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ABSTRACT 
  
This paper deals with an efficient and multi-fidelity design strategy for high 
dimensional industrial problems. The most significant factors have been determined 
based on the Muschelknautz method of modeling (MM) using the screening 
approach. For cyclone separator, only four (from seven) geometrical parameters are 
significant. An optimized sampling plan based on random Latin hypercube (LHS) has 
been used to fit Co-Kriging based on CFD data and an analytical model for estimation 
of pressure drop. Co-Kriging exhibits better accuracy than ordinary Kriging and blind 
Kriging if only the high fidelity data is used. For global optimization, the Co-Kriging 
surrogate in conjunction with genetic algorithms (GA) is used. CFD simulations based 
on the Reynolds stress turbulence model are also used in this study. A new set of 
geometrical ratios (design) has been obtained (optimized) to achieve minimum 
pressure drop. A comparison of numerical simulation of the new design and the 
Stairmand design confirms the superior performance of the new design compared to 
the Stairmand design. 
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INTRODUCTION 
 

Engineering design problems is concerned with the making of decisions based on 
analysis, which directly impact the product or service being designed. To accomplish 
this, engineers may need months of experimental or computational investigations. 
One approach of gaining this desirable increased insight into the problems being 
studied is using surrogate (or meta) models. Such models seek to provide cheap 
answers in terms of computing power. The meta-models can also be used to bridge 
between various levels of sophistication afforded by varying fidelity physics based 
simulation codes, or between predictions and experiments. Their role is to aid 
understanding and decision taking by wringing every last drop of information from the 
analysis and data sources available to the design team and making it available in a 
useful and powerful way [1]. 
 
Surrogate models as the name means commonly used to replace the expensive 
simulations or experiments to predict the effect of certain input parameters on the 
output variables (curve fitting) or to estimate the objective function value for 
optimization process. Ordinary Kriging, radial basis function approximation are typical 
examples of this branch of usage. 
 
Recently, the meta-models have been used as tool to calibrate the less accurate 
(simplified) codes. Such multi-fidelity or multi-level approaches can also deal with 
experimental data and CFD simulations data or for CFD simulation on different grid 
levels, or fully developed flow results and developing flow results. Co-Kriging is a 
typical example of surrogate models which can handle multi-fidelity data. To filter the 
noise of the experimental data or the computational noise stems from the used 
schemes [1], meta-models can help the engineer as well. A typical example is the 
Regression Kriging. The surrogate models have been used as a data-mining tool 
several decades ago, when the polynomial regression was the cheap tool for 
data-mining. 
 

Constructing The Surrogate Model 
  

The application of met-model instead of the experimental or computational approach 
is not an easy task. The following difficulties (rocks) should be overcome (passed). 
The following summary is inspired by the book of Forrester et al.[1]. 
  
Many parameters affecting this selection; number of independent variables, the 
expected input-output relationship (linear, second order, etc.), the possible interaction 
between independent variables. These factors need some prior knowledge of the 
problem and the surrogate modeling. 
 
Generally speaking, not all the independent variables are significant, some are 
negligible. To efficiently decide that, a screening study is needed, one common 
approach is via first order polynomial regression after creating a design of 
experiment, then from the analysis of variance, one could decide the most significant 
parameters. A better and more accurate (but expensive) is by using Morris algorithm 
[2], where a surrogate model is fitted with limited number of points and then the 
distribution of the elementary effects is plotted (mean against standard deviation) [1]. 
Moreover, the dimensionless number is also helpful in reducing the number of design 
parameters. 
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The accuracy of the surrogate model depends on the sampling plan. Sometimes, we 
use data collected by someone else or collected from different source. In this case, 
there is no choice to design the experiment but still a room of accuracy enhancement 
via sampling updating if one can perform extra experiments or simulations. The full 
factorial, central composite and Box-Behnken design of experiments [3] are widely 
used sampling plan to fit a multi-dimensional polynomial (including interactions) [4]. 
This sampling plan is known as space-filling. It requires uniform spread of points, 
consequently it leaves a gap in the projections [1]. Latin hypercube sampling (LHS) 
(first introduced by McKay [5]) is a better alternative to the stratified sampling plan. In 
LHS, the design space is splitted into equal sized hypercubes (bins) and placing 
points in the bins (one in each), making sure that from each occupied bin we could 
exit the design space along any direction parallel with any of the axes without 
encountering any other occupied bins [1]. In order to evaluate the uniformity 
(space-fillingness) of a LHS plan, the maximin metric introduced by Johnson et al. [6] 
could be used. The result of this optimization process will be a better sampling plan, 
called Optimal LHS [1]. For multi-fidelity problems a new issue appears, how to select 
the sampling points for high-fidelity simulations among the low-fidelity sampling plan. 
The exchange algorithm [1] is a good strategy using the optimal LHS obtained from 
the Morris-Mitchell criterion [7]. A rule of thumb for the number of points which should 

be used in the sampling plan is       , where   is the number of design variables 
[8,9]. More sampling points will result in a more accurate surrogate. This may need an 
iterative procedure to achieve a saturation behavior of the constructed surrogate 

model (no considerable change in    or RMSE). For expensive simulations with up 
to seven design variables, one may start with the sampling number corresponding to 

Box-Behnken design (For                        points respectively) [3].  
 
If one passed all the above-mentioned difficulties, he has to start deal with a lot of 
mathematics to write a code for constructing the surrogate model.Two other issues 
should be taken into consideration. (1) Normalize all independent variables into a unit 

cube (i.e., the design space         , where   is the number of design variables), 

or          . This step safeguards against scaling issues [1]. The second issue, is 
avoiding overfitting. Overfitting mean the constructed model is so flexible to fit even 
the noise. To avoid overfitting, only part of the data can be used to construct the 
meta-model (training data), and the other part will be used for testing. If the collected 
data has initially noise, the regression Kriging (not interpolation) can handle it 
effectively [10].  
 
It is time now to test the model. For interpolation meta-models, this test is performed 

via validation. If we have large data set (say 25  ),     of the data will be kept for 
testing, and the remaining part will be used to construct the meta-model. Then the 
accuracy of the model can be tested using the root mean squared error (RMSE). 

RMSE √∑  
  

   
( (    ̂(       , where   is the given value,  ̂ is the corresponding 

predicted value and    is the number of tested points. Alternative metric is the 

correlation coefficient (  ),    (   (   ̂  √   (       ( ̂ )
 
. If the accuracy of the 

given data is known via the standard deviation   , it would be better to have RMSE 

close to   , otherwise the normalized RMSE (RMSE/(range of tested value)) of 10% 

is acceptable as a rule of thumb [1]. Moreover,        is an acceptable value. The 
above-mentioned approach can be used to test the effect of number of training points 
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on the constructed surrogate model. If no valuable change happen in the correlation 
coefficient, the meta-model is called globally saturated, whereas a better 
performance will be obtained locally at the added points. In many engineering 
problems, the data set is limited and the simulation/experiment is expensive, so 
subdividing the data into 1:3 is not possible. In this case, the cross validation is the 
suitable approach to judge the meta-model accuracy.  
 
Cross-validation is a technique for assessing how the results of a statistical analysis 
will generalize to an independent data set [11,12]. It is mainly used in settings where 
the goal is prediction, and one wants to estimate how accurately a predictive model 
will perform in practice. Cross-validation is important in guarding against testing 
hypotheses suggested by the data (called “Type III errors”:Solving the wrong 
problem), especially where further samples are hazardous, costly or impossible to 
collect. There are two widely used types; k-fold cross validation and one-leave out 

cross validation. In the  -fold cross-validation, the original sample is randomly 
partitioned into   subsamples. Of the   subsamples, a single subsample is retained 
as the validation data for testing the model, and the remaining     subsamples are 

used as training data [13]. The cross-validation process is then repeated   times 
(the folds), with each of the k subsamples used exactly once as the validation data. 

The   results from the folds then can be averaged (or otherwise combined) to 
produce a single estimation. The advantage of this method over repeated random 
sub-sampling is that all observations are used for both training and validation, and 
each observation is used for validation exactly once [12]. 10-fold cross-validation is 
commonly used [14]. As the name suggests, leave-one-out cross-validation (LOOCV) 
involves using a single observation from the original sample as the validation data, 
and the remaining observations as the training data. This is repeated such that each 
observation in the sample is used once as the validation data. This is the same as a 
k-fold cross-validation with k being equal to the number of observations in the original 
sample. Leave-one-out cross-validation is computationally expensive because it 
requires many repetitions of training [12], but for limited data it is preferred than the 
k-fold cross validation.  
 
The constructed surrogate can be enhanced by adding extra points. If the target is to 
obtain a more accurate optimal solution, more points can be added iteratively close to 
the optimum obtained from the previously constructed surrogate model, the process 
continue until no valuable change is observed in the optimal solution. This approach 
called local exploitation. Another way is via adding points at the location of highest 
uncertainty in the prediction, which is available in Gaussian process based surrogate 
e.g., Kriging. The authors think this approach is only valid for convex problem 
(no-local optimum). Moreover, a stochastic optimization technique is essential e.g., 
genetic algorithms. The more preferred approach in adding extra point is called 
balanced exploitation and exploration, one good example is the expected 
improvement infill strategy [1]. In this strategy, more points will be added at the 
location where the expected improvement is highest. The iterative procedure stops 
when the expected improvements falls below certain threshold.  
 

Objectives 
 

The main targets of this study are:   

 Apply the screening to identify the most significant factors using the 
elementary effect approach.  
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 Investigation the potential of Co-Kriging in high dimensional industrial 
problems.  

 Compare Co-Kriging against ordinary Kriging, gradient-enhanced Kriging and 
blind Kriging.  

 Apply the fitted surrogate model for single-objective optimization using genetic 
algorithms.  

 Perform CFD simulations to compare the basic design and the optimal one.  
 
 
THEORY 
 
A surrogate model is an engineering method used when an outcome of interest 
cannot be easily directly measured, so a model of the outcome is used instead [15]. 
Most engineering design problems require experiments and/or simulations to 
evaluate design objective and constraint functions as function of design variables. For 
example, in order to find the optimal airfoil shape for an aircraft wing, an engineer 
simulates the air flow around the wing for different shape variables (length, curvature, 
etc.). For many real world problems, however, a single simulation can take many 
minutes, hours, or even days to complete. As a result, routine tasks such as design 
optimization, design space exploration and sensitivity analysis become impossible 
since they require thousands or even millions of simulation evaluations. One way of 
alleviating this burden is by constructing approximation models, known as surrogate 
models ( also known as, response surface models or metamodels) that mimic the 
behavior of the simulation model as closely as possible while being computationally 
cheap(er) to evaluate. 
 
Kriging (KG) 
 
Originally, Kriging was developed - by the South African mining engineer Daniel Krige 
- for interpolation in geostatistical or spatial sampling. Later on, Kriging was applied to 
the input/output (I/O) data of deterministic simulation models; see [16,17]. Kriging 
may enable adequate approximation of the simulation I/O function, even when the 
simulation experiment covers a big input area; i.e., the experiment is global, not local. 
Kriging assumes that the function being studied is a realization of a Gaussian 
stochastic process  (      (   where   is a point in a  -dimensional search 
space,   is its mean, and  (   is a zero-mean, stationary, Gaussian stochastic 

process [18]. Kriging is categorized as ordinary Kriging if   is a constant. This is the 
most popular incarnation of Kriging in the engineering sciences [9]. There is also 

simple Kriging where    . 
 

In universal Kriging,   ∑   
       (   where the    are some known functions and 

the are    unknown parameters. Usually    takes the form of a low-order polynomial 
regression. The idea is that    captures known trends in the data and basis functions 
added to this will fine-tune the model, thus giving better accuracy than ordinary 

Kriging where a constant    is used. However, we do not usually have a priori 
knowledge of the trends in the data and specifying them may introduce inaccuracies. 
Hence the popularity of ordinary Kriging. More recently, blind Kriging has been 

applied in optimization problems [19]. In blind Kriging,    are identified through some 
data -analytic procedures. Hopefully, if the underlying trends can be identified, the 
ensuing model will be more accurate than ordinary Kriging [20]. 
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Co-Kriging 
 
Recently, the meta-models have been used as tool to calibrate the less accurate 
(simplified) codes. Such multi-fidelity or multi-level approaches can also deal with 
experimental data and CFD simulations data or for CFD simulation on different grid 
levels, or fully developed flow results and developing flow results [1]. Co-Kriging is a 
typical example of surrogate models which can handle multi-fidelity data. Co-kriging 
can be considered as a natural extension to ordinary Kriging. 
 
This way of adding a surrogate based on plentiful cheap data to a hopefully more 
simple surrogate based on sparse expensive data could employ any surrogate 
modelling method, but Krigingâ€™s multi- output variant, Co-Kriging, with its 
parametric Gaussian basis functions is particularly attractive. More recently Kennedy 
and O’Hagan [21] used Co-Kriging to correlate finite element analyses based on a 
coarse mesh with those based on a fine mesh. They used a formulation which 
assumes the complex process is equal to the simple process, multiplied by some 
ratio, plus a difference process. The ratio and difference process are determined 
using a set of collocated data. In engineering design this method has been cast in a 
global optimization context and used to optimize a transonic wing design by 
combining an empirical drag prediction code with computational fluid dynamics (CFD) 
[22]. 
 
Efficient methods for global aerodynamic optimization using computational fluid 
dynamics simulations should aim to reduce both the time taken to evaluate design 
concepts and the number of evaluations needed for optimization. Forrester [23] 
investigate methods for improving such efficiency through the use of partially 
converged computational fluid dynamics results. These allow surrogate models to be 
built in a fraction of the time required for models based on converged results. The 
proposed optimization methodologies increase the speed of convergence to a global 
optimum while the computer resources expended in areas of poor designs are 
reduced. A strategy which combines a global approximation built using partially 
converged simulations with expected improvement updates of converged simulations 
is shown to outperform a traditional surrogate-based optimization. 
 
Screening And Sampling Plans 
  
To build global models of unknown landscapes, a sampling plan with a uniform, but 
not regular, spread of points across the design space makes intuitive sense. We also 
wish to use a sample of points whose projections onto each variable axis are uniform, 
the logic being that it is wasteful to sample a variable more than once at the same 
value. The Latin hypercube [5] sampling technique is more favorable [24-29] 
especially using the Morris and Mitchell’s optimal Latin hypercube approach [1,7]. 
 
There are three levels of sampling plan (also known as design of experiment (DoE)). 
The first level is for the screening step. i.e. selection of the most significant factors. 
This step is only needed if the most significant factors are not known a priori, or to 
reduce the number of independent variables. The second level is for constructing the 
surrogate model for the most significant factors. The third level is to augment the 
constructed surrogate. This procedure is known as infill criteria. 
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Initial Sampling 
 
The term `Screening Design' refers to an experimental plan that is intended to find the 
few significant factors from a list of many potential ones [30] i.e., to identify significant 
main effects, rather than interaction effects, the latter being assumed an order of 
magnitude less important. Even when the experimental goal is to eventually fit a 
response surface model of second order, the first experiment should be a screening 
design when there are many factors to consider. Phoa et al. [31] stated that, It is risky 
to neglect the effect of interaction between factors during the screening design. 
Ignoring the interaction can result in wrong statistical inferences, including biased 
estimates, missing out on important factors and detection of spurious factors. 
 
To determine the most significant factors, the authors suggest two approaches. In 
case of using polynomial regression surrogate, after the design of experiment using 
say central composite design, Box-Behnken design or similar DoE approach, the 
analysis of variance and Pareto chart, can assist in deciding the most significant 
factors [32]. Whereas this approach is more accurate than the widely used one with 
only first order terms, this approach cannot detect any interaction than assumed in 
the design of experiment. The more promising approach is the screening algorithm 
proposed by Morris [2]. The proposed experimental plans are composed of 
individually randomized one-factor-at-a-time designs, and data analysis is based on 
the resulting random sample of observed elementary effects (cf. Sec. 2.3.2). 
 
The straightforward way of sampling a design space in a uniform fashion (using 
rectangular grid of points, e.g., full-factorial design) will satisfy the uniformity criteria 
but suffer from two major drawbacks [1]. (1) It is only defined for designs of certain 

sizes, i.e. number of points       
   , where    is the number of level for factor   

and   is the problem dimensionality. (2) Sets of points will overlap on the 
projections, and some gaps in the design space may occur. This drawbacks can be 
overcome using the Latin hypercube sampling (LHS). 
 
As stated before in Sec. 1.1, in LHS, the design space is splitted into equal sized 
hypercubes (bins) and placing points in the bins (one in each), making sure that from 
each occupied bin we could exit the design space along any direction parallel with 
any of the axes without encountering any other occupied bins [1]. The generated LHS 
satisfy the multi-dimensional stratification (projections on the axes are uniformly 
spread). There is no guarantee that the generated LHS is a good (fill the available 
space uniformly) or bad design of experiment. 
 
In order to measure the uniformity of the sampling plan (aka, space-fillingness), the 
maxmin metric introduced by Johnson et al. [6] is widely used. The criterion based on 
this metric can be explained as follow: 

Let            be the list of the unique values of distances between all possible 

pairs of points in a sampling plan  , sorted in ascending order. Further, let 
           be defined such that    is the number of pairs of points in   separated 

by the distance   . Johnson et al. [6] call   a maximin plan among all available plans 

if it maximizes    and, among plans for which this is true, minimizes   . This 
definition might yield several maximin designs. Therefore Forrester et al. [1] 
recommend to use what is called the more complete a tie-breaker definition of Morris 

and Mitchell [7]. They call   the maximin plan among all available plans if it 
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maximizes   , among plans for which this is true, minimizes   , among plans for 
which this is true, maximizes   , among plans for which this is true, minimizes       
minimizes    [1]. 
 
The distance metric widely used is the p-norm of the space, Eq. (1) 
 

   ( (     (   )  (∑   
      

     
    )

   
 (1) 

 

    yields the Euclidean norm and     is the rectangular distance, which is 
computationally cheap, and will be used hereafter. Morris and Mitchell [7] defined the 
following scalar-valued criterion function    used to rank competing sampling plans. 

The smaller the value of   , the better the space-filling properties of   will be [1]. 

 

   (   (∑   
       

  )
   

 (2) 

 
Morris and Mitchell [7] recommend minimizing    for    1,2,5,10, 20, 50 and 100 

after testing all these  s values, one can choose the best of the resulting plans 
according to the actual maximin definition. In order to obtain the optimal Latin 
hypercube sampling, an optimization procedure using genetic algorithms. After many 
iterations, the sampling plan which will produce the minimum   . For more details, 

we refer to Forrester et al. [1] and Morris and Mitchell [7]. 
 
Screening 
  
For surrogate based optimization, it is always preferred to minimize the number of 
design variable. This can be achieved when a sufficient knowledge about the 
research study is known apriori. The application of dimensionless numbers (e.g. 
Reynolds number) reduces the number of variables considerably and helps in 
generalizing the obtained results. In shape design optimization, the design variables 
are numerous, and no sufficient knowledge is available apriori. To efficiently decide 
that, a screening study is needed, one common approach is via polynomial 
regression model after creating a design of experiment, then from the analysis of 
variance, one could decide the most significant parameters, e.g., [32]. In this study, 
the Morris algorithm [1,2] will be applied. A brief description is given below. 
 
 
Elementary effects using Morris algorithm 
It is worthful to mention that to avoid scaling issues (the constructed meta-model will 

be biased by the higher values), each    will be assumed scaled in the interval [0,1]. 
The region of interest   is  -dimensional unit hypercube. If we know the function 
   (   , so based on the derivative   (            the following cases may be 
obtained.   (   may be (a) zero over all values of  , (b) a non zero constant over all 

values of  , (c) a non-constant function of   , or (d) a non-constant function of one or 
more    (    . These corresponding to the following effect of    on  : (a) 

negligible, (b) linear, (c) non-linear or (d) involved with interaction with other inputs [2]
. The major role of the preliminary experiment is to determine which inputs may have 
effects which are either (a) negligible (then remove it from the design variable), (b) 
linear, and (c or d) using limited number of experiments. 
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Let us restrict our design space   to a  -dimensional,  -level full factorial grid, that 
is         (       (         , for        . For a given baseline value    , 
let   (   denote the elementary effect of   , where 
 

   (   
 (                         (  

 
 (3) 

 
where     (    ,   is a step length factor and     such that its components 

      . 
 
According to Morris’s method, large measure of central tendency indicates a variable 
with an important influence on the objective function and a large measure of spread 
indicates a variable involved in interactions and/or in nonlinear terms. Practically, the 
sample mean and the sample standard deviation are estimated of a set of   (   
values calculated in different parts of the design space. The sampling plan should 

produce a certain number (say,  ) elementary effects for each variable, 
independently drawn with replacement [1]. Forrester et al. [1] described the steps as 
follows. Let   denotes a (       sampling matrix of 0s and 1s with the property 

that for every column           there are two rows of   that differ only in their     

entries. Then compute a random orientation of  , denoted by    [1]: 
 
    (       

  (     (                        (4) 
 

where    is a  -dimensional diagonal matrix, where each element on the diagonal 

is either +1 or -1 with equal probability,   is a matrix of 1s,    is a randomly chosen 
point in our discretized,  -level design space and    is a     random permutation 
matrix in which each column contains one element equal to 1 and all others equal to 0 

and there is no two columns have 1s in the same position. To obtain   elementary 
effects for each variable, the screening plan is built from   random orientations, i.e., 

     
    

      
     . The next step is computing the value of   for each row of   

and store these objective function values in the  ((        column vector  . 
Taking one random orientation at a time, the adjacent rows of the screening plan and 

the corresponding function values from   can be inserted into Eq. (4) to obtain   
elementary effects (one for each variable). The final output is a graphical 

representation of the sample means  ̅  against sample standard deviations   . 

Morris used       and       in his example [2]. The same values will be 
used in the current study. If we do not have any input/output relationship for the 
objective function (even based on mathematical model), we will need to construct a 

surrogate model first, possibly with few samples say    . 
 
 
 

BENCHMARK FUNCTIONS AND INDUSTRIAL TEST CASE 
 
Benchmark Functions 
 
For demonstration of the screening of high dimensional problems, the authors 
suggest a second order polynomial in four variables. Moreover, both the Sphere and 
the Rosenbrock function are tested. 
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Simple Four-Dimensional Problem 
 
The first example to demonstrate the application of screening is using the following 
simple analytical function: 
 

                    
       

  (5) 
 

Using                , Fig. 3 (a) indicates the relatively negligible effect of 

   as it is located close to zero mean and standard deviation.    has the biggest 
linear effect.    and    have higher order relationships or interactions. 
 

Another helpful and cheap plots, are the Tile plot and four-variables Nested plot 
presented in Forrester et al. [1]. Whereas, they used it as a data visualization plots, 
the authors recommend them as a visual inspection of the effect of each variable after 
constructing the surrogate model (and before any further enhancement). These plots 
can be assist to take the decision of neglecting some variables for high dimensional 
problems. 
 
Tile plot represents an array of contour plots. The baseline values (means) and the 
ranges were used to generate contour plots of the function (or its surrogate) by 
varying the inputs pairwise and keeping the remaining variables at the baseline value. 
Figure 1(c)  represents the tile plot for Eq. ((5)) using a range of       . The left 

bottom contour plot represent the function variation with    and    while holding    
and    at the baseline values (    ); The tile plot clearly present that: (a) no 

interaction between    and         . Moreover, it has minor effect on the function 
value (vertical lines means no change with the y-axis variable). (b) strong interaction 
between    and    (nonlinear curves) (c) Both          have major effects on the 

function, and the effect of       are close (almost the same line slope). 
 

The four-variable nested plot is a kind of tile plot, but here    varies along the 

horizontal axis of each tile,    along the vertical axes, while the values of    and    
can be read off the bottom of each column of tiles and the beginning of each row 
respectively. Figure 1(d) represent the four-variable nested plot for Eq. (5) using a 
range of       . The left bottom contour plot represent the function variation with 

fixed values for      and      whereas    varies on x-axis and    varies in 
y-axis from 0 to 1. The following conclusions can be drawn from the visual inspection 

of Fig. 1(d): (a) When          , the function has a nonlinear behavior with the 
change in    and   . (b) Once       become non-zero, the effect of    on   
becomes minor (the curved lines at the bottom left plot becomes vertical by 

increasing either    or   ). The insignificant effect becomes very clear if we change 
the variable order of plotting as shown in Fig. 1(e). For more than four variable, many 
nested plots can be used to understand the input-output relationship. 
 
Sphere function 

The sphere function for four variables is given as,   ∑   
     

 . Figure 2 represents 

the 3D plots, the elementary effect distributions and the Tile plot. The quadratic 
function behavior is clear from the 3D plots and the Tile plot. The elementary effect 
distributions exhibit the significant influence of all the four variables. 
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Rosenbrock function 
In this example, a modified version of Rosenbrock function [33] has been used with 
   . In this study,           . 
 

   
 

   
[∑     

      (       
    (     

  ∑   
         ( (          ]  (6) 

 

Figure 3 represents the 3D plots, the elementary effect distributions and the Tile plot. 
The highly nonlinear relationship function behavior is clear from the 3D plots and the 
Tile plot. The elementary effect distributions exhibit the significant influence of all the 

four variables.    is highly nonlinear with possible interaction with the other variables 
(high standard deviation).    exhibits the lowest possible interaction with the other 
variables. 
 
Cyclone Separator Pressure Drop 
 
Cyclones are one of the most widely used separators, which rely on centrifugal forces 
to separate particles from a gas stream. The primary advantages are the economy, 
simplicity in construction and adaptability to a wide range of operating conditions. 
Reversed flow cyclones with a tangential inlet are the most common cyclone design 
as shown in Fig. 4(a). It consists of seven main geometrical parameters: inlet section 

height   and width  , cylinder height  , cyclone total height   , dust exit diameter 

(cone tip diameter)   , gas outlet diameter (also, called the vortex finder diameter) 
   and vortex finder length  . All these parameters always given as ratios of the 
cyclone body diameter  . It is generally known that these seven dimensions 
characterize the collection efficiency (cut-off diameter) and the pressure drop of the 
cyclone separator [13, 32,34, 35]. 
 
The Euler number 
The pressure drop across cyclone essentially depends on the cyclone dimensions 
and operating conditions. Generally, it is proportional to the average dynamic 
pressure at the inlet and is often defined as [13,36] 
  

      (
 

 
     

 ) (7) 
 

where    is Euler number (the dimensionless pressure drop, also called pressure 
drop coefficient [36]). The Euler number is a complex nonlinear function of the 
cyclone geometrical dimensions and is not affected by operating conditions in the 

high Reynolds number (     5E4) [32,37]. The Euler number will be constant for 
any cyclone configuration regardless of size as long as the dimension ratios remain 
the same, although pressure drop varies with different operating conditions (due to 

the effect of    and    ). Therefore, pressure drop can be established by 

determining experimentally or theoretically for a particular cyclone design and also be 
modified by the semi-empirical correlations to take the effect of solid loading [36]. 
 
In order to determine the Euler number more accurately, all eight dimensions of the 
cyclone are selected to establish the surrogate models because they have the effect 
on the Euler number to different extent [36,38]. Usually, these dimensions can be 

characterized by the barrel diameter   and expressed as seven dimensionless 
geometric ratios [13,36]:  
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According to Eq. (8), seven independent dimensionless geometrical variables and 
one dependent variable (the Euler number of the cyclone) are selected as 
respectively the input and output parameters in the surrogate model, as presented in 

Table 1. For simplicity the division of each factor by the barrel diameter   will be 
dropped hereafter. 
 
Screening using Muschelknautz Method of Modeling (MM) 
 
The authors have performed in a previous article [32] a sensitivity analysis for the 
effect of geometrical parameters on the dimensionless pressure drop (Euler number) 
of gas cyclones. In that study, we fitted a second order polynomial regression for a 
table of experiment generated using Box-Behnken design of experiment. The 
analysis of variance (ANOV) [32] and both the main effect plot and Pareto chart [32] 
indicated that the most significant factors are four; namely, the vortex finder diameter 

  , the inlet height  , the inlet width   and the total cyclone height    as shown in 
Fig. 4(a). Figure 4(b) presents 3D plots for the MM model. Note that, the actual values 
for the seven geometrical parameters are given in Table 2 but these values are 
scaled in the range of zero to unity for all variables as shown in Fig. 4(b). 
 
The screening method proposed by Morris [2] has been applied to produce Fig. 4(c). 

It is clear that, both the cone tip diameter   , the vortex finder length   and the 
cyclone barrel height   are insignificant factors. Moreover,    has a negative effect, 
and both   and   have positive effect on the Euler number, which are the same 
conclusions stated before [32]. The interaction between variables can be deduced 

from the Tile plot. The interaction between   with both   and    is very clear. 
Moreover, the significant effect of    is very clear from the Tile plot (Fig. 4(d)). 
  
 
OPTIMUM DESIGN USING CO-KRIGING 
 
In this study, the high fidelity data has been obtained from CFD simulations using the 
Reynolds stress turbulence model [39], and the low fidelity data are calculated using 

the Sphered and Lapple model [40] (            (  
  ). The high fidelity data 

represents the variation of the most significant (four) variables; the vortex finder 

diameter   , the inlet section width   and height   and the total cyclone height, 
whereas, the low-fidelity model depicts only the effect of the first three significant 
factors. This can be considered as a sever approximation (i.e., difficult test for the 
multi-fidelity model). For better results, the MM model is a good alternative [13]. 
 
Figure 5 indicates the superior performance of the Co-Kriging model (in terms of the 
absolute error) over the ordinary Kriging, DACE and the blind Kriging using only the 
high-fidelity data. 
 
Previous Optimization Studies 
 
In 1951, Stairmand [43] presented the geometrical ratios for high-efficiency cyclones. 
Until now, these ratios are still in use. Elsayed and Lacor [32] reported the following 
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shortages in the Stairmand model for pressure drop calculation [44] which has been 
used to obtain these geometrical ratios: (1) the velocity distribution has been obtained 
from a moment-of-momentum balance, estimating the pressure drop as entrance and 
exit losses combined with the loss of static pressure in the swirl, i.e., neglecting the 
entrance loss by assuming no change of the inlet velocity occurs at the inlet area; (2) 
assuming a constant friction factor [37]. Due to the wide range of industrial 
applications of the cyclone separator, it was a matter of study for decades. However, 
the optimization studies on it is quite limited in literature. Moreover, many of these 
studies are not coherent studies or focus on a specific problem. 
 
Ravi et al. [45] carried out a multi-objective optimization study on a set of N identical 
reverse-flow cyclone separators in parallel by using the non-dominated sorting 
genetic algorithms (NSGA). Two objective functions were used: the maximization of 
the overall collection efficiency and the minimization of the pressure drop. 
Non-dominated Pareto optimal solutions were obtained for an industrial problem in 

which 165   /s of air was treated. In addition, optimal values of several decision 
variables, such as the number of cyclones and eight geometrical parameters of the 
cyclone, are obtained. Their study shows that the diameters of the cyclone body and 
the vortex finder, and the number of cyclones used in parallel, are the important 
decision variables influencing the optimal solutions. Moreover, their study illustrates 
the applicability of NSGA in solving multi-objective optimization problems involving 
gas-solid separations. The main drawbacks are: (1) They used the model of 
Shepherd and Lapple [40] for predicting the dimensionless pressure drop (Euler 
number). In Shepherd and Lapple model, the Euler number depends on only three 

factors (            
 ) and they used it to optimize the seven geometrical 

parameters. (2) The barrel diameter, number of parallel cyclones and the gas velocity 
have been included into the optimization design space. 
 
Consequently, it is not devoted to the geometrical ratio. (3) They used many side 
constraints on the geometrical values (           ,          (          

if             ) these constrains prevent searching for the global optimization 
geometrical ratios for the seven geometrical parameters. (4) No table for the 
non-dominated Pareto front points is presented from which the designer can select a 
certain geometrical ratios set. Safikhani et al. [46] performed a multi-objective 
optimization study on cyclone separators. First, they simulated many cyclones to 
obtain the pressure drop and the cut-off diameter and used artificial neural network 
approach to obtain the objective function values. Finally, a multi- objective genetic 
algorithms are used for Pareto based optimization of cyclone separators considering 
two conflicting objectives. However, the design variables were only four (instead of 
seven), the barrel height, the cone height, the vortex finder diameter and length. So 
they ignored the effect of the inlet dimensions, which has been acknowledged by 
other researchers as significant geometrical parameters for the cyclone flow field and 
performance (cf. Elsayed and Lacor [47, 32, 13, 35]). Moreover, they did not explain 
why they selected these particular parameters. Furthermore, they applied four side 
constraints on the four tested variables, which prevent searching for the global 
optimization. Safikhani et al. [48] carried out a multi-objective optimization study using 
the genetic algorithms to obtain the best vortex finder dimension (diameter and 
length) and shape (convergent and divergent). Four design variables have been 
investigated; vortex finder diameter, angle, the upper-part and lower-part lengths of 
the vortex finder. They applied neural networks to obtain a meta-model for the 
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pressure drop and collection efficiency from CFD dataset. The main shortage of the 
Safikhani et al. [48] study are: (1) They used dimensional values instead of 
dimensionless. Moreover, they applied side constraints which prevent the 
optimization procedure from obtaining global optimization. (2) The selection of only 
the vortex finder dimensions as the design variables and neglecting the interaction 
with the other dimensions, specifically the inlet dimensions [35, 13, 49]. 
 
Optimization Using Genetic Algorithms 
   
Genetic algorithms (GAs) are one of the optimization methods finding wide 
application in optimization problems [50]. Genetic algorithms searches stochastically 
through the real space of the problem by generating a random initial population. GA 
technique is one kind of evolution-based systems which measures the fitness of each 
individual in population, and then selects the fittest individuals until reproducing the 
intermediate population. The genetic operators affect some individuals in this 
population and produce the next population for the new generation through selection, 
crossover, and mutation operations. The GA could optimize linear and nonlinear 
objective functions by exploring the space of the problem. 
 
The genetic algorithms optimization technique has been applied to obtain the 
geometrical ratios for minimum pressure drop (Euler number). The objective function 
is the Euler number (using the trained Co-Kriging model). The design variables are 

four geometrical dimensions, the inlet height  , the inlet width  , the vortex finder 
diameter    and the total cyclone height   . These four variables are the most 
significant factors which affect the cyclone performance [32]. 
 
Table 3 presents the settings used to obtain the optimum design for minimum 
pressure using global optimization Matlab toolbox in Matlab 2012b commercial 
package. Table 4 gives the optimum values for cyclone geometrical parameters for 
minimum pressure drop estimated by CFD simulations (cf., Section 4.3). It is clear 
from Table 4 that the new optimized design is very close to the Stairmand design in 
many geometrical parameters, whereas the new ratios will result in the minimum 
pressure drop.   

 
CFD Comparison between the Stairmand and Optimal Design 
 
The Fluent solver has many turbulence models available for simulating turbulent flow. 
It is generally recognized that only the Reynolds stress model (RSM) and large eddy 
simulation (LES) can capture the main features of the highly complicated swirling flow 
in cyclone separators [32, 35, 51- 60]. The Reynolds stress turbulence model has 
been used in this study to reveal the turbulent flow in the two cyclone separators. For 
the detailed governing equation the reader can refer to Elsayed and Lacor [35,39]. 
The geometrical values are given in Table 5 for the two cyclones. 
 
Numerical settings 

The air volume flow rate    =50 l/min for the two cyclones, air density is 1.0       
and dynamic viscosity 2.11E-5      . The turbulent intensity equals 5% and 
characteristic length equals 0.07 times the inlet width [61]. A velocity inlet boundary 
condition is applied at inlet, outflow at gas outlet and wall boundary conditions at all 
other boundaries. The finite volume method has been used to discretize the partial 
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differential equations of the model using the SIMPLEC (Semi-Implicit Method for 
Pressure-Linked Equations-Consistent) method for pressure velocity coupling and 
QUICK scheme to interpolate the variables on the surface of the control volume. The 
implicit coupled solution algorithm was selected. The unsteady Reynolds stress 
turbulence model (RSM) was used in this study with a time step of 0.0001s. The 
interested reader can refer to Elsayed and Lacor [39] for more details about the 
numerical settings. 
 
Flow field pattern 
The dimensionless static pressure distribution presented in Fig. 6 for the two cyclones 
indicates that the highest dimensionless static pressure for the Stairmand design is 
more than twice that of the new design at all sections whereas the central value is 
almost the same for the two cyclones. This indicates that, the new design has a lower 
dimensionless pressure drop than the Stairmand design. However, these results are 
obtained at different inlet velocity for the two cyclones (to have the same air flow rate). 
The same Euler number values would be obtained if the two cyclones work at the 
same inlet velocity because the Euler number is not a function of flow velocity if the 
Reynolds number is higher than 2E4 [32]. 
 
The tangential velocity profile is composed of two regions. In the inner region, the flow 
rotates approximately like a solid body (forced vortex), where the tangential velocity 
increases with radius. After reaching its peak the velocity decreases with radius in the 
outer part of the profile (free vortex). The tangential velocity distributions for the two 
cyclones are similar in pattern (Rankine profile). The inner part of the tangential 
velocity distribution of the two cyclones is very similar. The outer part for the new 
design is lower than that for the Stairmand cyclone. This implies less swirl in the 
optimal cyclone where the particles are subjected to smaller centrifugal force and 
consequently less collection efficiency. This is expected result because the vortex 
finder diameter has conflicting effects on the Euler number and the collection 
efficiency [62]. To avoid this pitfall, a multi-objective optimization process is needed. 
 
 
CONCLUSIONS 
 
The following conclusions can be drawn from analysis of the obtained results:  

 Fitting a surrogate model using multiple levels of fidelity can enhance the 
accuracy of a surrogate model.  

 Co-Kriging super perform the ordinary Kriging and blind Kriging.  

 Co-Kriging can be applied to industrial test cases.  

 A new optimal cyclone design for minimum pressure drop has been obtained.  
 
As a future extension of this study, the following issues still need more investigation.  

 Consider multi-objective optimization problem (Euler number and Stocks 
number).  

 Apply Co-Kriging using MM model as a high-fidelity model and Sphered and 
Lapple model as a low-fidelity model with optimized LHS and exchange 
algorithm. In addition to use the expected improvement algorithm for sampling 
updating.  

 Apply the infill criteria and develop a new one for multi-objective optimization 
problems.  
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 Test more surrogate models for high-dimensional problems such as support 
vector machine.  
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Fig. 1. 3D plots, elementary effect distributions of each of the four variables of Eq. (5) 
and the corresponding tile-plot and the Four-variable nested plot. 
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Fig. 2. 3D plots, elementary effect distributions and the corresponding tile-plot for the 
sphere function. Note: In (b) x2 and x3 are coincide 

 
 
 
 

Table 1: The input and output variables for surrogate model 
 

Input parameters 
Output 

parameter 

 Variables                        ̂ 

Specification                      
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Fig. 3. 3D plots, elementary effect distributions and the corresponding tile-plot 
 
 
 

Table 2: The values of the independent variables [32]  
 

Variables Minimum Maximum 

Vortex finder diameter,          0.2 0.75 

Inlet height,         0.4 0.7 

Inlet width,         0.14 0.4 

Vortex finder length,         0.4 2.0 

Total cyclone height,          3.0 7.0 

Cylinder height,         1.0 2.0 

Cone tip diameter,          0.2 0.4 
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Fig. 4. Cyclone geometry, 3D plots, elementary effect distributions and the 
corresponding Tile-plot using MM model. 
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Fig. 5. Comparison between the Co-Kriging model and OK, DACE and BK models for 
the Euler number. Note that: DACE used a modified version of the Hooke and Jeeves 
[41] pattern search technique (cf. Section 6 in [42]), whereas the ordinary Kriging 
used genetic algorithms to obtain the optimum value of the hyperparameter θ. 
 

 
 

Table 3. Genetic operators and parameters for single objective optimization 
 

  Population type  Double vector 

Initial range   [0.25 0.15 0.25 3; 0.5 0.375 0.75 5] for  ,  ,    and    
respectively 

Fitness scaling   Rank  

Selection operation:   Tournament (tournament size equals 4)  

Elite count   2  

Crossover fraction   0.8  

Crossover operation   Intermediate crossover with the default value of 1.0  

Mutation operation   The constraint dependent default  

Maximum number of 
generations:  

 800  

Population size   200  
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Table 4. The optimized cyclone separator design for minimum pressure drop using 

GA* 

 

Factor  Low High Stairmand design Optimum design 

   0.25 0.5 0.5 0.499 

   0.15 0.375 0.2 0.150 

    0.25 0.75 0.5 0.425 

    3.0 5.0 4.0 4.876 

Euler number    5.606 1.236 

  *
The values for the other three variables are kept identical to the Stairmand design      ,       and         .   

  
 
 
 

 Table 5. The geometrical parameters for the two designs (D=31E-3 m). 
 

  Cyclone                                           

Stairmand 
design  

0.5 0.2 0.5 4 1.5 0.5 0.375 1.0 0.5 

New design  0.499 0.15 0.425 4.876 1.5 0.5 0.375 1.0 0.5 

  
   

 
 

Fig. 6. The radial distribution of time-averaged static pressure, tangenial and axial 

velocity at a station at 0.75  from the inlet section top. 
 
 
 


