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ABSTRACT 

 
In the present work, stress modeling using finite element technique is proposed to 
describe the response of laminated composite beam with piezoelectric actuators due 
to mechanical, electrical, and thermal loads. The assumed field displacements 
equations are represented by first-order shear deformation theory (FSDT), the 
Timoshenko beam theory. The equation of motion of the smart beam system is 
derived using the principle of minimum potential energy. A cubic shape function is 
used to represent the axial displacement u, a quadratic shape function for the 

transverse displacement w , where the normal rotation 
x

φ , electric potential ϕ  , and 

thermal temperature θ  are  represented by a linear shape. A MATLAB code is 
developed to compute the static and stresses deformations of the structure system 
due to the thermal loads. The shear correction factor is used to improve the obtained 
results.  The obtained results are compared to the available results of other 
investigators, good agreement is generally obtained. 
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NOMENCLATURE 

Symbol Definition 

A  Beam cross section area 

ijklC
 Elastic constants 

iD
 Electric displacements 

E Young’s modulus 

1 2
,E E  Young’s modulus in fiber and its transversal direction, respectively 

kE
 Electric field (k=1,2,3) 

ijke
 Piezoelectric constituents' constants 

af   , tf  Axial and transversal forces 

H  Electric enthalpy 

ch  Convection coefficient 

[ ]qqK  Mechanical stiffness matrix 

[ ]ϕϕK  Electric stiffness matrix 

[ ]ϕqK  Coupled mechanical - electrical stiffness matrix 

[ ]θθK
 Thermal stiffness matrix 

[ ]θqK
 Coupled mechanical - thermal stiffness matrix 

[ ]ϕθK
 Coupled electric-thermal stiffness matrix 

x
k  Thermal conductivity in x direction 

L Length of beam element 

iP
 Pyroelectric constants 

{ }Q  Thermal load vector 

ijQ
 Components of the lamina stiffness matrix 

q&&  The second derivative of the nodal displacement  

xq  Heat flux in the x direction 

*q  The rate of energy is generation per unit volume 

e
T  Kinetic energy 

T  Temperature of the solid /fluid interface 

∞T  Reference temperature 

u, v, w Displacements of any point in the x-, y-, and z directions 
o

u ,
o

v ,  
o

w  Reference surface displacements along x-, y-, and z- axes 

1 2 3 4
, , ,u u u u  Axial displacements at the element nodes 

W  Work done external loads 

1 2
,w w  , 

3
w  Transversal displacements at the element nodes 

o

xyγ
 

In-plane shear strain 
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xzγ  Transversal shear strain in x-z plane 

xε
, yε

,  zε  Linear strains in the x-,y-, and x-directions 

0

x
ε  , 

0

y
ε  Reference surface extensional strains in the x-, and y-directions 

s

ijε  Permittivity constants 
0

x
κ , 

0

yκ  Reference surface curvatures in the x-, and y-directions 

iξ ,
 iζ  Axial and transversal displacements shape functions 

Π  Total potential energy 
ρ  Mass density of structure material 

xx
σ  Normal stress in the x-direction 

xz
σ

 Shear stress in the x-z plane 

σ  surface charge density  

xφ  Angle of rotation 

iα
 Thermal expansion coefficients 

ϕ
 Electric potential 

iψ  Rotation displacement shape functions 

1
θ  , 2

θ  Temperature degrees of freedom 

 

Abbreviations 

HSDT Higher-order shear deformation Theory 
SSDT Second-order shear deformation Theory 
FSDT First-order shear deformation Theory 
CBT Classical beam Theory 

 
 
INTRODUCTION 

 
Several researchers are interested to solve smart beams have piezoelectric 
actuators with thermal effect using different theories. Nowacki [1] presented a 
uniqueness theorem for the solutions of the different equations of thermo-
piezoelectricity, on the basis of the energy balance. The generalized Hamilton 
principle and the theorem of reciprocity of work are also deduced in this study. 

 
Tzou and Ye [2] presented the piezothermoelastic effects of piezoelectric laminates 
with distributed piezoelectric sensor/ actuator subjected to a steady–state 
temperature field. They defined the piezothermoelastic constitutive equations, 
followed by three energy functional for the displacement, electric, and temperature 
fields, respectively. The distributed sensing and control equations in temperature 
fields are also defined. They formulated 3D piezothermoelastic thin hexahedron finite 
element with three internal degrees of freedom using a variational formulation which 
includes thermal, electrical, and mechanical energies. Thermal influences on the 
sensing and control of piezoelectric PZT/steel laminates are also investigated. 
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Tzou and Howard [3] presented the piezothermoelastic characteristics of the 
piezoelectric shell continua and the application of the theory to active structure in 
sensing and control. The study showed that the piezothermoelastic equations in 
three principle directions include thermal induced loads, as well as, conventional 
electric and mechanical loads. Also the electric membrane forces and moments 
induced by the converse effect can be used to control the thermal and mechanical 
loads. They proposed simplification procedure, based on the Lame’ parameters and 
radii of curvatures and applied the theory to piezoelectric cylindrical shell, 
piezoelectric ring, and piezoelectric beam.   
 
Lee and Saravanos [4] developed a discrete layer model to incorporate thermal 
effects to account for the complete coupled mechanical, electrical, and thermal 
response of the piezoelectric composite beams. Their representation leads to an 
inherent capability to model both the sensory and active responses of piezoelectric 
composite beams in thermal environments. They gave additional numerical studies 
demonstrated the capabilities of their model to predict the thermal deformation of 
composite beams, the active compensation of these thermal deformation, the 
corresponding sensory response, and the resultant stress state in the piezoelectric 
structure. 
 
Lee and Saravanos [5] proposed analytical formulations for thermo piezoelectric 
composite materials accounted for thermal effects from temperature dependant 
material properties. The thermal effects are represented, at the material levels, 
through the thermo piezoelectric constitutive equations incorporated into a layer wise 
laminate theory. A corresponding finite element equation was derived and 
implemented for beams and plates to model the active and sensory response of 
piezoelectric composite laminates.  
 
Raja et al. [6] proposed finite element formulation of a laminated beam with 
embedded piezoelectric material as distributed actuators/sensors. They derived a 
two nodded 3-D beam element using first shear deformation theory to model the 
direct and coupled effects. A feed back is employed to actively control the first three 
modes of a cantilever PZT/steel/PZT beam. The model included contributions from 
elastic, thermo elastic, piezoelectric, dielectric, pyroelectric and heat components. 
Both thermal strain effect and direct pyroelectric effect generated sensory voltages, 
however, the thermal strain effect is of greater significance. They employed eigen 
structure assignment technique using output feedback. The first three dynamic 
modes are controlled by placing the desired eigen values exactly. And the tip motion 
of the cantilever smart beam is significantly reduced by shaping the eigenvectors of 
the closed systems.    
 
Lee [7] proposed comprehensive study for the behavior of composite laminate 
contains piezo-electric elements. The study is emphasis on the coupled response at 
the material level through the thermo-piezoelectric constitutive equations and to 
introduce the displacements, electric potential, and temperature as state variables in 
the analysis. The mechanics incorporate a layer wise laminate theory for more 
accurate analysis especially for thick laminates. The thermal effect, pyroelectric 
effects, and temperature dependent material properties are also accounted. The 
corresponding finite element formulations are developed for beam, plate, and shell 
elements for a static and dynamic analysis of the structures. The obtained results 
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from this model are compared with the published experimental data and analytical 
models and found reasonable. 
 
Shang et al. [8] proposed finite element techniques for three-dimensional coupled 
thermo-electro-mechanical static analysis. The actual thermo-piezoelectric 
responses subjected to thermal loadings can be determined by adopting a procedure 
TPESAP. The detailed implementation is presented with emphasis on the integration 
with software ABAQUS. A three-dimensional (3D) formulation of thermo-piezoelectric 
problems is presented for general purpose, making use of the weak form of thermo-
electro-mechanical equilibrium. 
 
Bansal and Ramaswamy [9] proposed finite element model to study the dynamic as 
well as the static thermal response of laminated composite containing distributed 
piezoelectric layers. They studied both the sensory and active responses on 
piezoelectric composite beam and plate structure. They concluded that both the 
thermal and pyroelectric effects are important and need to be considered in the 
precision distribution control of intelligent structures. Also these thermal effects will 
improve the performance characteristics of the system. 
 
Görnandt and Gabbert [10] presented weak form of the fully coupled 
thermopiezomechanical field equations, including linearized constitutive equations, 
developed on the basis of the balance laws of the mechanics and electro dynamics 
and the entropy production inequality. The obtained results from their model show 
that, upon a finite element discrete in space, the governing semi-discrete system of 
differential equations is unsymmetrical. The temperature is coupled with the 
mechanical displacement and electric potential only via the first time derivatives. 
They found that for static case these equations can be solved separately, and 
consequently, also for dynamic cases a separate solution scheme is proposed where 
the solutions for each time step are calculated iteratively. They concluded that 
temperature may exert a considerable on the behavior of the controlled smart 
structure.  
 
Benjeddou and Andrianarison [11] proposed piezoelectric mixed variational theorem 
(PMVT), by adding the transverse thermal field-temperature increment relations a 
constraint via a Lagrange multiplier. Where the Lagrange multiplier shown that the 
transverse (normal) heat flux which continuity can be fulfilled in a natural way as the 
case for the transverse structure stress and transverse electric field in ( PMVT). 
Therefore, they presented a thermo-piezo-electric mixed variational theorem (TMVT) 
which is suited for implementing analytical or closed form and numerical, such as 
finite element, solutions for thermo piezoelectric multilayered smart composites. 
They developed a mixed thermo piezo-electric constitutive equations to be used in 
conjunction with the TMVT and a guidelines for their numerical implementation are 
also given. 
 
Jonnalagadda et al. [12] proposed finite element model to compute the response of 
composite plates with attached piezoelectric PVDF type subjected to mechanical, 
electrical, and thermal loads based on the first order shear deformation theory. They 
found that moderately thick piezo-thermo-elastic composite are sensitive to shear 
deformation and the influence of this shear deformation diminishes with increase 
plate thickness and aspect ratio.  
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Senthil and Batra [13] proposed generalized plane strain thermo piezoelectric 
deformations of laminated thick plates using the Eshelby–Stroh formalism where the 
analytical solution is in terms of an infinite series. The formulation admits different 
thermal, electrical, and mechanical boundary conditions at the edges of each lamina, 
and it is applicable to thick and thin laminated plates. The computed results prove 
the versatility of the proposed technique for obtaining accurate stresses for thick 
hybrid multilayered plates subjected to various thermal, electrical, and mechanical 
loads. 
 
Wang and Noda [14] proposed finite element model of smart functionally graded 
piezoelectric structure with thermal effect. The results reveal that both the stress 
discontinuity and thermal deformation of the structure can be controlled. They 
introduced a functionally graded between the PZT actuator layer and the metal beam 
layer, they concluded that both stress discontinuity and the edge local stresses can 
be essentially reduced.  
 
Lepage [15] developed a computational framework to determine the thermoelastic 
quality factor and the modeling of uncertainties. He derived a thermopiezoelectric 
finite element formulation to carry out model analyses of MEMS. The perturbation 
stochastic finite element method (SFEM) is used to determine the mean and 
variance of the thermo-elastic quality factor and is compared to direct Monte-Carlo 
simulations. 
 
Ashida and Noda [16] presented a model of the piezoelectric based intelligent solid 
state actuator which could control the elastic displacement distribution, adapting to 
the transient temperature change of the surrounding medium. The model of the 
actuator consists of isotropic structural layer onto which two piezoceramic layers are 
perfectly bonded. By analyzing the intelligent problem of transient piezothermoelastic 
field in the composite plate, it was shown how to sense the unknown heating 
temperature and to control the elastic displacement distribution of the structure. 
Numerical simulation demonstrated that the elastic displacement distribution of the 
structural layer induced by the unknown transient heating temperature could be 
controlled by applying the determined electric potential distribution. 
 
Piening [17] proposed 2D models which was suited to predict the strength behavior 
of homogeneous metallic structures. He concluded that the as soon as the elastic 
body system becomes inhomogeneous, has a complex shape and or an isotropic, 
the solution was at least questionable. Transverse stresses can not be calculated 
and the effect of changes in the layer stacking sequence can not be estimated. But 
the results of static and fatigue test showed a strong dependence of the failure 
behavior on the stacking order. Also the action of the active layers, the placement of 
active layers within the cross-section has a decisive effect on the long term efficiency 
of the active laminate, and must be taken into consideration in the early design 
phase. 
      
The present work proposed a stresses modeling of the smart piezoelectric laminated 
beams with thermo-piezoelectric effects using a finite element technique. The model 
is based on the FSDT, Timoshenko theory, which taking into consideration the shear 
effect and used shear correction factor. The structure system response due to 
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mechanical, electrical, and thermal loads are obtained and compared with other 
investigator and found reasonable. 

 
 
THEORETICAL FORMULATION 
 
The displacements field equations for Timoshenko first-order shear deformation 
theory (FSDT) at any point through the thickness of a beam can be expressed as 
[18]: 
 

)()(),( 0 xzxuzxu xφ−=  

( , ) 0v x z =  
( , ) ( )w x z w x=

o
 

(1) 

 

where u ,v  and w are the displacements field equations along the x , y and z  

coordinates, respectively, 
0

u and 
0

w  denote the displacements of  a point ( , ,0)x y  at 

the mid plane, and ( )xxφ   is the  rotation  angle of the cross-section.    

 
According to the assumptions of the first order Timoshenko beam theory the only 

non-zero stress and strain components are xxσ , xzσ , xxε ,
 xzγ  ( )0ε ε γ γ= = = =yy zz xy yz

 

[18]. Thus the strain-displacement relationships are obtained by differentiating the 
assumed displacements field equations, Eqn. (1), as follows: 
 

    
( , ) ( , )( , , )

( , , ) x
xx xx xx

u x z x zu x y z
x y z z z

x x x

φ
ε ε κ°∂ ∂∂

≡ = − = +
∂ ∂ ∂

o o

 (2) a 

 

( )
( ) 00

, , ( , , )
, ,

xz x xz

u x y z ww x y z
x y z

z x x
γ φ γ

∂ ∂∂
≡ + = + =

∂ ∂ ∂
 (2) b 

 

where, xxε o is the reference surface extensional strain in the x-direction, xzγ o
 is the in-

plane shear strain, and xxκ o  is the reference surface curvature in the x-direction. The 

strains at any point through the thickness of the beam can be written in matrix form 
as: 
 

    








+








=








0

0

0

0

xz

xx

xz

xx

xz

xx
z

κ

κ

γ

ε

γ

ε
, (3) a 













∂

∂
−

+
















∂

∂
+−

∂

∂

=








00

0

xz

x

w
x

u
x

x
xz

xx

φ

φγ

ε
. (3) b 

 

Thermopiezoelectric Constitutive Relations  
 
For the elastic system with piezoelectric material, the total potential energy H  stored 
in a lamina comprises the various components of the elastic strain energy, 
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piezoelectric material energy and electrical energy, which given by [15, 19, 20, and 
21]: 
  

( ) 21 1 1
, ,

2 2 2

s

ij i ijk l ij k l ijk i jk ij i j ij ij i i T
H E c e E E E P Eε θ ε ε ε ε β ε θ θ λ θ= − − − − −  (4)  

 

where; 6,...,1, =ji , and  3,...1, =lk , 
ijklc , 

ijke , and s

ijε  are the elastic, piezoelectric, and 

permittivity constants, respectively, 
ij

β  is the thermal mechanical constants 

(
klijklij c αβ = ) and klα is the thermal expansion coefficient,

ijε is the mechanical strain 

components, iP  is the pyroelectric constant, and θ  is the temperature rise from the 

initial temperature T∞ and the temperature T of the solid /fluid interface ( T Tθ ∞= − ). 

The parameter 
T

λ  is defined as E
T

C

T
λ

∞

= , where 
E

C is the heat capacity. The 

constitutive relations of the thermal-piezoelectricity are obtained by differentiating the 
function H with respect to the strain, electric field and the temperature rise 
components as follows: 
 

    

 
ij ijkl kl ijk k ij

ij

H
c e Eσ ε β θ

ε

∂
= = − −

∂  (5) 

s

i ijk jk ij j i

i

H
D e E P

E
ε ε θ

∂
= − = + +

∂
 (6) 

ij ij i i T

H
S P Eβ ε λ θ

θ

∂
= − = + +

∂
 (7) 

 

where  S  is the entropy density.  
 

The constitutive relations with plane stress approximation for thk  can be written as 
follows [7]: 
 

11 1211 11 31 1

12 22 122 22 32 2

44 223 23 24

55 313 13 15

6612 12

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

k

kk kk

Q Q e

Q Q Ee

Q Ee

Q Ee

Q

σ ε β

σ ε β

σ ε

σ ε

σ ε

′       
       ′               
  ′ = − −      
        ′        
             k

θ






 
 
  

 (8) 

11

1 15 11 1 122

2 24 22 2 223

3 31 32 33 3 313

12

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

s

s

s

k k kk

k

D e E P

D e E P

D e e E P

ε

εε

ε θε

εε

ε

 
 ′ ′                   ′ ′= + +         

        ′ ′ ′          
  

 (9) 

where;  ;33

33

13

3131 e
c

c
ee −=′     ;33

33

23

3232 e
c

c
ee −=′    ;2424 ee =′    ;1515 ee =′               

;1111

ss εε =′         ;2222 εε =′s           
33

2

33

3333
c

es +=′ εε  

(10) 
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The elastic coefficients 
ij

c  are given by Ref. [22], and the reduced stiffness 

coefficients 
ijQ  related to the engineering constants are defined for two cases as 

follows [23]: 
 

Case I: Isotropic layer 
 

22211
1 ν−

==
E

QQ kk

.       
212

1 ν

ν

−
=

E
Q k

        
GQQQ kkk ===

665544
 (11) a 

 

where E  , G , and ν  are the isotropic material properties. 
 

Case II: Orthotropic layer 
 

kk

k
k E

Q
2112

1

11
1 υυ−

=

      
kk

kk
k E

Q
2112

212

12
1 υυ

υ

−
=

       
kk

k
k E

Q
2112

2

22
1 υυ−

=

 

2344
GQ k =

       
kk GQ

1355
=

        
kk GQ

1266
=  

(11) b 

 

Thus the transformed relations from the material principle axes 1, 2, and 3 to the 
geometrical axes x, y, and z can be written as: 
 

3111 12 16

3221 22 26

14 2444 45

15 2545 55

3616 26 66

0 00 0

0 00 0

00 0 0

00 0 0

0 00 0

xx xx
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where ijQ  and 
ije  are the transformed reduced stiffness coefficients, and 

piezoelectric modules, respectively.  And (
xxβ , and yy

β ), (
xP , yP , and zP ), are the 

transformed thermal expansions components, and pyroelectric constants, 
respectively.  

 
In the proposed model the following assumptions are used: (1) The width in y 
direction is stress free and the plane stress assumption is used. Therefore, it is 
possible to set 0===== xyyzxyyzyy γγσσσ , and  0≠yyε . (2) The polarization axis z 

is aligned with the thickness direction of the beam, thus only  zD  in Eqn.(13) is taken 

into consideration. (3) By introducing zE  applied across the actuator thickness and 

the other components of the electric fields are zeros. (4) The coefficient 15e  and s

11ε  
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are neglected. Therefore the constitutive relations Eqn. (12) and Eqn. (13) are 
reduced to: 
 

11 31

55

31

0 0

0 0 0 0

0 0 0

xx xx xx

xz s xz z

z zz zk k k kk

Q e

k Q E

D e P
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% %

%

% %

 (14) 

 

where;
 sk is the shear correction factor, ijQ  and 

ije  are the transformed reduced 

stiffness coefficients, and the transformed piezoelectric modules, respectively. 
xxβ , 

zP  are the transformed thermal expansions components and pyroelectric constants, 

respectively [23]. The other coefficients in Eqn. (14) are given by: 
 
Case I: Isotropic layer 

                   EQ =11

~
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~
        , and         ijij QQ =                           (15) a 

  
Case II: Orthotropic layer 
 

                   22

1212

1111

~

Q

QQ
QQ −=     

45

24

25

5555

~
Q

e

e
QQ −=                                           (15) b 

And the piezoelectric coefficients are given by:      

 

          22

3232~

Q

ees

zz

s

zz += εε      
22

12

323131

~

Q

Q
eee −=           

24

1425

1515

~

e

ee
ee −=                     (15) c 

  

The electric field components are related to the electrostatic potential ϕ  by the 

equation [24]:                   
  

,
k k

E φ= −  (16) 

 
Energy Formulation 
 

The internal strain energy Û  is represented by [25]: 
 

dvU ij

v

klσε∫=
2

1ˆ  (17) 

 

By substituting Eqn. (5) into (17) one can obtain: 
 

1

2
ijkl ij kl ijk i jk ij ij

v

U c e E dvε ε ε β ε θ = − − ∫
)

 (18) 

 

The electric potential energy is given by: 
 

∫=
v

ike dvDEU
2

1
 (19) 
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By substituting Eqn. (6) into (19) one can obtain: 
 

1

2

s

e ijk i jk ij i j i i

v

U e E E E P E dvε ε θ = + + ∫  (20) 

 

 The internal strain energy for the structure system U  is the sum of internal strain 

energy Û , equation (18) and the electric potential energy eU , equation (20) such as:  
 

eUUU −= ˆ  (21) 

1
2

2

s

ijkl ij kl ijk i jk kl kl ij i j i i

v

U c e E E E P E dvε ε ε β ε θ ε θ = − − − − ∫  (22) 

 

For the proposed beams the total strain energy is given as: 
 

2 2 2

11 55 31

1
2

2

s

xx s xz z xx zz z xx xx z z

v

U Q k Q e E E P E dvε γ ε ε β ε θ θ = + − − − + ∫ % % % %  (23) 

 

By substituting Eqn. (2) into Eqn. (23) the strain energy is expressed by: 
 

2 2

0 0 0

11 55 31

2

0

33

2
1

2

x x
s x

v s x
xx z

u w u
Q z k Q e z

x x x z x x
U dv

u
z P

z x x z

φ φϕ
φ

φϕ ϕ
ε β θ θ

 ∂ ∂ ∂∂ ∂∂      
− + − + − − −       

∂ ∂ ∂ ∂ ∂ ∂       =
 ∂ ∂∂ ∂     − − − − + −    

∂ ∂ ∂ ∂      

∫

% % %

%

 (24) 

 

The mass matrix can be obtained using the kinetic energy equations such as: 
 

2 21

2
e

v

T u w dvρ  = + ∫ & &  (25) 

 

where, ρ  is the mass density of the material. 

 
The work done by the external mechanical, electrical, and thermal loads are 
expressed as: 
 

Total Mech Electr Therm
W W W W= + +  (26) 

 

The first two components in the right hand side of Eqn. (26) are expressed by [29]: 
 

0 0

L L

Mech a t i i
W f udx f wdx Pw= + +∫ ∫  (27) 

 

where;
 

,af
 
and

 tf
  
are the transversal and axial forces along a surface with length L , 

respectively. iP , is the concentrated force at point i  and  iw  is the corresponding 

generalized displacement.   
   

and 

1

1Electr

S

W dSσϕ= −∫  
 

(28) 
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where σ (C/m2)  is the surface charge density on the actuator surface, and ϕ  is the 

electric potential at the piezoelectric surface area 1S  [26]. 

 
Heat Equations 
 
The Fourier heat conduction equation in one dimensional can be expressed as [27]: 
 

x xx

dT
q k

dx
= −  (29) 

 

where 
x

q is the heat flux in x direction and 
xx

k  is the thermal conductivity of the 

material and T  is the temperature.  As an analogous to the strain energy function 
the expression for the heat conduction is expressed as follows:  
 

2
1

2
c xx

v

dT
U k dv

dx

 
=   
∫  (30) 

 

Thus the third component of the right hand side of Eqn. (26) is expressed as [27, 28]: 
 

hqQTherm fffW ++=  (31) 
 

where   Qf   is the heat source positive, sink negative, it is the same form as the 

body-force term, qf  is a heat flux, positive into the surface, and hf  is the heat 

transfer or convection which is similar to surface traction or distributed loading in the 
stress analysis problem. Thus;  
 

2 3

* 21
( )

2
therm c

v S S

W QTdv q TdS h T T dS∞= − − + −∫ ∫ ∫  (32) 

 

where Q  is the internal heat source (heat generated per unit time per unit volume), 

2S  and 3S  are separate surface areas, *q  heat flux ( *q  is positive into the surface). 

The term ( )
c

h T T∞−  is the heat flow by convection heat transfer, and 
c

h is the 

convection heat transfer coefficient. The values of  *q  and 
c

h  can not specify on the 

same surface because they cannot occur simultaneously on the same place.  Thus 
the total work done can be expressed as [15, 20]:  
 

1 2 3

* 2

1

0 0

1
( )

2

L L

Total a t i i c

S v S S

W f udx f wdx Pw dS QTdv q TdS h T T dSσϕ ∞= + + − − − + −∫ ∫ ∫ ∫ ∫ ∫  (33) 

 
 
FINITE ELEMENT FORMULATION 

 

A five nodes beam element with thirteen degrees of freedom is shown in Figure 

1.The element has nine mechanical degrees of freedom  u, w, and φx  which 

represent the axial, transverse, and rotational at the node, u, w, and φx , respectively. 
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Two electric degrees of freedom ϕ  in addition to two thermal degrees of freedom θ  

as shown in Figure 1 [29]. 
 
The axial displacement can be expressed in the nodal displacement as follows:  
 

4

1 1 2 2 3 3 4 4

1

( )
j j

j

u x u u u u uξ ξ ξ ξ ξ
=

= + + + =∑  (34) 

 

where the cubic shape functions ξ j  are found to be [30]: 
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2

9

2
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(35) 

 

The transversal displacement w can be expressed in terms of the nodal 
displacement as [30]: 

3

1 1 2 2 3 3

1

( )
j j

j

w x w w w wζ ζ ζ ζ
=

= + + =∑  (36) 

 

where, the quadratic interpolation shape functions are given by: 
 

2

1
1 3 2

x x

L L
ζ

   
= − +   

   
   

2

2
4 4

x x

L L
ζ

   
= −   

   
    

2

3
2

x x

L L
ζ

   
= − +   

   
 (37) 

 

The rotation angle xφ  is expressed as: 
 

2

1 1 2 1

1

x j j

j

φ φψ φ ψ φ ψ
=

= + =∑  (38) 

 

where the Linear interpolation shape functions jψ   have the form: 
 

1= −ψ j

x

L
 and  =ψ j

x

L
   (39) 

 

In the proposed model, the electric potential is considered as function of the 
thickness and the length of the beam [31]. In case of the electric potential is function 
of the length, it can be represented by: 
 

( )
j

j

jx ςϕςϕςϕϕ
)))

∑
=

=+=
2

1

2211  

where;                               
L

x
−= 11ς

)
,   and      

L

x
=2ς

)
                                          

(40) 
 

(41) 

 
 

And in case the electric potential is function of the thickness of the beam, it can be 
given as: 
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( )
j

j

jz ςϕςϕςϕϕ
(((

∑
=

=+=
2

1

2211  (42) 

where;                                
h

z
+=

2

1
1ς
(

,      
h

z
−=

2

1
2ς
(

                        (43) 

 
Thus by the product of equations (41) and (43) and impose the homogenous 
boundary condition on the bottom surface to eliminate the rigid body modes. Thus 
the electric potential can be written as: 
 

( )
j

j

jzx ςϕςϕςϕϕ ∑
=

=+=
2

1

2211,0,  (44) 

 
 And the shape functions are finally takes the form: 
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By assuming a linear temperature variation through the element, thus: 
 

( ) ∑
=

=+=
2

1

12211

i

ix ηθηθηθθ  (46) 

 

where the Linear interpolation shape functions  iη   for the temperature distribution 

have the form: 

L

x
−= 11η         , and         

L

x
=2η  (47) 

 
Variation Formulation 
 
Using the principle of the minimum potential energy by equating the first variation of 
the total minimum potential energy Π   to zero results in: 
 

( ) 0=−=Π WUδδ  (48) 
 

The first variation of the strain energy equation number (24) takes the forms: 
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Thus the elements of the stiffness matrix can be written as: 
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where; ,, ijij BA and ijD  are the laminate extensional, coupling, and bending stiffness 

coefficients and they are given by: 
 

( ) ( )
/2

2

11 11 11 11
/2

1

, , 1, ,
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h
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A B D Q z z dz
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 and                                           ( )
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55 55
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h

h
A Q dz

−
= ∫ %  

(51) 

 

The first variation of the kinetic energy Eqn. (25) is expressed as: 
 

[ ]e

v

T u u w w dvδ ρ δ δ= +∫ & & & &  (52) 

 

From equation (52) the elements of the mass matrix are given as: 
 

( )11

0

L

T

o oM I u u dxδ= ∫o  
12 21

0M M= =  (53) 
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where, I  and ρ  is the mass moment of inertia and the mass density of the material, 

respectively.   
 
The first variation of the heat energy, Eqn. (30), is expressed as: 
 

c xx

v

dT dT
U k dv

dx dx
δ δ

 
=  

 
∫  (54) 

 

The first variation of the external work, Eqn. (33), is given by: 
 

1 2 3 3

*

1

0 0

L L

Total a t i i c c

S v S S S

W f udx f wdx P w dS QT Tdv q T TdS h T TdS h T TdSδ δ δ δ σδϕ δ δ δ δ∞= + + − − − − +∫ ∫ ∫ ∫ ∫ ∫ ∫  
(55) 

 

By performing the integration of Eqn. (55), the first five terms which represent the 
mechanical and electrical loads are obtained and given by [29, 31].  The next three 
terms can be expressed as: 
 

1

12
Q

QAL
f

 
=  

 
 (56) 

* 1

12
q

q PL
f

 
=  

   
(57) 

1

12

c

h

h T PL
f ∞  

=  
   

(58) 

 

where the parameter PdxdS = , where P  is the perimeter of the element and 
assumed to be constant. And A  and L  are the cross section area and the length of 
the beam element. The vector for the thermal load is expressed as: 
 

[ ]
*1 1 1

1 1 12 2 2

c
h T PLQAL q PL

Q ∞     
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     
 (59) 

 

The summation of the integrations of Eqn. (54) and the last term of Eqn. (55), give 
the thermal effect matrix which can be expressed as: 
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L
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By substituting equations (35), (37), (39), (45),and (47) into equations (50), (51), and 
Eqn. (55), and perform the integration of these equations for a beam element with 
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length L, width b and height h, the element stiffness matrix, mass matrix, and 
mechanical, electrical, thermal loads vectors for the beam element are obtained.  
 
Equation of Motion 
 
The equation of motion of the whole structure system is expressed as follows: 
 

[ ]{ } [ ]{ } { } [ ]{ } { }uu u u
M U K U K K Fϕ θϕ θ + + + = 

&&  (61) 

 

{ } { } { } { }u
K U K K Gϕ ϕϕ ϕθϕ θ     + + =       

 
(62) 

 

From Eqns. (7) and (29) and for isentropic process for which 0S = , thus the heat 
equation is expressed as: 
 

[ ]{ } { }K Qθθ θ =  (63) 
 

where, { }U  is the structural displacements vector, { }Φ  is the generalized electric 

degrees of freedom, { }θ is the generalized temperature degrees of freedom vector. 

{ }F ,{ }G ,and { }Q  are the mechanical, electric, and thermal loads vectors, 

respectively.  
 
 

Stress Formulation 
 
The displacements of the system are defined by relate the displacements at any 
point to the nodal displacements through the assumed shape functions as follows: 
 

{ } [ ]{ }qfu =  (64) 
 

where, [ ]f  is a square matrix of the shape functions and its diagonal is given by:   
 

[ ] [ ]1 1 1 1 1 2 2 3 4 3 2 2 2
diagf ξ ζ ψ ς η ξ ζ ξ ξ ζ ψ ς η=  (65) 

 

and { }q  is the nodal displacements vector and given by: 
  

{ } { }
1 2

'

1 1 1 1 2 2 3 4 3 2 2x x
q u w u w u u wφ ϕ θ φ ϕ θ=  (66) 

 
 
The strain displacement relations is given by: 
 

{ } [ ]{ }ud=ε  (67) 
 

where the matrix [ ]d is a linear differential operator expresses the strain vector { }ε  in 

terms of displacements vector{ }u .  Substitution of Eqn. (64) into Eqn. (67) yields: 
 

{ } [ ][ ]{ }qfd=ε  (68) 

{ } [ ]{ }qB=ε
 

(69) 
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where,  [ ]B  is the square matrix gives the strains at any point within the element due 

to unit value of nodal displacements and it has the shape function differentiation. The 

diagonal of the matrix [ ]B  is given by: 
 

[ ] 1, 1, 1, 1, 1, 2, 2, 3, 4, 3, 2, 2, 2,x x x x x x x x x x x x xdiagB ξ ζ ψ ς η ξ ζ ξ ξ ζ ψ ς η =    (70) 
 

Substitute equation (69) into equation (14), the stress components 
xx

σ and 
xz

σ  can 

be obtained. 
 
  
VALIDATION EXAMPLES 
 
A MATLAB code is constructed to perform the analysis of graphite epoxy beam with 
piezoelectric actuators. The model inputs are the geometric and the material 
properties for piezoelectric and substrate materials, also the applied electrical, 
thermal, and mechanical loads values. The model is capable for predicting the nodal 
displacements, normal and shear stresses of the beam system. A set of examples 
are considered in this studies. 
 
Example 1 
 
A beam with material and geometric properties of piezoelectric composite beam are 
given in Table 1 and shown in Figure 2. The considered graphite epoxy beam is a 
[08/p] where p is the piezoelectric layer, subjected to uniform thermal loads of T = 
100 0C. The presence of the piezoelectric layers results in an asymmetric laminate 
configuration, which induced thermal distortions under the thermal load. The 
obtained results are compared with the others obtained by Ref. [4]. 
 
Figure 3 illustrate the transverse displacements produced when the beam is 
operating in closed circuit conditions. The closed circuit condition is obtained by 
grounding (0 V) both the lower and upper surfaces of the piezoelectric layer. 
Grounding both surfaces effectively eliminates the induced piezoelectric strain and 
produces a virtually conventional composite beam. 

 
Example 2 
 
A laminated composite beam with fibers orientations angles 

0 0 0 0
[ / (0 / 45 / 45 / 90 ) ]

s
PZT −  and with material and geometric properties given in 

Table 1 is used for model validation. The beam is subjected to different values of 
thermal load, electrical load, and a mechanical load with intensity P=1N in some 
cases and equal zero in other cases. The beam has length to height ratio of 
(L/h=10).  Figures 4 and 5 show the normal and shear stress distributions through 
the thickness of the beam for T=200 and V=500 volt. In addition, Figures 6 and 7 
show the same stresses for a values of  T = 100-500 0C and  V=400 volt. 
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Table 1. Geometric and material properties of smart beams [4]. 
 

Properties Graphite/epoxy 
Piezoelectric 

APC 840 

Elastic modulus 11E  GPa ( )Mpsi  39 (5.7) 68 (10.0) 

Elastic modulus 22E  GPa ( )Mpsi  8.6 (1.24) 68 (10.0) 

Shear modulus, GPaG ,12 ( )Mpsi  3.8 (0.54) 26.2 (3.84) 

Major Poisson's ratio, 12ν  0.28 0.30 

Minor Poisson's ratio, 21ν  0.06 0.30 

Density  3
/, cmgρ  ( )3

/ inlb  2.1(0.076) 7.6 (0.27) 

Thermal expansion coefficient 
6

11 10,
−α / )/10(

060 FC −

(
0

C

 7.0 (3.9) 3.8 (2.1) 

Thermal expansion coefficient 
6

22 10,
−α / )/10(

060 FC −  
21.0 (11.7) 3.8 (2.1) 

Piezoelectric charge constant 
Vmd /10,

12

31

−  0 -125 

Electric permittivity 33ε  29
/10 VN

−  0 11.06 

Pyro-electric constant 3p  

)/(10
203 CmC−  

0 -0.25 

Reference temperature CT
0

0 ,  )(
0 F  20.0 (68.0) 20.0 (68.0) 

Beam length L cm (in) 25.4 (10) 25..4(10) 

Beam wide cm (in) 2.54 (1.0) 2.54(1.0) 

Layer thickness t cm (in) 0.0127(0.005) 0.0127(0.005) 

 
 

CONCLUSIONS  
 
A finite element model was proposed to predict deformation and stress response of 
beams subjected to thermo-electro-mechanical loads using first-order shear 
deformation theory was proposed. The following conclusions have been drawn: 
 

1. The good agreement between the present model predictions using 
Timoshenko beam theory, and the corresponding results of other investigator 
proves the predictive capabilities of the present thermo-electro-mechanical 
model. 

2. The resultant thermal deformations of the piezoelectric and the internal stress 
state of the beams with and without application of the voltage were 
investigated. 

3. As the applied temperature increases, with certain value of applied voltage, 
both the beam deformation and internal stress values were increased, 
respectively. 

4. The obtained results from the proposed finite element model were obtained at 
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resizable number of elements. 
5. The model can be extended to model the a different cases of heat source and 

thermal radiation. 
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                               Fig. 1. Element nodal degrees of freedom. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Piezoelectric composite cantilever beam subjected to thermal load 
(T=100o C). 
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Fig. 3. Transverse deflection of present model compared with Ref. [4]. 
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Fig. 4. Normal stress distribution for piezoelectric composite beam [PZT/(0o/45o/-
45o/90o)s], T=200oC, and V=500 volt. 
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Fig. 5. Shear stress distribution for piezoelectric composite beam PZT/(0o/45o/-
45o/90o)s], T=200oC, and V=500 volt. 
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Fig. 6. Normal stress distribution for piezoelectric composite beam PZT/(0o/45o/-

45o/90o)s], P=1 N,T=100-500oC, and V=400 volt. 

 

 

 

 
Fig. 7. Shear stress distribution for piezoelectric composite beam PZT/(0o/45o/-

45o/90o)s], P=1 N,T=100-500oC, and V=400 volt. 
 


