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ABSTRACT  
 
This paper presents a model for aeroelastic optimization of functionally graded, plate 
subsonic wings. The objective is the maximization of the critical flight speed at which 
wing divergence occurs, while maintaining the total structural mass at a constant 
value equals to that of a known baseline design. The major aim of the study is to 
tailor the fiber volume fraction distribution in order to improve the wing aeroelastic 
performance and broaden its stability boundaries without mass penalty. Various 
power-law mathematical expressions describing material grading along the wing 
span as well as the airfoil thickness directions have been utilized, where the power 
exponent is taken as a main design variable. The pre-assigned aerodynamic 
parameters are chosen to be the wing area, aspect ratio and chord taper ratio. The 
mathematical model employs the classical plate and beam theories for determining 
elastic deformations of the wing structure, and the modified strip theory for 
calculating the aerodynamic loads that arise from these deformations. This 
representation, together with the classical lamination theory, allows the solution of 
the wing divergence problem using the finite element method. The resulting 
optimization problem has been solved by invoking the MATLAB optimization Toolbox 
routines, which implement the sequential quadratic programming method. Adequate 
scaling and non-dimensionalization of the various parameters and variables are 
utilized in order to make the model valid for a variety of wing configurations and 
types of material of construction. A case study involving the optimization of a tapered 
plate subsonic wing made of carbon-AS4/epoxy-3501-6 composites is presented. 
Trends for good designs having expanded aeroelastic stability boundary under the 
imposed mass constraint are discussed. Results show that the approach 
implemented in this study can be efficient in producing improved designs in a 
reasonable computer time.  
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NOMENCLATURE 
 
C   Chord length 

C0, H0    Chord and depth of wing baseline cross section 

 ̂            Normalized mean chord of the j-th finite element 

 ̂ =          Normalized mean thickness of the j-th element 

 ̂             Normalized thickness of the i-th layer in the j-th element,  

i=1,2,…,      

 ̂       )  Normalized length of the j-th finite element  

M0    Total mass of baseline design 

      Number of finite elements  

     Average value of the number of layers in the j-th finite element,   

j=1,2,.NE 

        Fiber volume fraction in the i-th layer in the j-th element 

      Fiber orientation angle in the i-th layer     

 
 
INTRODUCTION  

 
With the growing demand for cost-effective designs of several types of aerospace, 
civil and mechanical structures, optimization of structural components has been 
gaining increasing attention for its acknowledged design enhancement, especially in 
the early stages of product development. One of the most important design issues in 
aerospace industry is the aeroelastic instabilities that may arise from the interactions 
among aerodynamic, inertial and structural loads applied to a flight vehicle. The 
interaction of at least two of these loads produces various aeroelastic phenomena, 
such as divergence, flutter, control reversal, buffeting and dynamic instability [1]. 
These instabilities result in reduced control of the flight vehicle, undesirable 
performance, and often cause damage, sometimes catastrophic, to the vehicle 
structure. Therefore, by incorporating aeroelastic considerations into an early design 
optimization, the design space of the flight vehicle will be reduced such that 
undesirable aeroelastic effects can be avoided during the range of the vehicle's 
mission profile. Actually, design optimization of an airframe involves many 
objectives, constraints and design variables. This is because the structure of a flight 
vehicle contains thousands of components ranging from small rivets and bolts to 
large, heavyweight bulkheads and spars. 
 
In general, the application of design optimization to a complicated aero-structure 
system, like an aircraft wing, takes place in two stages. The first is called the low-
fidelity stage, and the second is the high-fidelity stage [2]. Several pioneer 
applications in the context of aeroelastic optimization of aircraft structures can be 
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found in the literature. Butler et al. [3] calculated the minimal mass design of a high 
aspect ratio composite wing under the condition that both divergence and flutter 
speeds exceed certain low limiting values. The wing was modeled as a series of box 
beams, whilst aeroelastic loads were based on the aerodynamic strip theory. Design 
variables encompassed engine position, spars locations as well as laminate ply 
thickness variation. Peter J. et al. [4] presented a combined aerodynamic and 
structural optimization model of a high-speed civil transport wing. Design objectives 
included minimum aerodynamic drag and structural weight subjected to constraints 
imposed on torsional divergence, strength, and buckling. Another work by Layton [5] 
applied multi-objective optimization to find the optimal static and dynamic aeroelastic 
design of a swept-back wing with the design variables selected to be the sweep-back 
angle, aspect ratio and chord distribution. 
 
Another new class of composite materials can be produced by varying the volume 
fractions of their constituents in a predetermined profile. Such non-uniform 
composites are called functionally graded materials (FGMs), in which the properties 
are functions of the spatial coordinates [6]. FGMs may be defined as advanced 
composite materials fabricated to have graded variation of the volume fractions of 
the constituent materials. They were originated in Japan in 1984 during the space 
project, in the form of proposed thermal barrier material capable of withstanding high 
temperature gradients. Cho and Oden [7] optimized the transient and steady-state 
thermal stresses in a ceramic-metal FGM, where the gradation was represented by a 
two-parameter curve with the coefficients serving as design variables. Another work 
by Cho and Shin [8] employed a back propagation artificial neural network to achieve 
an optimum material composition in a three-layered plate consisting of ceramic and 
metal layers and a FGM layer sandwiched between them. Limited work may be 
found dealing with FGMs applications in the context of aeroelasticity.  Librescu and 
Maalawi [9,10] investigated optimization of composite wings using the concept of 
grading in either material or shear wall thickness. The objective was maximization of 
the divergence speed, while maintaining the total structural weight at a value equal 
to that of a baseline design. Both continuous and discrete distributions of the volume 
fractions of the constituent materials were analyzed using analytical Bessel functions 
of the first and second kind. It was shown that global optimality solutions can be 
achieved for a variety of wing configurations.  The method of Sequential Quadratic 
Programming (SQP) [11], coupled with the developed finite element code is used to 
obtain the needed optimal wing designs. The main motivation for this research work 
was to utilize the concept of material grading for enhancing the aeroelastic 
performance of a straight, tapered, high aspect ratio composite wing. The aim is to 
tailor the structural mass and stiffness distributions in such a way as to raise the 
stability boundary of the wing without weight penalty at an early design stage. 
 
In the present work, a simplified model is formulated by maximizing the critical flight 
speed at which wing divergence occurs. The total structural mass is maintained at a 
fixed value equal to that of a baseline design in order not to violate other 
performance requirements of the aircraft. While there are other important aeroelastic 
phenomena, divergence speed is used here as an acceptable measure of the overall 
torsional stiffness level of the wing structure. This can be a key factor in designing 
forward swept wings which are prone to static aeroelastic instability rather than 
dynamic instabilities such as flutter or buffeting. The selected design variables 
include the volume fractions of the constituent materials of construction as well as 
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geometric and cross-sectional parameters of the wing. Considering manufacturing 
restrictions, side constraints are also set on the fiber volume fraction in order not to 
violate prescribed lower and upper limiting values. 
 
 
FINITE ELEMENT FORMULATION  
 
Figure (1) shows the normalized wing configuration where all variables are 
nondimensionalized with respect to those of a known baseline design. The plate-
beam model is assumed to be divided into a preassigned number of panels covering 
the inboard, middle and outboard regions of the wing surface. Each panel is 
subdivided into a reasonable number of finite elements as shown in the figure. The 
various wing parameters are defined as follows:  
 
 

 

Fig. 1a. Plate-beam wing model and definition of reference axes. 

 

 

Fig. 1b.  Spanwise grading of fibers in a fibrous composite plate. 
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The strain energy stored in the wing structure is given by:  

     
 

 
   ̀̀  

    ̀̀   ̀  
 

 
   ̀  (1) 

 
The equivalent stiffness terms appearing in Eq.(1) are defined in the following: 
 

Bending stiffness:                 :                
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Torsional stiffness:           :                    
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where (m, n=1, 2 ,6) and hi is the thickness of the i-th lamina.  
 
The distribution of the external work, Wext, done by the aerodynamic loads along the 
wing per unit span is [1,10]: 
 

Wext(y) = 1/2 (qcauzo + qc
2
ea2

) (3) 
 

where q (=1/2 ρairV
2) is the dynamic pressure, ρair is the air density at the specified 

flight altitude and V the relative air speed. The term "a" is the two-dimensional lift 
curve slope of the wing sections, which is empirically corrected to reflect the effect of 
finite span. Since the present study considers only low subsonic flight regime, no 
modification of the two-dimensional lift curve slope to account for compressibility is 
made. The symbol "e" denotes the dimensionless distance, as a percentage of the 
wing chord, between the aerodynamic center (A.C) and shear center (S.C), 
measured positive aft from the (A.C).  
 
The finite element method (FEM) is an approximate technique that provides 
solutions for differential and integral equations, which may otherwise be impossible 
to solve in a closed-form [12]. The FEM is particularly useful in problems with 
complex geometry, loading and stiffness variations, such as variable-stiffness 
composite wings. For structures, the general approach is to divide a single complex 
geometry into a defined group of smaller, simpler shapes known as "finite elements". 
The continuous displacements are approximated by a discrete model composed of a 
set of piecewise functions defined using the values of the displacements at a finite 
number of points (called nodal points). The most popular form of the element 
function is the polynomial with an order depending on the number of degrees of 
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freedom at each nodal point. In the present study the idealized built-up wing 
structure is divided into one-dimensional beam elements positioned along the elastic 
y-axis. Each element with length Le has two nodes, denoted with "1" and "2". Each 

node has three degrees of freedom: transverse translation uzo, bending rotation  

(=duzo/dy) and torsional twist , as shown in figure (2). 

 

Fig. 2.  Finite element degrees of freedom: equivalent beam model. 
 
 

The continuous displacement functions uzo and  can be expressed, in terms of the 
nodal degrees of freedom, as follows [12]: 

       uzo() = (1-32
+23

)uz1+Le (-22
+3

)1+(32
-23

)uz2+ Le (
3
-2

)2   (4a) 
 

() = (1-) 1+()2     , 0   (=y/Le)  1 (4b) 
 

Divergence is the case of neutral stability defined by the condition that the change in 
strain energy is equal to the work done by the aerodynamic loads during an arbitrary 
finite increase in the elastic deformations [13]. The total strain energy and external 
work done by air loads can be expressed in terms of the nodal degrees of freedom 
by substituting from equation (4) into equations (1) and (3), and integrating over the 
element length, Le. To obtain the equations of equilibrium for the finite elements 

composing the wing structure, we use the principle of stationary total potential,  , 
i.e. 

                                                         1 

 =     (U - Wext) d =0 

                                                     0 

(5) 

 

where “” stands for an arbitrary variation in  due to arbitrary variations in the nodal 
displacements satisfying the essential boundary conditions [12]. Using Eqs. (1), (3) 
and (4) in (5), integrating the displacement gradients by parts, and setting the 

coefficients of (uz,,)j=1,2 to zero separately, the final normalized matrix form of 
the resulting equations which govern the static equilibrium of an element is cast in 
the following form: 

 [  ]   ̂[  
 ] {  }  { } (6) 

 

where {  } is the nodal displacement vector {νz1, 1, 1, νz2, 2, 2}
T and  νzj(=uzj/L) is 

a dimensionless bending displacement. [  ] is the element stiffness matrix 
normalized with respect to the torsional stiffness at the wing root (GJ)0 of a baseline 
design. The latter is made of a cross-ply fibrous composite with equal volume 
fractions of the matrix and fiber materials (i.e. Vf0=50%). The optimum wing designs 
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studied herein will have the same length, chord distribution, cross section geometry, 
and type of fiber and matrix materials as those of the baseline design. The derived 
stiffness matrix in a normalized form is given be:  
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where Kb, Kt and Kc are normalized stiffnesses defined as follows: 
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The dimensionless element length  ̂  is obtained by dividing its dimensional value Le 

by the total length of the wing, i.e.  ̂ = Le/L. The matrix [  
 ] is called the 

aerodynamic matrix depending upon the wing chord distribution, aspect ratio and the 
fractional location of the shear center with respect to the aerodynamic center. Its 
elements are defined by the following (6x6) square matrix: 
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3

2
L̂ Ĉf 
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(9) 

 

where  Ĉ  is a dimensionless chord length (=C/C0), and  f  is a factor accounting for 

the effect of wing planform geometry:   

                                                f=AR(1+c)/4e (10) 
 

AR and c are the wing aspect and taper ratios, respectively, and e determines the 

location of the shear center with respect to the aerodynamic center. The quantity  ̂ in 
Eq.(6) is the dimensionless dynamic pressure defined by: 

 ̂   
    

   

    
 (11) 

 

The entire or global stiffness and aerodynamic matrices can be obtained by summing up the 

individual matrices of each element given in Eqs. (7) and (9). Applying the boundary 
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conditions at wing root (y=0), namely; uz0===0, the associated eigenvalue problem of 

wing divergence is described by the following matrix equation: 

                                            
 

 ̂
{ }  K 

  
KA { } (12) 

 

where [K] and [KA] are the global stiffness and aerodynamic matrices, respectively. 
In order to calculate the critical flight speed at which wing divergence occurs, the 
largest eigenvalue (  ̂⁄   is taken leading to the smallest dynamic pressure at which 
static instability occurs. The normalized divergence speed can be calculated from:  

 ̂  √  ̂ (13) 
 

where the normalized air speed is defined by the relation:   ̂      √          ⁄   

Finally, it should be mentioned that for the case of cross-ply layup with 00 and 900 

fiber orientation angles, the torsion and bending degrees of freedom become 
uncoupled, and only torsional divergence can be realized. In such a special case the 
element stiffness and aerodynamic matrices reduce to the following forms:  
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CONTINUOUS MODELS 
 
For continuous grading models described by power-law expressions (refer to Table 
.1), only one wing panel constructed from just one composite layer with changing 
fiber volume fraction is considered to perform design optimization. In such a cases 

design variables will include the taper ratio of fiber volume fraction, f, the power 

exponent, p, and ply angle, . The equality mass constraint can be used to eliminate 
one of the design variables, which simplify the mathematical model and, 
consequently, reduce the needed computational time. Moreover, for cases with 
thickness grading, the wing cross section is subdivided into thinner strips, each of 
which has different properties determined according to the grading pattern. The 
classical lamination theory can still be applied, where the thin strips may be imagined 
as if they were perfectly-bonded laminae composing the wing section. Table (1) 
describes the various forms of the design variable vector X for different grading 
patterns. Therefore, for continuous grading models, the associated optimization 
problem is cast in the following form: 
 

Find the design variables vector X=(f, p , ) which minimizes the objective function: 
 

F(X)=- ̂  (15a) 
 

subject to the constraints: 



37 SM  Proceedings of the 16th Int. AMME Conference, 27-29 May, 2014 

 

                                                                ̂ =1 

                                                       
   

        
   

 

                                                                 
 

                                                                     

(15b) 

 

while the normalized structural mass ( ̂ ) can be obtained by dividing the total mass 
by that of the baseline design, to get: 
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Table 1. Design variables for different grading patterns. 

Grading 
pattern 

Desig. Power-law model Fiber taper Design variables 

Thickness 
grading 
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GENERAL DESCRIPTION AND TECHNICAL DATA OF THE WING BASELINE 
DESIGN 
 
In this study the wing baseline design has a trapezoidal shape with zero sweep 
angle and rigid twist. The main construction is made of cross-ply [0o, 90o]s layup with 
equal fiber and matrix volume fractions, i.e. Vfo=Vmo=50%. Other pertinent data are 
given in the following: 
 

 Wing span   (2L=  9.60 m), Wing gross area  ( Sw= 11.80 m2), Aspect ratio  (AR= 

7.81), Structural mass  ( Mo= 500 kg), 2D lift-curve slope (ao=2), Flight altitude 3 km 

(air=0.9093 kg/m3), Maximum flight speed   (Vmax= 108 m/s). 
 

The type of material of construction is selected to be carbon-AS4/epoxy-3501-6 
composite, which has favorable characteristics and is highly desirable in both civilian 
and military aircraft structures. Its properties are given in Table 2. Moreover, for a flat 
thin plate wing, the offset between the aerodynamic and elastic axes “e” is taken to 
be 25% of the chord length. The corrected 3D curve-lift slope was calculated to be 
5.0. 

For a given value of the taper ratio “Δc”, the chord at wing root “Co”  can be 
determined from: 

                                                
  

       
 (16) 

 
The height, or total thickness, of the wing cross section at root can be calculated 
from the expression: 
 

   
   

             
  

 (17) 

 

where o=0.5(f + m)= 1540kg/m3. 

 
Table 2. Material  properties of carbon-AS4/ epoxy-3501-6 composite[11]. 

 

Property Carbon fiber 
Epoxy 
matrix 

Mass density (g/cm3) f= 1.81 m=1.27 

Young's moduli (Gpa) E1f = 235, E2f = 15 Em=4.3  

Shear moduli (Gpa) G12f = 27 , G23f = 7 Gm=1.60  

Poisson's ratio 12f=0.2 m=0.35 

Ultimate tensile strength (MPa) 3700 69 

Ultimate compressive strength (MPa) ______ 200 

Ultimate shear strength (MPa) ______ 100 
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Substituting for the prescribed values of the quantities L, Sw, Mo the cross sectional 
dimensions and the torsional rigidity at root of the wing baseline design for different 
taper ratios are given in Table (3). Actually these values belong to a family of wing 
baseline designs with different chord taper but having the same aspect ratio, wing 
area and total structural mass. The average value of the airfoil thickness-to-chord 
ratio at wing root is   about 4.25%. 
 

Table 3. Root torsional rigidity and divergence speed for different wing taper. 
 

Δc Co (m) Hox 10-2 (m) GJox104N.m2 
 ̂   VDo m/s 

0.25 1.97 7.85 132.01 1.68 270.79 

0.5 1.64 7.07 80.29 1.65 249.14 

0.75 1.405 6.25 47.52 1.61 218.3 

1.0 1.23 5.5 28.35 1.57 187.82 

 

 

The last two columns in Table (3) give the normalized divergence speed and the 
actual dimensional value as calculated by using equation (Eq. (13)).  
 

Figure (3) shows variation of the normalized and actual dimensional divergence 
speed with chord taper for such a family of wing baseline designs. It is seen that the 
dimensionless divergence speed is slightly decreasing with chord taper. This is 
merely due to the scaling effect considered in the mathematical model formulation, 
which makes most of the problem variables and parameters have close order of 
magnitudes. The actual dimensional speed can be obtained by multiplying its 

dimensionless value by the factor: 
 

   
√

    

      
      (refer to Eq.13), which can be 

determined from the known baseline design parameters. It is observed that the 
actual divergence speed is decreasing sharply with increasing chord taper, which is 
a naturally expected behavior.  
 
 
RESULT OF CONTINUOUS SPANWISE GRADING, (S-1) - GRADING MODEL [9] 

The first case study to be implemented is designated by the (S-1)-grading model, 
which considers variation of the fiber volume fraction in the spanwise direction 
according to a power-law expression. The wing is constructed from just one panel 
with cross-ply [00, 900]s layup. The structure was divided into 15 finite elements of 

equal length. Figure (4) shows variation of the resulting optimal solutions X=(f, p)opt 

and  ̂      with the wing chord tapering ratio, Δc. It is seen that the maximum 

normalized divergence speed,  ̂      changes smoothly with Δc around an average 

value of 1.72. Wings having small chord taper possess higher aeroelastic stability, 
which is an expected natural behavior. The optimal power-exponent ‘p” curve is seen 

to be split into two curves asymptotic to the vertical line Δc=Δcs  0.56.  In the range 

0.25 Δc0.4, ‘p’ slightly increases around an average value of 0.5, while the fiber 

volume fraction ratio            remains constant at its maximum value of 3.0. This 
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Fig. 3. Variation of dimensionless and actual dimensional divergence speed of 

the wing baseline design with chord taper (Same AR, Sw and Mo). 
 

 

means that the fiber volume fraction reaches its lower limiting value at wing root and 

its upper value at wing tip inside this range. For 0.4 Δc Δcs, both   (f, p)opt 

decrease towards the separation point Δcs0.56, where a jump in the power 

exponent curve can be noticed near the vertical line Δcs  0.56. For the range Δc 
Δcs, p decreases rapidly reaching a value of 1 corresponding to a rectangular wing 

planform. At the same time, the optimal volume fraction ratio f changes slightly 
around an average value of 0.35. Numerical results of the final optimal designs are 
given in Table 4 for some selected values of Δc.  
 
It should be reminded that such a behavior depends entirely upon the pre-assigned 
mathematical form of the power-law expression, which represents an additional 
constraint on the proposed optimization model. The problem of determining the 
global optimal distribution of the volume fraction may be treated using optimal control 
theories [15]. Such a sophisticated mathematical problem is out of the scope of the 
present work.   
 
 
RESULT OF (S-2)-GRADING MODEL [16] 
 
The second case study is designated by the (S-2)-grading model, which considers 
variation of the fiber volume fraction along the wing span according to Table 1. 
Figure (5) depicts the attained optimal solutions with varying chord taper ratio for the 
linear case, where the coordinate exponent n=1. The maximized objective function, 

 ̂     , retains similar variation with c as that obtained by using the ‘S-1’grading 

model (see Fig. 4).  However, the two branches of the optimal power exponent, p-
curve, are seen to be reversed, but with nearly similar behavior to that obtained in  
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Fig. 4. Variation of optimum design solution (f, p)opt  and  ̂     , with 

               chord taper ratio, Δc: Case of spanwise ‘S-1’ material grading model. 
 
 

Table 4. Optimal wing designs using spanwise ‘S-1’ grading model. 
 

   (f, p)opt. (vfr, vft)opt  ̂      VD,max(m/s) Gain% 

0.25 (3.0, 0.535) (0.25, 0.75) 1.811 292.7 7.8 

0.5 (2.32, 0.236) (0.25, 0.58) 1.66 250.65 0.5 

0.55 (0.47, 4.25) (0.53, 0.25) 1.67 247.5 1.6 

0.75 (0.373, 1.205) (0.671, 0.25) 1.691 229.1 4.8 

1.0 (0.333, 1.0) (0.75, 0.25) 1.748 209.6 11.4 

 
 
the ‘S-1’model. The separation point, Δcs is seen to be shifted slightly to the left, 

where the two branches become asymptotic to the vertical line Δcs  0.44. On the 
other hand, the optimal fiber ratio Δf retains the same behavior reaching its minimum 
value of 0.33 when the wing planform becomes rectangular, i.e. Δc approaches unity. 
The case of n=2 is shown in Fig. 6. It is seen that the Δf –curve retains a similar 
shape to that obtained before in the other cases. The optimization favors more fibers 
near the wing root for chord taper ratios greater than 0.5. A more expanded stability 
boundary than that obtained in the case of n=1 can also be observed, where higher 

values of the maximized objective function  ̂      are achieved. The optimal power 

exponent curve is seen to be asymptotic to the vertical line Δcs  0.425. However, the 
obtained values of the power exponent ‘p’ are seen to be much higher than those 
obtained in the case of n=1.  
 
Table (5) gives the attained optimal solutions using the ‘S-2’ grading model for 
different values of the coordinate exponent ‘n’ and chord taper ratio ‘Δc’. As a general 
observation, the achieved optimization gain in the divergence speed increases with n  
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Fig. 5. Variation of (f, p)opt  and  ̂     , with chord taper ratio, Δc 

Case of spanwise ‘S-2’ model (n=1). 
 
 

 

Fig. 6. Variation of (f, p)opt  and  ̂     , with chord taper ratio, Δc 

Case of spanwise ‘S-2’ model (n=2). 
 
 
 

in most cases, reaching a value of 15.1% at n=3 for wings having a rectangular 
shape. It is also remarked that all spanwise grading models fail to give any 
significant improvement in the aeroelastic performance in the neighborhood of     Δc= 
0.5, where the obtained optimization gain is almost less than 1%. 
 
Table (6) summarizes the actual values of the optimal fiber volume fractions at wing 
root and tip, as well as the maximum divergence speed VD,max in m/s. It is seen that 
all values of VD,max are much higher than those of the corresponding baseline 
designs for different chord taper ratios.  
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Table 5. Optimal solutions using spanwise ‘S-2’ grading model 

C 

(f, p)opt. ,     ̂     ,    Gain % 

n=1 n=2 n=3 

0.25 (3.0, 2.18), 1.845, 9.8% (3.0, 8.78), 1.87, 11.5% (3.0, 1.0), 1.84, 9.3% 

0.50 (0.47, 0.2), 1.657, 0.3% (0.47, 0.43), 1.660, 0.5% (0.47, 0.717), 1.665, 0.8% 

0.55 (0.44, 0.38), 1.66, 0.8% (0.45, 0.70), 1.66, 1.1% (0.45, 1.1), 1.67, 1.5% 

0.75 (0.33, 1.21), 1.69, 4.9% (0.365, 2.18), 1.7, 5.5% (0.38, 3.6), 1.71, 6.0% 

1.0 (0.33, 1.0), 1.75, 11.4% (0.33, 2.38), 1.79, 13.8% (0.33, 5.02), 1.81, 15.1% 

 

 

Table 6. Optimal volume fractions at wing root and tip: ‘S-2’ grading model 

C 

(vfr,vft)opt., VD,max m/s 

n=1 n=2 n=3 

0.25 (0.25, 0.75), 298.2 (0.25, 0.75), 302.7 (0.26, 0.75), 296.9 

0.50 (0.534, 0.25), 250.4 (0.536, 0.25), 251.1 (0.536, 0.25), 251.7 

0.55 (0.57, 0.25), 245.6 (0.56, 0.25), 246.5 (0.56, 0.25), 247.3 

0.75 (0.75, 0.25), 229.3 (0.69, 0.25), 230.7 (0.66, 0.25), 231.6 

1.0 (0.75, 0.25), 209.6 (0.75, 0.25), 214.2 (0.75, 0.25), 216.6 

 
 
Result of Continuous thickness grading 
 

Figure (7) shows variation of the optimal design variables (f, p)opt, and maximum 

normalized divergence speed  ̂      with the chord taper ratio c for the case of 

thickness, ‘T-1’ grading model [17]. The wing is constructed from just one panel 
(Np=1) divided into 15 finite elements (NE=15) with equal lengths. Cross-ply [00, 900]s  
layup was considered, where each lamina at wing root is imagined to be subdivided 
into 5 thin perfectly-bonded layers of equal thicknesses, i.e. (NLr=20). 
 
 It is seen that better wing designs have an increasing convex variation of the power 

exponent ‘p’ with wing taper ‘c’. Wings with sharp taper possess higher values of 

 ̂      , which indicates more expanded aeroelatic stability boundary. Regarding 

variation of the volume fraction ratio ‘f’, the optimization favors more fibers at the 
upper surface of the wing. The lower surface has less fiber volume fraction by about 
45% . 
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Fig.7. Variation of (f, p)opt  and  ̂     , with chord taper ratio, Δc 

Case of thickness ‘T-1’ grading model. 
 

 

Results for the case of symmetrical thickness grading ‘T-2’ [18] are shown in Figure 
(8). Better wing designs have an increasing concave variation of the power exponent 

‘p’ with wing taper ‘c’. The optimal fiber volume fraction ratio almost remains 
constant at an average value of 0.33. This means that the volume fraction reaches 
its lower limiting value (25%) at the middle surface of the wing and its upper value 
(75%) at the upper and lower surfaces. 
 

 

Fig.8. Variation of (f, p)opt  and  ̂     , with chord taper ratio, Δc 

Case of thickness ‘T-2’ grading model. 
 

Table (7) summarizes the attained optimal solutions for both thickness ‘T-1’ and ‘T-2’ 
grading models. It is obvious that symmetric material grading, as described by the ‘T-
2’ model, results in better wing designs having higher values of the maximum 

divergence speed,  ̂     . The optimal power exponent for the ‘T-1’ model always 

exceeds 1.0, which means that the volume fraction has convex variation in the airfoil 
thickness direction. In contrast to this, the power exponent is less than or equal to 
1.0 for the symmetric thickness grading model, indicating concave variation of the 
volume fraction in the airfoil thickness direction. 
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Table 7. Optimal solutions using thickness grading. 

 

c 

(f, p)opt,  ̂     , Gain% 

(T-1) grading model (T-2) grading model 

0.25 

0.5 

0.75 

1.0 

(0.392, 1.20), 1.787, 6.4% 

(0.473, 1.70), 1.761, 7.1% 

(0.478, 1.75), 1.729, 7.2% 

(0.483, 1.80), 1.685, 7.2% 

(0.333, 0.04), 1.87, 11.3% 

(0.333, 0.12), 1.97, 19.3% 

(0.333, 0.28), 1.86, 15.3% 

(0.333, 1.0), 1.85, 17.7% 

 
 
 
CONCLUSIONS 
 
The following conclusions are obtained: 

1. For the continuous spanwise grading models ‘S-1’ and ‘S-2’, it was found that 
the optimal power exponent curve consists of two branches asymptotic to a 
vertical line located at a specific value of the wing chord taper ratio (denoted 
by Δcs) ranging between 0.42 and 0.56. The optimization favors more dense 
fibers near the wing root for chord taper ratios greater than Δcs.  

2. For the ‘S-2’ model, more expanded stability boundaries have been achieved 
for higher values of the coordinate exponent ‘n’, where the normalized 
divergence speed reaches its uppermost levels. However, in the 
neighborhood of Δcs, both power-law grading models fail to give any 
significant improvement in the aeroelastic performance, where the attained 
optimization gain is less than 1%. 

3. Concerning grading in the airfoil thickness direction described by the ‘T-
1’model, it was found that better wing designs have an increasing convex 
variation of the power exponent ‘p’ with wing taper.The attained numerical 
values always exceed 1.0,which means that the volume fraction has also 
convex variation in the airfoil thickness direction. Wings with sharp taper 
possess higher divergence speeds, which indicates more broadened 
aeroelatic stability boundaries. The optimization favors more dense fibers at 
the wing upper surface than at the lower one. 

4. Symmetric material grading described by the ‘T-2’model results in the highest 
stability level. It was shown that better wing designs have   increasing 
concave variation of the optimal power exponent with wing taper. The attained 
numerical values were found to be less than or equal to 1.0, indicating 
concave variation of the volume fraction in the airfoil thickness direction. 
Results also show that optimization favors more fibers at the upper and lower 
surfaces of the wing with the volume fraction reaching its upper limit value of 
75%. At the middle surface, however, the optimal fiber volume fraction 
approaches its lower limit value of 25%. 
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The following Recommendations are given in the following: 
1. The attained optimal solutions using continuous material grading depend 

entirely upon the pre-assigned mathematical form of the power-law 
expression, which represents an additional constraint on the proposed 
optimization model. The problem of determining the actual optimal distribution 
of the volume fraction may be treated using advanced optimal control 
theories. 

2. Future study should apply multi-criteria optimization by maximizing both 
divergence and flutter speed under mass constraint. 

3. The optimization analysis can be extended to cover other cross-sectional 
types of the wing, such as a rectangular, thin-walled box sections. 

4. This paper deals with aeroelastic stability only. Response problem 
optimization will be considered in a future study.  
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