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ABSTRACT 
 
In the present work, laminated composite plates with surface bonded shape memory 
alloy sheets are modeled and analyzed based on the modified higher-order shear 
deformation theory. The energy balance equations in conjunction with Brinson’s SMA 
constitutive model are used to formulate the heat transfer governing equations. The 
static responses as well as dynamic characteristics of the plates are obtained using 
Ritz solution technique. The plates are subjected to mechanical loads with two types 
of boundary conditions, simply-supported and cantilevered. A Mathematica code is 
developed to analyze different plate problems. The time response of the shape 
memory alloy laminated composite plate is studied. The obtained results are 
compared to the available studies solved by different theories. Parametric studies are 
conducted to demonstrate the effect of thickness ratio, aspect ratio, material 
properties, thermal expansion coefficient, and thickness of shape memory alloy sheet 
on the transverse deflections, natural frequencies, and response time. 
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NOMENCLATURE 
 

α  Thermal expansion coefficient of the SMA material 

{ }γ  The unknown displacements vector 

{ }ε  Strain vector in x-y-z coordinates 

{ }σ  Stress vector in x-y-z coordinates 

i
Q    Transformed stiffness matrix of layer (i) 

Uδ  Virtual strain energy 
Vδ  Virtual work 
Kδ  Virtual kinetic energy 

( ){ },a x y  Column vectors of the Ritz approximation functions that satisfy the 
boundary conditions of the problem 

( ){ }q t  Column vectors of the Ritz coefficients 

[ ]K
 

Stiffness matrix 
 

[ ]M
 

Mass matrix 

,z zip F
 

Distributed and concentrated loads 

{ }F , { }0F
 

Distributed and concentrated load vectors 

A Plate’s area 
a, b Plate sides’ dimensions 

A, B, D Extensional, coupling, and bending stiffness matrices 
E, F, H, J Higher order stiffness matrices 

h Total laminate thickness 
Ii Inertia terms 
k Total number of layers 
q transverse uniform load 
u Displacement of a generic point in the plate in the x direction 
u0 Displacement of the geometric mid-plane in the x direction 
v Displacement of a generic point in the plate in the y direction 
V Plate’s volume 
v0 Displacement of the geometric mid-plane in the y direction 
w Displacement of a generic point in the plate in the z direction 
w0 Displacement of the geometric mid-plane in the z direction 
θx Rotation of the normal to the mid-plane about the y-axis 
θy Rotation of the normal to the mid-plane about the x-axis 
θz First order displacement factor 
ξx, ξy Third order displacements or warping functions 

ψx, ψy, ψz Second order displacements or warping functions 
 

 
INTRODUCTION 
 
The SMA has been a subject of intensive researches in the last decades due to its 
unique properties of one and two way shape memory effect (SME), pseudo elasticity 
and high damping capacity.  
Ghomshei et. al [1, 2], proposed a nonlinear finite element model and experimental 
test for the time response of a shape memory alloy (SMA) actuator composed of 
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matrix material with SMA sheets or wires embedded in or bonded to the matrix part. 
The model is developed based on a higher order shear deformation beam theory 
together with the von- Karman strain field. A one-dimensional constitutive equation 
with non- constant material functions and sinusoidal phase transformation kinetics is 
used to model the thermo-mechanical behavior of the SMA actuator. The constitutive 
and phase transformation kinetic equations make distinction between the stress-
induced and temperature-induced martensite fraction. 
 
Balapgol et. al [3, 4], studied the deflection, natural frequency and time response of 
shape memory alloy laminated composite plate using finite element model with first 
order shear deformation theory. The composite plate consists of a thin layer of SMA 
bonded to elastomer core. They concluded that the input power, heat sink strength, 
thermal conductivity, and thickness of the elastomer layer play important roles for 
controlling the time response of the SMA laminated actuator. 
 
Gordaninejad et. al [5], presented a two dimensional finite element model based on 
classical lamination theory, energy balance equations, and two-dimensional transition 
model of SMA layer for the response of thermally driven SMA/ elastomer actuator. 
Wu et. al [6], derived a closed form solutions for the stress-strain-temperature 
response of a thermally driven shape memory alloy composite actuator neglecting 
the heat conduction in axial direction. 
 
Rogers et. al [7] used the Rayleigh-Ritz method to perform a linear analysis for 
simply-supported plate embedded with SMA fibers. They studied the plate deflection, 
free vibration, buckling, and acoustic control. 
 
Lin et. al [8] proposed a closed form solution for symmetric composite beams 
embedded with SMA fibers with various boundary conditions. The resultant actuation 
forces and normal stress distribution were calculated for the proposed beams. 
 
One of the earliest models is the one-dimensional Tanaka’s [9], a macroscopic model 
that is derived from thermodynamic concepts and through experimental observations. 
Martensitic transformation was considered progressive through an internal variable, 
the volume fraction of martensite, ξ. The evolutionary equation was determined by 
considering the transformation micro-mechanism and it is expressed using an 

exponential function in the form of ( ),Tξ ξ σ=   

 
Liang and Rogers [10], improved Tanaka’s model by directly matching experimental 
results to get the evolutionary equation which is expressed using the cosine function. 
The constitutive equation remains the same while the equations’ parameters are 
determined through experiments.  
 
An improvement of the Tanaka’s model was made by Brinson [11, 12], who 
recognized that not all martensite that are converted to austenite will produce the 
recovery stress. Only the stress induced martensite that is responsible for the shape 
memory effect. The martensite fraction is divided into two components: stress 
induced and temperature induced martensite. This model also does not assume 
constant material functions in the constitutive relationship. Furthermore, Brinson 
made some amendment that the constitutive equation will be valid at any 
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temperature. This model was found to give a better representation of the SMA 
behaviors than the Liang and Rogers’s model [10]. 
 
In the present study the transverse deflection, natural frequency, and time response 
of laminated composite plates with surface bonded shape memory alloy sheets are 
investigated. The analytical model is deduced based on the modified higher-order 
shear deformation theory utilizing Ritz solution technique. The energy balance 
equations in conjunction with Brinson’s SMA constitutive model are used to formulate 
the heat transfer equations. Two types of boundary conditions are studied, simply-
supported and cantilevered. A Mathematical code is developed to analyze different 
plates and to validate the obtained results. Parametric studies are performed to 
demonstrate the effect of the plate thickness ratio, aspect ratio, thermal expansion 
coefficient, and shape memory alloy sheet thickness on the plate transverse 
deflections, natural frequencies, and shape memory alloy response time. 
 
 
DISPLACEMENT FIELD EQUATIONS 
 
The layout of a shape memory alloy composite plate actuator is shown in Figure 1. 

The plate consists of a layer of SMA of thickness 
s

t , which is bonded to a composite 

plate of thickness ( )
s

h t− . The plate length and width are a , and b , respectively. The 

plate is bonded at its bottom to a heat sink maintained at temperature sinkT . The plate 

is subjected to a uniform transverse load, q . The Cartesian coordinate system is 

taken so that the xy -plane coincides with the mid-plane of the plate, and the z-axis 

is upward normal to the mid-plane. The displacement field equations of the modified 
higher order plate theory (MHPT), [13, 14], are given as: 
 

( )

( )

( )

2 30
0

2 30
0

2

0

, , ,

, , ,

, , ,

x x x

y y y

z z

w
u x y z t u z z z

x

w
v x y z t v z z z

y

w x y z t w z z

θ ψ ξ

θ ψ ξ

θ ψ

∂ 
= + − + + 

∂ 

 ∂
= + − + + 

∂ 

= + +

 
(1) 

 
The basic assumptions are that the SMA layer and the host layers are perfectly 
bonded, both thermal stresses and temperature in the phase transformation of SMA 
are considered, and the plate undergoes a small displacement. 
 
 
STRAIN-DISPLACEMENT RELATIONSHIPS 
 
The strain-displacement relationships can be expressed in a matrix form as follows,  
[13, 14]: 

{ } { } { } { } { }0 1 2 2 3 3z z zε ε ε ε ε= + + +  (2) 

where 

{ }
T

xx yy zz yz zx xy
ε ε ε ε γ γ γ =    (3) 
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Figure 1. SMA laminated plate with applied loading. 
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STRESS-STRAIN RELATIONSHIPS 
 

The generalized stress-strain relations can be written in contracted notation as 
follows, [15]: 
 

, 1, 2,...6
i ij j

Q i jσ ε= =  (5) 
 

The transformed stress-strain relations for an orthotropic lamina oriented by an angle 
θ  can be written as: 
 

11 12 13 16
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54 55

61 62 63 66

0 0
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0 0 0 0
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0 0
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z z
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zx zx
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Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q

Q Q

Q Q Q Q

σ ε
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The elements of the transformed symmetric stiffness matrix Q    are given in [15]. 

 
During martensitic transformation of SMA the modulus of elasticity of the metal is 
uniformly blended with the martensite and austenite phases [3]. The SMA layer and 
the host layers are perfectly bonded. The constitutive relationship of the SMA layer 
is: 

( ){ } ( ) { } { }( )s s
Q Tσ ζ ζ ε α= − ∆    (7) 

 

where  { }sα  is the thermal expansion coefficient vector of the SMA layer, given as: 
 

{ } [ ]0 0 0
T

s
α α α α=  (8) 

 

where α  is the thermal expansion coefficient of the SMA material. 
 

( )s
Q ζ    is the SMA layer stiffness matrix which is function of the martensite fraction, 

which is given in the strain-stress relation, [13, 14]. 
 
 
ENERGY FORMULATION 
 
Hamilton’s Principle 
 
The governing differential equations of the whole structure are derived using 
Hamilton’s principle, [15] 
 

( )
0

0
T

U V K dtδ δ δ= + −∫  (9) 

  
where Uδ is the virtual strain energy, Vδ  is the virtual work done by the applied 
loads, and Kδ  is the virtual kinetic energy. 
 
The virtual strain energy Uδ  is given by [15]: 
 

( )2

2

h

h x x y y z z yz yz zx zx xy xy
A

U dz dxdyδ σ δε σ δε σ δε τ δγ τ δγ τ δγ
−

 
= + + + + + 

 
∫ ∫  (10) 

 

or in matrix form 
 

{ } { }2

2

h
T

h
A

U dz dxdyδ δ ε σ
−

 
=  

 
∫ ∫  (11) 

 
By substituting for the stress components, Eq.(7), thus: 
 

{ } { } { }( )
11

i

i

k
z T

iiA z
i

U Q T dz dxdyδ δ ε ε α
−=

   = − ∆    
∑∫ ∫  (12) 
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where zi, are z-coordinates in z-direction from the mid-plane. Knowing that 
i

Q   is for 

the core layers and [ ]sQ  is for the SMA layers. The strain energy can be divided into 

two parts, as follows: 
 

m T
U U Uδ δ δ= −  (13) 

 

where 
m

Uδ  and 
T

Uδ  are the mechanical, and thermal components of the strain 

energy defined as follows; 
 

{ } [ ]{ } { } [ ]{ } { } [ ]{ }

{ } [ ]{ } { } [ ]{ } { } [ ]{ }

{ } [ ]{ } { } [ ]{ } { } [ ]{ }

{ } [ ]{ } { } [ ]{ } { } [ ]{ }

{ } [ ]{ } { } [ ]{ } { } [ ]{ }

{ } [ ]{ }

0 0 0 1 0 2

0 3 1 0 1 1

1 2 1 3 2 0

2 1 2 2 2 3

3 0 3 1 3 2

3 3

T T T

T T T

T T T

m T T TA

T T T

T

A B D

E B D

E F D
U dxdy

E F H

E F H

J

δ ε ε δ ε ε δ ε ε

δ ε ε δ ε ε δ ε ε

δ ε ε δ ε ε δ ε ε
δ

δ ε ε δ ε ε δ ε ε

δ ε ε δ ε ε δ ε ε

δ ε ε

 + +
 
 

+ + + 
 

+ + + 
=  

 + + +
 
 + + +
 
 + 

∫  (14) 

 

where 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]( ) ( )
1

2 3 4 5 6

1

, , , , , , 1, , , , , ,
i

i

k
z

iz
i

A B D E F H J Q z z z z z z dz
−=

 =  ∑∫  (15) 

 

{ } { } { } { }{ }0 1 2 3
T T T T

T
A

U A B D E dxdyα α α αδ δ ε δ ε δ ε δ ε       = + + +       ∫  (16) 

 

and  

( ) { } ( )
1

2 3

1

, , , 1, , ,
i

i

k
z

iiz
i

A B D E Q T z z z dz
α α α α α

−=

         = ∆         ∑∫  (17) 

 
The virtual work Vδ done by the applied forces can be written as, [13, 14]: 
 

( ) ( ){ } ( ), , , , ,
z zi i i

A
V p x y w x y t dxdy F w x y tδ δ δ= +∫  (18) 

 

where ( ),zp x y  is the transverse distributed load, and Fzi is the concentrated force in 

the z-direction at point (i). 
 
The virtual kinetic energy Kδ  can be written as, [15]: 
 

{ } { } { } { } { } { } { } { }

{ } { } { } { } { } { } { } { }

{ } { } { } { } { } { } { } { }

{ } { } { } { } { } { } { } { }

0 0 0 1 0 2 0 3

0 1 2 3

1 0 1 1 1 2 1 3

1 2 3 4

2 0 2 1 2 2 2 3

2 3 4 5

3 0 3 1 3 2 3 3

3 4 5 6

T T T T

T T T T

T T T TA

T T T T

I U U I U U I U U I U U

I U U I U U I U U I U U
K dx

I U U I U U I U U I U U

I U U I U U I U U I U U

δ δ δ δ

δ δ δ δ
δ

δ δ δ δ

δ δ δ δ

 + + +
 
 

+ + + + 
=  

+ + + + 
 
 + + + + 

∫

& & & & & & & &

& & & & & & & &

& & & & & & & &

& & & & & & & &

dy
 

(19) 

where 
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( ) ( )
1

2 3 4 5 6

0 1 2 3 4 5 6

1

, , , , , , 1, , , , , ,
i

i

k
z

i
z

i

I I I I I I I z z z z z z dzρ
−=

=∑∫  (20) 

 

{ }0U& , { }1U& , { }2U& , and { }3U&  are given in [13, 14]. 

 
Ritz Solution Technique 
 

The unknown displacements vector { }γ = { }0 0 0, , , , , , , , , ,
x y z x y z x y

u v w θ θ θ ψ ψ ψ ξ ξ is 

approximated by x-y-polynomial functions that satisfy the plate boundary conditions. 
Two types of boundary conditions are considered, simply-supported and 
cantilevered. The Ritz functions used in the present study are listed in [13, 14]. 
 
 
EQUATIONS OF MOTION 
 
The equations of motion of the plate structure are derived using the Ritz 
approximation technique, [13, 14]: 
 

[ ]{ } [ ]{ } { } { } { }0 TM q K q F F F+ = + +&&  (21) 
 

where [ ]K , [ ]M are the laminated stiffness and mass matrices,{ }F  and { }0F  are the  

distributed and concentrated mechanical load vectors, and { }TF  is the thermal load 

vector, and given by: 
 

[ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ]

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

2 0 2 1 2 2 2 3
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T T T T
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T T T T

T
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B D E F
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D E F H

E

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε

               + + +               

               + + + +               
=

               + + + +               

    + +    [ ] [ ] [ ]1 3 2 3 3

A

T T T

dxdy

F H Jε ε ε ε ε

 
 
 
 
 
 
 
           + +            

∫
 

(22) 

 

{ } { }0 1 2 3
T T T TT

T
A

F A B D E dxdyα α α αε ε ε ε               = + + +               ∫  (23) 

 

{ } ( ){ }

{ } ( ){ }

3

0 3

0 0 , 0 0 0 0 0 0 0 0

0 0 , 0 0 0 0 0 0 0 0

T T

z
A
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zi i i

F p x y a dxdy

F F a x y
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 =
 

∫
 (24) 
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(25) 
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SMA CONSTITUTIVE MODELS 
 
SMA Linear Model 
 
The linear model provides a one-dimensional relation between the martensite fraction 
with temperature and stress during the phase transformation, [8]. In the present 
model the heating and cooling transition process is reproduced in Eq.(26) and 
Eq.(27) respectively: 
 

( )
1 s

f s A f s

T A

A A C A A

σ
ζ

−
= − +

− −
 (26) 

 

( )
1 f

s f M s f

T M

M M C M M

σ
ζ

−
= − +

− −
 (27) 

 

where 
A

C  and 
M

C  are the material constants which indicate the influence of the 

stress on the phase transformation temperatures. 
s

A  and 
f

A are the start and finish 

temperatures of the phase transformation from martensite to austenite, respectively. 

s
M  and 

f
M are the start and finish temperatures of the phase transformation from 

austenite to martensite, respectively.σ  is the magnitude of the stress in the SMA 

layer, which is assumed to be the hydrostatic stress,  ( ) 3
x y z

σ σ σ σ= + + . 

 
SMA Brinson’s Model 
 
The Brinson’s model [12] made a significant improvement over Tanaka’s model [9, 
11], and the Liang and Rogers’s model [10]. It recognizes the stress induced 
martensite (SIM) as the only martensite that gives the functional property of shape 
memory effect (SME) and pseudo elasticity rather than the total martensite that 
contains both the temperature induced martensite (TIM) and the stress induced 
martensite (SIM). Brinson’s model assumes that the transformation depends only on 
the temperature and the stress, and the amount of transformation that occurs is 

described using the volume fraction of the stress induced martensite, ξS. Brinson’s 

model is quite popular for engineering applications since it is simple, accurate and 
easy to implement into numerical applications. 
  
Brinson made a modification so that this model can be used at low temperatures by 
dividing the martensitic volume fraction into two parts: 
 

   
S T

ξ ξ ξ= +  (28) 

 

where ξS corresponds to the fraction of the stress induced martensite (SIM) and ξT 
refers to the fraction of the temperature induced martensite (TIM). From Tanaka [9] 
and Eq.(28), the stress can be expressed as: 
 

  ( ,  , ,  )
S T

Tσ σ ε ξ ξ=  (29) 

 

After a simple derivation and applying a force condition we get the constitutive 
relationship of Brinson’s model for constant material parameter [11]: 
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0 0 0 0  ( ) (   )   (  )
S S

D T Tσ σ ε ε ξ ξ θ− = − + − + −Ω  (30) 
 

where D is the Young Modulus, θ is the thermoelastic tensor and Ω is the 
transformation tensor. The effect of stress on the transition temperature now must 
consider the conversion of TIM to SIM. This process of conversion starts after a 

TIM is given a stress up to a critical value, cr  
s

σ , and ends at a stress value of, cr  
f

σ . 

The values of these critical stresses can be determined through experiments, or 
theoretically by developing a model based on the potential energy necessary to 
overcome the chemical energy barrier for conversion of twins as in the work of 
Achenbach and Muller [16]. The stress temperature coefficients, CA and CM in 
Brinson’s model are not assumed to be equal, and are both determined through 
experiments. The evolution equations are listed in Ref. [11], Appendix (A). 
 
 
HEAT TRANSFER  
 
Heat Equations Modeling of SMA Layer 
 
The SMA layer is activated when exposed to heat. Heat power is considered as a 
homogeneous heat source in the SMA layer. The thermal energy of the activated 
SMA layer is assumed to be lost by conduction through the core structure. A two-
dimensional temperature distribution is considered. Considering a dx-dy element of 
the SMA layer, the energy balance equation can be given as, [5]: 
 

( )
2 2

sink2 2
0

s s s s e

T T T
C Q k k K T T P

t t x y

ζ∂ ∂ ∂ ∂
− − − + − − =

∂ ∂ ∂ ∂
 (31) 

 

where ( )sC T t∂ ∂  is the rate of change in the internal energy of the SMA layer. 

s s s
C cρ= , in which 

s
ρ  and 

s
c are the density in 3kgm −   , and the specific heat in 

1 1J kg C− − °  , respectively. ( )sQ tζ− ∂ ∂  is the rate of energy contributed to the phase 

transformation of the SMA layer. Here 
s s s

Q qρ= and 
s

q  is the heat of transition in 

1J kg −   . ( ) ( )2 2 2 2

s s
k T x k T y− ∂ ∂ − ∂ ∂  is the rate of heat conduction in the x and y 

directions through the SMA layer, and 
s

k  is the thermal conductivity in 1 1Wm C− − °  . 

( )sinkEK T T−  is the quasi-steady model for the heat lost by conduction through the 

core layer, when the core heat capacity is neglected, [17]. ( )E e s s
K k t h t= −   , [5], 

where 
e

k  is the thermal conductivity of the core layers in 1 1Wm C− − °  . T and sinkT  are 

the temperatures in [ ]C°  of the SMA layer and the heat sink, which has a constant 

temperature and bonded to the lower surface of the core. 
 

P  is the input heat power density in 3W m    generated by the electric current 

passed though the SMA layer in the heating process. P  is zero if Eq.(31) is applied 

to the cooling process. t  is the time in [ ]sec . 
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Equation (31) may be written in dimensionless form as: 
 

( )
2 2

2 2
0

MA k P
R R S R

X Y

θ ζ θ θ
θ

τ τ

∂ ∂ ∂ ∂
− − − + − − =

∂ ∂ ∂ ∂
 (32) 

 

where θ  is the non-dimensional temperature of the SMA, τ  is the dimensionless 

time, 
MA

R  is the dimensionless heat of transition of the SMA, 
k

R  is the 

dimensionless thermal conductivity of the core, S  is the heat sink strength which 
characterizes the heat conduction loss from the SMA through the core to the heat 

sink, and 
P

R  is the dimensionless input power to the SMA layer. The dimensionless 

symbols are defined in Appendix (B). 
 
Heat Equations Solution 
 
The variational formulation of Eq.(32) over the plate area Ω  is obtained by 

multiplying the equation by a weight function 
i

N  
 

( )
2 2

2 2
0i MA k PN R R S R dXdY

X Y

θ ζ θ θ
θ

τ τ
Ω

 ∂ ∂ ∂ ∂
− − − + − − = 

∂ ∂ ∂ ∂ 
∫  (33) 

 
Integrating by parts and rearranging the equation elements: 
 

( )i i
i i MA i k i P

i x y

N N
N N R N R S N R dXdY

X X Y Y

N n n ds
X Y

θ ζ θ θ
θ

τ τ

θ θ

Ω

Γ

∂ ∂∂ ∂ ∂ ∂ 
− − − + − − 

∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ 
= − 

∂ ∂ 

∫

∫
 (34) 

 

where 
x

n  and 
y

n  are the direction cosines of the boundary surface in the x and y 

directions. The variables θ  and ζ  are approximated over the plate by the following 

interpolation functions: 
 

( ) ( )

( ) ( )

4

1

4

1

,

,

i i

i

i i

i

N X Y

N X Y

θ θ τ

ζ ζ τ

=

=

=

=

∑

∑
 (35) 

 

where ( 1,2,3,4)
i

N i =  are the linear interpolation functions of the plate in x-y 

directions. 
i

θ  and 
i

ζ  are the unknown temperature and martensite fraction 

coefficients, respectively. By substituting Eq.(35) in Eq.(34), thus: 
 

{ } { }1 2 3 th
C C C F

θ ζ
θ

τ τ

   ∂ ∂
     + + =        ∂ ∂   

 (36) 

 

where 
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( )

1

2

3

ij i j

j ji i
ij k i j

ij MA i j

th

i P k i i x y

C N N dXdY

N NN N
C R N N dXdY

X X Y Y

C R N N dXdY

F R R S N dXdY N n n ds
X Y

θ θ

Ω

Ω

Ω

Ω Γ

=

∂ ∂ ∂ ∂
= + + 

∂ ∂ ∂ ∂ 

= −

 ∂ ∂
= − + − 

∂ ∂ 

∫

∫

∫

∫ ∫

  

 
α-family method is used to transfer Eq.(36) from ordinary differential equations to a 
set of algebraic equations, in which a weighted average of the time derivative of a 
dependent variable is approximated at two consecutive time steps by linear 
interpolation of the values of the variable at the two steps. 
 
For different values of α (0<α<1), a numerical integration schemes can be obtained 
[18]. 
 
Assuming constant time step t∆  gives: 
 

( )
{ } { }

11

1

n nn n θ θθ θ
α α

τ τ τ

++
−   ∂ ∂

+ − =   
∂ ∂ ∆   

 (37) 

 

Rearranging terms of Eq.(36) gives: 
 

( ){ } ( )( ){ }

{ } ( ){ }( )

( )

11 2 1 2

1

1

3

1

1

1

n n

n n
th th

n n

C C C C

F F

C

τ α θ α τ θ

τ α α

ζ ζ
τ α α

τ τ

+

+

+

       + ∆ = − − ∆       

+∆ + −

    ∂ ∂
   −∆ + −      ∂ ∂    

 
(38) 

 

Knowing that; 

( ) { } { }
1

1

1

n n
n nζ ζ

τ α α ζ ζ
τ τ

+
+    ∂ ∂

 ∆ + − = −    ∂ ∂    
 (39) 

 
Eq.(38) can be written in a set of algebraic equations as follows: 
 

{ } { }
1ˆ ˆn

K Fθ
+

  =   (40) 

 

where 

( )1 2
K̂ C Cτ α     = + ∆       

and  

{ } ( )( ){ } { } { } { }( )11 2 3ˆ 1
n n n

thF C C F Cα τ θ τ ζ ζ
+

     = − − ∆ + ∆ − −        
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While performing the iteration process, an estimate value for the martensite fraction 

unknown coefficient { }
1n

est
ζ

+
 should be calculated at 1n

t +  in order to calculate{ }F̂ . 

Using Eq.(26) and Eq.(27) { }
1n

est
ζ

+
 can be calculated by the free response model: 

 
1 11n n

est est
ζ θ+ += −  (41) 

 

where 1n

est
θ +  is obtained by replacing the term 

ζ

τ

 ∂
 

∂ 
 by 

θ

τ

 ∂
− 

∂ 
 in Eq.(36). Thus, 1n

est
θ +  

can be determined by solving the following set of algebraic equations: 
 

[ ]{ } { }
1n

est
K Fθ

+
′ ′=  (42) 

 

where 

[ ] ( )1 3 2
K C C Cτ α′      = − + ∆        

and  

{ } ( )( ){ } { }1 3 21
n

th
F C C C Fα τ θ τ′      = − − − ∆ + ∆        

 

 

SOLUTION PROCEDURE 
 

1-  Select initial values for 0θ  and 0ζ  and solve Eq. (40) for the initial deformation 

{ }
0

q and initial stresses { }
0

σ  of the plate due to mechanical loading. 

2-  Calculate the new time 1n n
t t t+ = + ∆  and estimate the martensite fraction 1n

est
ζ +  at 

1n
t +  by the free response model Eq.(41) where 1n

est
θ +  is obtained by solving 

Eq.(42). 

3-  Solve Eq. (40) for { }
1n

q
+

 and { }
1n

σ
+

 based on { }
0

q  and 1n

est
ζ + . 

4-  Calculate 1nζ +  using either linear or Brinson’s SMA constitutive models Eq.(26) 

and Eq.(27) or Eq.(28), based on { }
1n

σ
+

. 

5-  Check convergence by testing the value ( )1 1n n

est
ζ ζ+ +− . If the convergence 

criterion is satisfied, repeat the above steps with a time increment t∆ . If the 

convergence criterion is not satisfied, calculate the new estimated 1n

est
ζ +  by using 

relaxation method ( )1 1 1 1n n n n

est est
ζ ζ λ ζ ζ+ + + += + −  where λ  is the minimum 

eigenvalue given by ( )2 tλ ≤ ∆  [3]. 

 
 
NUMERICAL RESULTS AND DISCUSSION 
 
The static and dynamic deformation of the core structure are given in Refs. [13, 14]. 
To verify the present thermal model, two cases are presented. Case (I) studies the 
stress-free thermal response of SMA laminated plate, while the phase transformation 
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response of a cantilever plate subjected to mechanical and thermal loads is 
considered in case (II). Parametric studies are then presented in case (III) to 
investigate the effect of plate thickness, aspect ratio, material properties, thermal 
expansion coefficient, and shape memory alloy sheet thickness on the transverse 
deflections, natural frequencies, and shape memory alloy’s response time. Simply 
supported plates and cantilever plates are used in these cases. A set of computer 
programs was developed, for this investigation, using Mathematica 7. 
 
Case (I): Free Thermal Response of SMA Laminated Plate 
 
The plate consists of 55-Nitinol for the SMA layer glued on the top of Dow Corning 

SYLGARD core. The SMA layer thickness 30.25 10
s

t m
−= × , and an core layer 

thickness 3( ) 2.25 10
s

h t m
−− = × . The total plate thickness is 32.5 10h m

−= × . The plate 

dimensions are taken as 0.25a b m= = . The material properties are given in Table 1 
[3, 17]. 
 

Table 1. Material properties for SMA and plate core [3, 17]. 
 

Property 
SMA  

(55-Nitinol) 
Elastomer 

Sylgard 

Density, 3kg mρ     6500 1050 

Specific heat, [ ]( )c J kg C°  883 1422 

Thermal conductivity, [ ]( )k W m C°  17 0.146 

Thermal expansion coefficient, 1Cα − °   23×10-6  

Heat of transition, [ ]sq J kg  12600  

Material constant, [ ]AC MPa C°  10.3  

Material constant, [ ]MC MPa C°  10.3  

Young’s modulus of core, [ ]cE MPa   1300 

Young’s modulus in martensite phase, [ ]ME MPa  26300  

Young’s modulus in austenite phase, [ ]AE MPa  67000  

Poisson’s ratio, ν  0.3 0.3 

Martensite start temperature, [ ]sM C°  18.4  

Martensite finish temperature, [ ]fM C°  9  

Austenite start temperature, [ ]sA C°  34.5  

Austenite finish temperature, [ ]fA C°  49  

 

If we assume for validation purpose that 10
f s s f

A A M M C− = − = ° [17], then for 55-

Nitinol 1.4
ma

R = .  
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The response time of the actuator of the SMA layer for martensite-to-austenite 

heating transition for an applied power 7 37.787 10 /P W m= × ( 0.2863
p

R = ), and for 

austenite-to-martensite cooling transition for a sink temperature sin 21
k

T C= − °  ( 3S = ) 

are shown in Table. 2 for both linear and Brinson’s SMA model and compared with 
Wirtz, [17]. The response time is also calculated from the conservation of thermal 
energy in the SMA layer from basic heat transfer equation [19], 
 

generated body dissipated
Q Q Q= +  (43) 

 

        
Table. 2. Response time of the actuator. 

 

Model 

Present 
(linear 
SMA 

model) 

Present 
(Brinson’s 

SMA 
model) 

Basic heat 
transfer 

equations, 
[19] 

Wirtz, 
[17] 

Heating 
response 

time [sec.] 17.83 18.99 17.89 20.9 

τ 8.45 9 8.48 9.9 

Cooling 
response 

time [sec.] 15.5 15.5 15.46 15.5 

τ 7.35 7.35 7.32 7.36 

 
 
Case (II): Phase Transformation of SMA Laminated Plate 
 
The phase transformation response of SMA layer located at the top, subjected to a 

uniformly distributed load, 21000q N m= − and input heating power 
8 35.6 10P W m= ×  is studied. The plate dimensions are 0.25a m= , 0.14b m=  with 

five layers for the core of thickness 31 10 m
−×  each. The thickness of the SMA layer 

is 30.05 10 m
−× . The time step 0.01sect∆ =  is used. The material properties are given 

in Table 1 [3]. 
 
The variations in martensite fraction in the activated SMA layer using the linear and 
Brinson’s models are shown in Figure 2. in comparison with the results obtained by 
Balapgol [3], and Ghomshei [2]. A good agreement is found between the proposed 
model and the mentioned references results.  
 
Case (III): Parametric Study of SMA Composite Plate 
 
The plate used in case (I) is used for such parametric studies. The plate thickness is 
divided into ten layers, the top layer is SMA, and the remaining nine layers form the 
plate core. The material properties are given in Table 1 and the plate dimensions are 
shown in Figure 3. The plate span is 100 mma = , width 25mmb = , and thickness 

3mmh = . The thickness of the SMA layer is 0.3mm
s

t = . The plate is assumed to be 

thermally insulated on all four edges. The plate carries a downward load 20 N
z

F =  at 

the free end. The value of dimensionless time interval 0.1τ∆ =  is selected. 
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Figure 2. Variation of martensite fraction (ζ ) in activated SMA layer. 

 

 
 

Figure 3. SMA laminated cantilever plate. 
 
 

 

An input heat power 7 32 10P W m= × is used in the heating phase, and the sink 

temperature is sin 20
k

T C= − ° through the whole heating-cooling cycle. 

 
As the first step the deflection response is calculated neglecting the effect of thermal 
expansion of the SMA layer. Then it is calculated considering the thermal expansion 
effect on the SMA layer only because the core layer is assumed at a constant 
temperature equal to the sink temperature, and the heating is only on the SMA layer. 
 
Figure 4 shows the temperature response of the given plate in the heating-cooling 

cycle with input heat power 7 32 10P W m= ×  applied until reaching the austenite-

finish temperature (Af). Figure 5 shows the variation of the martensite fraction with 
the response time of the plate in the heating-cooling cycle. While heating from As to 
Af the SMA layer is transformed from fully martensite phase to fully austenite phase. 
 
This is an endothermic process, which absorbs part of the input heat causing 
decrease in the heating rate of the SMA layer as seen in Fig. 4. This transformation 
also causes reduction of the martensite fraction from 1 at As to 0 at Af as shown in 

z 
ts 

(h-ts) 

SMA 

a b 

core 

Fz 
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Figure 4. Temperature response of the SMA laminated cantilever plate in the  

    heating-cooling cycle with input power 
7 32 10P W m= ×

 
 

 
 

Figure 5. Variation of the martensite fraction with time response of the plate  

                in the heating-cooling cycle with input power 
7 32 10P W m= ×

 
 

 
Figure 5. While cooling from Ms to Mf the SMA layer is transformed from fully 
austenite phase to fully martensite phase. This is an exothermic process, which emits 
heat, causing decrease in the cooling rate of the SMA layer as seen in Figure 4. This 
transformation then increases the martensite fraction from 0 at Ms to 1 at Mf, as seen 
in Figure 5. 
 
Figure 6 gives the lateral deflection of the plate at y=b/2 before activation (T<Mf) and 
after activation (T>Af), the core Young’s modulus is 13 GPa. It is clear that the lateral 
deflection of the plate is decreased with the activation of the SMA layer due to the 

increase of its Young’s modulus from 
M

E  in the martensite phase to 
A

E  in the 

austenite phase as given in Table 1. 
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Figure 6. Lateral deflection of the plate before activation (T<Mf) and 
                                    after activation (T>Af). 

 
 
(1) Effect of Young’s modulus of plate core (Ec) 
 
To study the effect of Young’s modulus of core (Ec) on the lateral deflection of SMA 
laminated cantilever plate, Ee is changed from 10 to 80 GPa. Figures 7 and 8 show 
the lateral deflection of the plate before activation (T<Mf) and after activation (T>Af), 
respectively, at different values of Ec. Figure 9 shows the effect of Young’s modulus 
of core (Ec) on the dimensionless response time and maximum deflection of SMA 
laminated cantilever plate at the middle point of the free end. Figure 10  shows the 
effect of Young’s modulus of core (Ec) on the response time and the natural 
frequency of the plate. 
 

 
 

Figure 7. Effect of Young’s modulus of core (Ec) on the  Lateral deflection of  
                              the plate before activation (T<Mf). 
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Figure 8. Effect of Young’s modulus of core (Ec) on the Lateral deflection  
                                of the plate after activation (T>Af). 
 

 
 

Figure 9. Effect of Young’s modulus of core (Ec) on the dimensionless response time  

              and the maximum dimensionless deflection (w w h= ) of the plate at the  

                       middle of the free end (x=a and y=b/2). 
 
 

 
 

Figure 10. Effect of Young’s modulus of core (Ec) on the response time  
                                    and natural frequency of the plate.  
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(2) Effect of SMA thermal expansion 
 
The lateral deflection is decreased in the heating stage, and increased in the cooling 
stage. The temperature of the SMA layer is varied in the heating-cooling cycle as 
illustrated in Figure 4, while the temperature of the core layer is considered constant. 
 
Figure 11 shows the lateral deflection of SMA laminated cantilever plate before and 
after with and without thermal expansion effect. It is clear that the activation 
decreases the deflection, and taking the thermal expansion effect into consideration 
adds an additional decrease of the deflection. While Figure 12 shows the effect of 
thermal expansion on the response time and the deflection of the cantilever plate at 
the free end. It is clear that the thermal expansion decreases the deflection without 
affecting the time response. 
 
The reason of that is that at the staring temperature (Mf) the SMA layer is at 
martensite phase. Applying the transverse load in the positive z-direction causes the 
plate to be deformed upwards. While heating form Mf to As the temperature of the 
SMA layer increases as seen in Figure 4 which causes the SMA layer to expand. 
Since this layer is positioned at a distance above the mid-plane, its expansion will 
produce an axial force above the neutral axis, which acts as a moment that forces 
the plate to deform downward to decrease the deformation gradually with heating 
under the same applied transverse load.  
 
Thus heating from Mf to As has no effect on the SMA phase, it is still at martensite 
phase. The decrease in deformation is due to thermal expansion only. Once the 
temperature reaches As the SMA layer starts to transform from martensite phase to 
austenite phase, which means gradual increase in the modulus of elasticity of the 
SMA layer and the total stiffness of the plate and subsequently causes a gradual 
decrease in the plate deflection until the temperature reaches Af. 
 
After the plate is completely transformed to the austenite phase, it has the minimum 
deflection reached in the heating cycle. At Af, no more heating power is added and 
the heat sink decreases the temperature gradually. Cooling from Af to Ms will not 
affect the SMA layer phase, but will cause thermal contraction. This contraction 
produces an axial compression force positioned above the neutral axis, which acts as 
a moment that forces the plate to deflect upwards, which means that the deflection 
increases gradually while cooling. 
  
The cooling after Ms causes the SMA layer to be transformed to austenite phase, this 
gradually decreases the modulus of elasticity from EA to EM. Thus, the total stiffness 
of the plate also decreases causing more deflection under the same applied 
transverse load. The heat cycle is finished at Mf, while the deflection has the 
maximum value. 
 
It is obvious that if the transverse load is downward or the SMA layer is positioned at 
the bottom of the plate, the thermal expansion effect will be inverted. This means that 
heating increases deflection and cooling decreases deflection. 
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Figure 11. Lateral deflection of SMA laminated cantilever plate before  
                    activation (T<Mf) and after activation (T>Af) with and without 

                                    thermal expansion effect. 

 

 
 

Figure 12. Effect of thermal expansion on the dimensionless response time  

                and the maximum dimensionless deflection (w w h= ) of SMA  

 laminated cantilever plate at free end (x=a and y=b/2). 
 
 

 
Figure 13 shows the effect of Young’s modulus of core (Ec) on the lateral deflection of 
the plate after activation (T>Af) with thermal expansion effect. Figure 14 presents the 
effect of Young’s modulus of core (Ec) on the response time and the maximum 
deflection of the plate at the middle of the plate free end with thermal expansion 
effect. 
 
(3) Effect of the SMA layer thickness 
 
The effect of the SMA layer thickness on the response time, plate deflection and 
natural frequency, a plate with the same value of the total thickness h=3mm, four 
values of SMA layer thickness (ts) are chosen such that (ts/h= 0.1, 0.2, 0.3, 0.4). 
Figure 15 shows SMA thickness effect on the temperature response of the plate in 
the heating-cooling cycle.  
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Figure 13. Effect of Young’s modulus of core (Ec) on the Lateral deflection after  
                             activation (T>Af) with thermal expansion effect. 

 

 
 

Figure 14. Effect of Young’s modulus of core (Ec) on the dimensionless response 

                      time and the maximum dimensionless deflection (w w h= ) of the plate  

                           at free end (x=a and y=b/2) with thermal expansion effect. 

 

 
 

Figure 15. SMA thickness effect on the temperature response of the SMA layer 

            in the heating-cooling cycle with input power 
7 32 10P W m= ×  
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Figure 17 shows the SMA thickness effect on the variation of the martensite fraction 
with response time of the SMA laminated cantilever plate in the heating-cooling 
cycle. Increasing the SMA layer thickness will decrease and increase the response 
time during heating and cooling, respectively. Actually increasing the SMA thickness 
(ts) with the same total thickness (h), means decreasing the core thickness (te). Both 
(ts) and (te) affect the time response. As seen in the energy balance equation Eq. (31)

, the only term affected with the change of (ts) and (te) is ( )sinkEK T T− , which 

represents the heat lost by conduction through the core layer such that 

( )E e s eK k t t= , where 
e

k  is the thermal conductivity of the core in 1 1Wm C− − °  . It is 

clear that the cooling rate is inversely proportional to ( )s et t . Figure 17 shows the 

relation between 
E

K  and the SMA thickness ratio ( )
s

t h . It is clear that 
E

K  

decreases until the SMA thickness becomes equal to the core thickness ( ) 0.5
s

t h = , 

then 
E

K  increases again. This explains the increase in the heating rate and the 

decrease in the cooling rate with increasing the SMA thickness ratio ( )
s

t h  , as 

shown in Figure 15. 

 
 

Figure 16. SMA thickness effect on the variation of the martensite fraction with time  
                 response of the SMA layer in the heating-cooling cycle with input power 

7 32 10P W m= ×  

 
 

Figure 17. SMA thickness ratio (ts/h).  
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Figures 18 and 19 show the SMA thickness effect on the lateral deflection of SMA 
laminated cantilever plate before and after activation, respectively. Figures 20 and  
21 show SMA thickness effect on the response time and the maximum deflection of 
SMA laminated cantilever plate at free end with dimensions and dimensionless 
values, respectively. It is obvious that increasing the SMA layer thickness decreases 
the plate deflection; this is because of increasing the stiffness of the plate with 
increasing the SMA thickness ratio. Figure 22 shows the SMA thickness effect on the 
response time and natural frequency of the proposed cantilever plate. The natural 
frequency decreases with increasing the SMA thickness ratio, this is because 
increasing the SMA thickness increases both stiffness and mass of the plate. 
However, the mass of the plate increases more than its stiffness does, which 
decrease the natural frequency of the plate. 
 

 
 

Figure 18. SMA thickness effect on the lateral deflection of the plate  
                                      before activation (T<Mf). 

 

 
 

Figure 19. SMA thickness effect on the lateral deflection of the plate 
                                      after activation (T>Af). 
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Figure 20. SMA thickness effect on the response time and the maximum  

deflection of the plate at free end (x=a and y=b/2). 
 

 
 

Figure 21. SMA thickness effect on both dimensionless response time and the  

                   Max. deflection (w w h= ) of the plate at free end (x=a and y=b/2). 
 

 
 

Figure 22. SMA thickness effect on the response time and natural frequency of the plate.  
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(4) Effect of plate aspect and thickness ratios 
 
To study the effect of the plate aspect ratio (a/b) and the thickness ratio (a/h) on the 
plate deflection and natural frequency, four values of (a/b=1,2,3, and 4) are chosen 
and a four values of (a/h=10,20,50, and 100) are chosen. The plate length is taken 
constant (a = 0.1 m) and the SMA thickness ratio is taken constant (ts/h = 0.1) Figure 
3. The plate is loaded with a distributed load (q=500 N/m2). The maximum lateral 
deflection [ ]w mm and its normalized value, w , Eq.(44), before and after activation of 

SMA layer are calculated, and the activation ratios w after activation / w before 
activation are plotted in Figure 23. The natural frequency, Eq. (44), before and after 
activation of SMA layer are calculated, and the activation ratios ω after activation / 
ω before activation are plotted in Figure 24. It is clear from Figures 23 and 24. 
 

Figure 23 shows that increasing the plate thickness ratio (a/h) causes decrease of the 
deflection activation ratio and increase of the natural frequency activation ratio, which 
means that as the plate becomes thinner; a more response to the SMA activation is 
obtained. As the plate aspect ratio (a/b) increases, a large response to the SMA 
activation is obtained. 
 

4 3 2

4

0

10
,e e

e

E h b
w w

a q h E

ρω
ω= =  (44) 

 

 
 

Figure 23. The effect of plate thickness ratio (a/h) and aspect ratio (a/b) on the deflection    

                      activation ratio ( )w after activation w before activation of the plate.  

 
 
CONCLUSION 
 
The static response, the dynamic characteristics, and the time response of the shape 
memory alloy laminated composite plates are obtained and studied. Formulation of 
static and free vibration problems of laminated composite plates with surface bonded 
shape memory alloy sheets is presented. Equations of motion with the heat 
governing equations are deduced based on the modified higher-order shear 
deformation theory. 
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Figure 24. The effect of plate thickness ratio (a/h) and aspect ratio (a/b) on the natural  

                frequency activation ratio ( )after activation before activationω ω  of the  

                       plate.  

 
 
Parametric studies have been performed and the following conclusions have been 
drawn: 
(1) The lateral deflection of the plate is decreased with the activation of the SMA 

layer due to the increase of the Young’s modulus of the SMA layer in the 
austenite phase, 

(2) Increasing the core material stiffness causes decreasing in deflection without 
affecting the time response. 

(3) Increasing the SMA layer thickness obviously decreases the response time 
during heating, and increases it during cooling, until the SMA thickness becomes 

equal to the core thickness ( ) 0.5
s

t h =  then the relation will be inverted. 

(4) Increasing the SMA layer thickness decreases both the plate deflection and 
natural frequency which depends on the ratios of stiffness and mass properties 
of SMA and core materials. 

(5) Increasing the plate thickness ratio (a/h) decreases the deflection activation ratio 
and increases the natural frequency and activation ratio which means that as the 
plate becomes thinner, it is more response to the SMA activation. 

(6) As the plate aspect ratio (a/b) increases a larger response to the SMA activation 
is obtained. 

(7) The plate deflection is affected by thermal expansion coefficient without affecting 
the time response, according to the location of the SMA sheet away from the 
neutral axis and the transverse force direction. 
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Appendix A 
 

The Evolution equations of Brinson’s model 
 

1- Twinned Martensite →  detwinned martensite 
Or (Austenite →  detwinned martensite) 
 

a- T M
S

>  and  ( )  ( )cr cr

s M S f M S
C T M C T Mσ σ σ+ − < < + −  

 ( )( )0 01 1
cos

2 2

crS S
S f M scr cr

s f

C T M
ξ ξπ

ξ σ σ
σ σ

 − +
= − − − + 
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                       ( )0
0 0
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ξ
= − −
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b- T Ms<  and   cr cr
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σ σ σ< <  
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ξ σ σ

σ σ

 − +
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−
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<  and 0T T<  

( ){ }01
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T
T M f

a T Mξ

ξ−
∆ = − +     

else, 0
T ξ∆ = .9 

 
2- Martensite →  Austenite 
 

For T A
S

>  and ( ) ( )
A f A S

C T A C T Aσ− < < −  

 0 cos 1
2

S

f S A

T A
A A C

ξ π σ
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S
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ξ
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3- Austenite →  Twinned Martensite  
 

For f sM T M< < ,  cr

s
σ σ<  and 0T T<  
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Putting 
S

ξ  and 0S
ξ  gives the same formula of Liang’s model if we put the slope 

M
C = ∞  because the transformation curves at  cr

s
σ σ<  are vertical lines, [11], 

  

 ( )0 01 1
cos

2 2
M f

a T M
ξ ξ

ξ
− +

= − +     

 

In this case, the total induced martensite is a pure temperature induced 

martensite, i.e. 
T

ξ ξ=  and 0 0T
ξ ξ= . 

 
 
Appendix B 

 
Dimensionless parameters of heat equations 

 

Dimensionless 
Parameters 

Heating Cooling 

Time, τ  ( )2

s s
t k h C  

Temperature, θ  ( ) ( )s f sT A A A− −  ( ) ( )f s fT M M M− −  

Heat of transition, 
MA

R  ( )s s f sq C A A−  ( )s s s fq C M M−  

Power ratio, 
P

R  ( )2

s f sPh k A A−  0 

Heat sink strength, S  ( ) ( )sinks f sA T A A− −  ( ) ( )sinkf s fM T M M− −  

Lateral deflection, w  w h  

Coordinate, X  x h  

Coordinate, Y  y h  

Conductivity, 
k

R  2

E s
K h k  

 


