + .                           

 

In areas 24k26 +  we have 

lq
2

1
2 024k26 −σ=σ +  ,         024k26 =ϑ +  .                                    

 

In areas  25k26 +  solutions have the following expressions 

lq
2

3
25k26 −=σ +  ,          025k26 =ϑ +  . 

 

Further analysis of the problem shows that in the trapezoidal areas ( )1k26 +  the 

system turns out to be at rest: 

( ) 01k26 =σ +  ,          ( ) 01k26 =ϑ +  . 

 

In Figure 4, the oscillation curve of the end point of the rod is shown. The resulting 

solution of the nonlinear problem of wave propagation in the system under 

consideration under cyclic step load (1) with a frequency four times greater than the 

rod’s free frequencies indicate that the system with dry friction under investigation 

shows steady periodic oscillations with a period a4l . 

 
 
CONCLUSION 

 
Based on the results of the solutions obtained, the following conclusion can be 
drawn: there is a class of cyclic loads with a frequency that is an arbitrary integer 
times greater than the frequency of the fluctuation of the system:  
 

( )








−−−σ=σ ∑
∞

=0k

k

0 )ak
n

2
t(H12)t(H)t,0( l

,  

where n is positive integer.  
 
Under the action of such loadings the system will have steady ultraharmonic 
oscillations with two frequencies. In addition, one oscillation coincides with the 
frequency of the oscillation of the system, the other with the frequency of external 
loading. When n is even the system performs steady oscillations so that for each 
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subsequent time range which is equal to n periods of external loading, the system 
begins oscillations from the rest and undisturbed state under the load identical to the 

load at  a4t0 l<< . 
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Fig. 1. Normal stress at the end x=0 of the rod. 

 
 
 
 
 
 
 

 
 

Fig. 2. Signs of velocities in characteristic areas of motion.  
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Fig. 3. Characteristic areas of the motion plane. 

 
 

 

Fig. 4. Oscillation curve of the end point of the rod. 


