Zoonotic Importance of Salmonellosis in Chickens and Humans at Qualyobia Province

Lobna M.A. Salem^{*}, Maysa A.I. Awadallah^{**}, Nashw O.K^{*}. and Marwa O.A. Salem^{*}

^{*}Department of Zoonosis, Faculty of Veterinary Medicine, Benha University, Egypt. ^{**}Department of Zoonosis, Faculty of Veterinary Medicine, Zagazig University, Egypt.

> Thus and chickens by using culture method, serotyping, THIS study aimed to isolate and identify Salmonella spp. From antimicrobial sensitivity test and detection of virulence genes (invA, avrA, bcfC, stn). A total of 245 samples and swabs including (36 cloacal swabs, 17 intestinal contents, 60 chicken product[luncheon, nuggets, kofta, pane, 15 of each], 45 chicken meat[breast, thigh, wing, 15 of each], 20 hand swabs, 27 stool (diarrheic and nondiarrheic) and 40 serum) from humans for Widal test. The results revealed that 31 samples and swabs were positive to Salmonella, 6 isolates were isolated from broilers cloacal swabs, 7 isolates were isolated from chicken meat (4 in thigh samples and 3 in breast samples and swabs), 2 isolates were isolated from chicken products (one isolate in kofta sample and one isolates in pane swabs), 3 isolates were isolated from intestinal swabs, 4 isolates were isolated from hand swabs from workers in farms and poultry shops and 4 isolates were isolated from stool of diarrheic and non-diarrheic persons while 5 isolates were isolated from serum. Serotyping revealed 9 strains of S. Gallinarumand S. subspp. Salamae mainly in cloacal swabs, while S. Typhimurium, S. Enteritidis, S. Kentucky, S.Tsevie, S. Colindale, S. Papauna and S. Lagos were isolated from chicken meat, its products, hand swab, intestinal swabs and stool. S. Typhi and Paratyphi A, B were isolated from serum of patients by Widal test. Nine strains were tested against 6 commercial antibiotics and revealed that all strains were sensitive to levofloxacin and amikacin while were resistant to erythromycin by 100% and ampicillin, tetracycline and cefexime shown viability in sensitivity. Widal test revealed S. Typhi and Paratyphi A, B by a titer of 1:320 for O, H antigens in S. Typhi, Paratyphi A and B. The study detected inv A, avr A, bcf C, stn genes in 11 S.Enteritidis and 3 S. Typhimurium that isolated from human and poultry and RAPD PCR revealed relationships in S. Enteritidis that isolated from human and poultry.

Keywords: Salmonellosis, Chickens, Humans, Zoonotic importance.

Salmonellosis is one of the most prevalent disease and major source of foodborne infections to humans as consumption of poultry products is worldwide in distribution (Marcus *et al.*, 2007). Salmonellae are isolated more often from LOBNA M.A. SALEM et al.

poultry and poultry products than from any other food animals (Braden, 2006). Chickens can be infected with many different serovars of paratyphoid Salmonella. Among these paratyphoid salmonellae, infections due to S. Typhimurium, S. Enteritidis and S. Heidelberg, are of worldwide in distribution with wide host range and are of major economic and public health significance (Yanfen et al., 2010). Salmonella is mostly transmitted to humans, through contaminated food and water. In hospitals, person to person transmission may also happen. Among veterinarians and farm workers, transmission may occur by contact with infected animals. Cross contamination of poultry can occur in slaughter houses as well as during preparation of poultry products (Olsen et al., 2003). Most of the salmonella serotypes are pathogenic to humans and the common symptoms of Salmonellosis in human are abdominal pain, diarrhea, nausea, vomiting, muscle pain, prostration, drowsiness and fever. Symptoms may be varied due to variation in the dose of inoculation, mechanisms of pathogenicity, virulence factors, age and immune response of the host (Andino and Hanning, 2015).Salmonellosis is more prevalent in developing parts of the world in Africa, Asia, and South America. South Asia are at highest risk for infections that are nalidixic acid-resistant or multidrug-resistant (*i.e.*, resistant to ampicillin, chloramphenicol, and trimethoprim - sulfamethoxazole). In humans, Salmonellosis causes two kinds of fever. Enteric fever which can be typhoid or paratyphoid and gastroenteritis which is non-typhoidal fever. Typhoid fever is an acute, life-threatening febrile illness caused by S. typhi and paratyphi, and there are estimated 20 million cases and 200,000 deaths worldwide each year (Crump et al., 2004). The epidemiology and pathogeneses of Salmonellosis are dictated by any array of factors that act in tandem and ultimately manifest in the typical symptoms of Salmonellosis virulence genes encode products that assist the organism in expressing its virulence in the host cells. Nucleic acid based techniques are being employed for the detection of various gene-encoded virulence factors viz, inv A and avr A genes that associated with Salmonella pathogenicity islands (SPIs), the fimbrial related gene bcf C and stn involved in enterotoxin production, the distribution of these genes among various isolates obtained from biological sources is yet to be elucidated (Muthu et al., 2014).

Material and Methods

A total of 245 samples and swabs that included 36 cloacal swabs, 17 intestinal contents, 45 chicken meat{breast, thigh, wing, 15 of each}, 60 chicken products {luncheon, nuggets, kofta, pane, 15 of each}, 20 hand swabs, 27 stool (diarrheic and non- diarrheic) and 40 serum from humans for Widal test. Samples and swabs were collected from farm, poultry shops, supermarkets, hospital and private labs in Qualyobia governorate.

Methods for isolation and identification of Salmonella Species

- The procedures for isolation of Salmonella from previously mentioned samples were done according to procedures of ISO 6579 (2002). All samples were incubated at 37 ± 1 °C for 18 ± 2 hrs for pre-enrichment. For enrichment, 0.1 ml of each pre-enriched sample was transferred to 10 ml of Rappaport Vasiliadis and incubated at 41.5 ± 0.5 °C for 24 ± 3 hrs. One loopful of each enriched broth was streaked aseptically onto Xylose Lysine Deoxycholate agar and incubated at 37 ± 1 °C for 24 ± 3 hrs.
- Biochemical identification was done according to the procedures as described by Murray (2003).
- Serotyping was done according to Kauffmann white Scheme (Kauffman, 1974).
- The antimicrobial sensitivity phenotypes of Salmonella were determined by agar disc diffusion method (Finegold *et al.*, 1982).
- Widal test was done on human sera as described by Felix, 1944.
- Molecular identification of *stn*, *bcf* C, *avr* A and *inv* Avirulence associated genes in 11 *S. enteritidis* and 3 *S.typhimurium* isolates from different sources was done according to QIAamp DNAmini kit instructions. (Catalogue no. 51304). The QIAamp DNA Mini Kit provides silica-membrane-based nucleic acid purification from different types of samples. The spin-column procedure does not require mechanical homogenization, so total hands-on preparation time is only 20 minutes and RAPD-PCR for nine *S. enteritidis* described by Hunter and Gaston (1990).

Results

Occurrence and serotyping of Salmonella isolates from chickens and humans:

Highest rate of *Salmonella* isolated from hand swabs, intestinal swabs, cloacal swabs, chicken meat, stool then chicken products as in Table 1.

Seroprevalence of Salmonella infection in human

Anti-*Salmonella* antibodies were recorded in 5 out of 40 serum samples examined (12.5%). *S.typhi, S.paratyphi* A represented by 100% from positive Widal while 60% paratyphi B as in Table 2.

Sensitivity of Salmonella serotypes to antibiotics.

All *Salmonella* strains were sensitive to levofloxacin and amikacin (100%), while all isolates were resistant to erythromycin (100%). In contrast, ampicillin had the basic effect on viability of Salmonella strains followed by cefexime and tetracycline. *S.kentucky* isolated from chicken meat showed 100% resistance to erythromycin and ampicillin as in Table 3.

	No. of	Positiv	7e	Serovars		lates	
Samples	examined samples	No.				%*	Туре
Cloacal swabs				S. gallinarum	3	50	Swab
	36	6	16.66	S. tsevie	1	16.6	Swab
				S. typhimurium	1	16.6	Swab
				S. subspp. salamae	1	16.6	Swab
Chicken meat	45	7	15.5				
Breast	15	3	20	S. papauna	1	14.28	Sample, swab
				S. colindale	1	14.28	Sample, swab
				S. enteritidis	1	14.28	Swab
Thigh	15	4	26.6	S. enteritidis	3	42.85	Sample
				S. kentucky	1	14.28	Sample
Wing	15	0	0				
Chicken products	60	2	3.33				
Luncheon	15	0	0				
Nuggets	15	0	0				
Kofta	15	1	6.66	S. Enteritidis	1	25	Sample
Pane	15	1	6.66	S. Enteritidis	1	25	Swabs
Intestinal swabs	17	3	17.64	S. Kentucky	1	33.3	Swab
				S. papauna	1	33.3	Swab
				S. enteritidis	1	33.3	Swab
Hand swabs	20	4	20	S. papauna	1	25	Swab
				S. lagos	1	25	Swab
				S. tsevie	1	25	Swab
				S. enteritidis	1	25	Swab
Stool	27	4	13.8				
Diarrheic	17	3	17.6	S. kentucky	1	25	Swab
				S. typhimurium	2	50	Swab
Non-diarrheic	12	1	8.33	S. enteritidis	1	25	Swab

TABLE 1. Occurrence and serotyping of Salmonella isolates from chickens and humans.

TABLE 2.	Occurrence	and	percentage	of	S.Typhi	and	Paratyphi	A,B	in	human
	serum.									

	No. of	Pos	itive			Isolates			
Samples	examine d	No.	%	S.typhi		hi S. paratyphi A		S. paratyphi B	
	samples	190.	70	No.	% *	No.	%*	No.	%*
Serum	40	5	12.5	5	100	3	60	5	100

5 positive samples were *S. typhi* and *S. paratyphi* B (100%) and 3(60%) of them were mixed with *S. paratyphi* A.

Types and concentration of	I	Antibiotic sensitivi	ty
Antibiotics	S	Ι	R
Ampicillin (10 mg)	6 (66.6 %)	1(11%)	2(22%)
Tetracycline (30)	5 (55.5 %)	4 (44 %)	-
Erythromycin (15)	-	-	9 (100 %)
Levofloxacin (5 mg)	9 (100 %)	-	-
Amikacin (30)	9 (100 %)	-	-
Cefexime (5 mg)	3 (33 %)	5 (55.5 %)	1 (11 %)

S: sensitive R: resistant I: intermediate

Distribution of virulence genes in Salmonella enteritidis and typhimurium

The occurrence values of the investigated virulence associated genes (*invA*, *avrA*, *bcfC* and *stn*) were 100% in the examined S. *typhimurium* and S. *enteritidis* isolates as in Table 4 and photos 1, 2, 3, 4.

TABLE 4.Distribution of		

Salmonellas		No. of	Virulence gene				
erovars	Source	examined isolates	invA No (%)	avrA No (%)	<i>bcf</i> C No (%)	stn No (%)	
Salmonella Enteritidis	3 samples thigh 1swab breast 1sampleskofta 3 swabs pane 1 hand swab 1 intestinal swab 1 stool (diarrheic)	9	9(100%)	9(100%)	9(100%)	9(100%)	
Salmonella Typhimurium	2 stools (non- diarrheic) 1 cloacal swab	3	3(100%)	3(100%)	3(100%)	3(100%)	
Total		12	12(100%)	12(100%)	12(100%)	12(100%)	

All examined *Salmonella enteritidis* and *Salmonella typhimurium* showed positive amplification of 284bp fragment specific for the *inv*A gene as in photo 1.

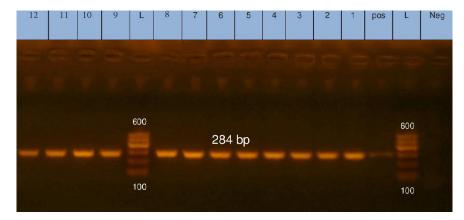


Photo1. Agarose gel electrophoresis showing amplified bands of *Salmonella* isolates using primer set for the *inv*A (284bp) gene in human and poultry samples and swabs.

-Negative control-DNA leader 100-600bp -Positive control-Lanes1-9*S. enteritidis* -Lanes10-12*S. typhimurium*

All examined *Salmonella enteritidis* and *Salmonella typhimurium* showed positive amplification of 422bp fragment specific for the *avr*Agene as in photo 2.

Photo 2. Agarose gel electrophoresis showing amplified bands of *Salmonella* isolates using primer set for the *avr*A (422bp) gene in human and poultry samples and swabs.

-Negative control-Positive control - DNA leader 100-600bp -Lanes 1-9S. enteritidis -Lanes10-12S. typhimurium

ZOONOTIC IMPORTANCE OF SALMONELLOSIS IN CHICKENS... 157

All examined *Salmonella enteritidis* and *Salmonella typhimurium* showed positive amplification of 467bp fragment specific for the *bcf*C gene as in photo 3.

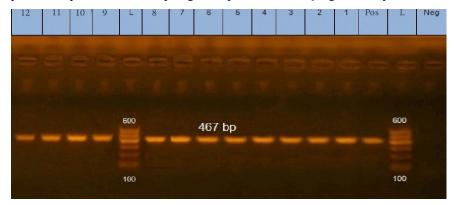


Photo 3. Agarose gel electrophoresis showing amplified bands of *Salmonella* isolates using primer set for the bcfC (467bp) gene in human and poultry samples and swabs.

-Negative control-DNA leader 100-600bp -Positive control - Lanes1-9*S. enteritidis* - Lanes10-12*S. typhimurium*

All examined *Salmonella enteritidis* and *Salmonella typhimurium* showed positive amplification of 617bp fragment specific for the *stn gene* as in photo 4.

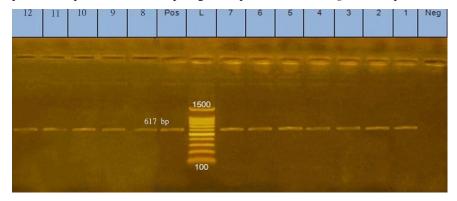
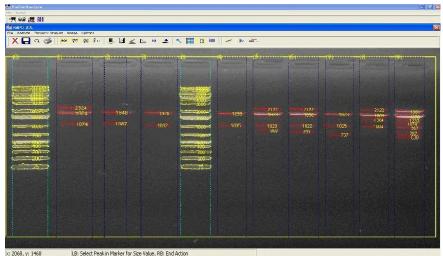


Photo 4. Agarose gel electrophoresis showing amplified bands of *Salmonella* isolates using primer set for the *stn* (617bp) gene in human and poultry samples and swabs.

-Negative control	-DNA leader 100-600bp	-Positive control
-Lanes1-9S. enteritidis	-Lanes 10-12S. typhimurium	


LOBNA M.A. SALEM et al.

RAPD-PCR profiles and associated clusters

The RAPD-PCR patterns of 9 S. enteritidis isolates from different sources were investigated using a single amplification profile. The profiles were discriminated by the number and position of the amplified fragments. Visual comparison of the banding patterns revealed multiple DNA fragments ranged in size between 2300 bp and 700 bp (Photo5). The primer sets produced 6 profiles (referred to as E1 to E6) as in Table 5. The discriminatory power of the RAPD-PCR was calculated by Simpson's index of diversity and D value was 0.9 indicating high discriminatory power. The dendrogram analysis of the examined isolates showed two clusters and one separate isolates (Fig.1). Cluster I contained isolates from kofta, intestinal content, breast swab and thigh while cluster II contained isolates from thigh, swab pane, hand swab and a single isolate from stool.

Profile	Number of isolates	Sources (Isolate code)	Cluster
E1	2	(sample kofta) S5	
EI	2	(intestinal content) S6	т
E2	1	(swab breast) S1	1
E3	1	(sample thigh) S8	
		(sample thigh) S3	
E4	3	(sample pane) S4	н
	(hand swab) S2		II
E5	1	(sample thigh) S7	
E6	1	(stool) S9	Single isolate

TABLE 5. RAPD-PCR profiles and associated clusters.

LB: Select Peak in Marker for Size Value, RB: End Act

Photo 5. Amplification of nine RAPD products by Salmonella enteritidis isolates.

Egypt. J. Vet. Sci. Vol. 47, No, 2 (2016)

158

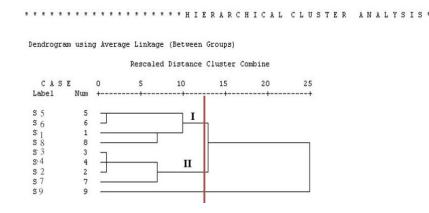


Fig. 1. Dendrogram among nine isolates of *Salmonella enteritidis* generated through RAPD data using UPGMA method.

Discussion

The isolation rate of Salmonella from broilers' cloacal swabs was 6(16.66%). This agrees with those reported by Ibrahim et al. (2013), who isolated Salmonella from broilers with a percentage of 16.66% for each. However, these findings are lower than those reported by Ramya et al. (2012), and higher than those reported by Parvej et al. (2016). Salmonella species were detected in the intestinal contents of 3 slaughtered chickens (17.64%). The identified isolates were serotyped as; S. kentucky, S. papauna, S. enteritidis (with a percentage of 33.3% for each). Phagoo and Neetoo (2015) isolated Salmonella from 11% from the intestinal contents. The isolation rate of Salmonella from chicken meat in this study was (15.5%) that is nearly similar to those recorded by Saad et al. (2011), his result was (16%) in chicken meat. Salmonella species were isolated from 2 (3.33%) of examined chicken products including one isolate (25 %) from kofta and pane, but not isolated from luncheon and nuggets. Serotyping revealed that all isolates were S.enteritidis. Lower isolation rate of Salmonella from meat product was previously recorded by Saad et al. (2011) whose result was 3.75%. In contrary, Samar (2015) isolated Salmonella from 32% of pane samples. Moreover, Mohamed (2013) isolated Salmonella from kofta samples with rate of 40%. Salmonella species in hand swabs from workers in poultry shops and farms was 20% (4 isolates). They were identified serologically as S.papauna, S.enteritidis, S.lagos, S.tsevie (one isolate for each, 25%). This result was higher than that reported by Ibrahim et al. (2013) who found Salmonella in examined hand swabs with percentage of 8.88%. Salmonella species were isolated from human stools with 13.79 % (4 isolates) out of them 3 isolates (17.64%) were

from non-diarrheic patients and one isolate (8.3 %) was from diarrheic patients. This result was lower than those reported by Nader et al. (2015), his result was 10%. Salmonella species were detected in stool of non-diarrheic persons indicated that persons with asymptomatic infection which act as chronic carriers and source of infection to external environment. All strains were sensitive to levofloxacin and amikacin (100%), while all isolates were resistant to erythromycin (100%). In contrast, ampicillin had the basic effect on viability of Salmonella strains followed by cefexime and tetracycline. S.kentucky isolated from chicken meat showed 100% resistance to erythromycin and ampicillin. This result agrees with that reported by Al-ferdous et al.(2013), who found that 16(100%) of *S.typhimurium* isolates were resistant to erythromycin, but nearly similar to that reported by Mir et al. (2015), who found that S. enteritidis. S.typhimuriumand S. gallinarum show resistance to Ampicilline and Tetracycline with 68.75%, 65.62% respectively, and 75% sensitive to Levofloxacin. Anti-Salmonella antibodies were recorded in 5(12.5%) out of 40examined serum samples. S.typhi, S. paratyphi B represented by 100% from positive Widal while 60 % paratyphi A, 3 (7.5%) of S. typhi and paratyphiA,4 (10%) S.paratyphi B had a titer of 1:320 while 2 (5 %) for S. typhi and 1 (2.5%) for S. paratyphi B had a titer of 1:80. This result disagree with Oluyege et al. (2015), who found that out of 99 samples examined, 86 were tested for Widal test while the remaining 13 were cultured directly, 42 (48.8%) were positive Widal, detected *S.typhi*only 3 (3.5%) had a titer of 1:320 and 14 (16.3%) had a titer of 1:80, S. paratyphi A only 3 (3.5%) had a titer of 1 : 320 and 15 (17.4%) had a titer of 1 :80 also S. paratyphi B only 3 (3.5%) had a titer of 1 :320 and 11 (12.8%) had a titer of 1:80.

The occurrence values of the investigated virulence associated genes (invA, avrA, bcfC and stn) were 100% in the examined S. typhimurium and S. enteritidis isolates. Osman et al.(2014a) detected invA and bcfCin all S. *enteritidis* and *S. typhimurium* recovered from imported turkey poultry in Egypt. In Italy, all 13 S. typhimurium isolates from water buffalo calves with lethal enteritis displayed the presence of *invA* and *bcfC*genes (Boriello *et al.*, 2012). On the other hand, Karen et al. (2013) detected invA and avrA genes in 100% of S. enteritidis isolates from poultry carcasses. However, invAwas detected only in 47.3% of S. enteritidis and 50% of S. typhimurium isolates from animals and human in Egypt (Moussa et al., 2013). Maysa and Abd-Elall (2015) in Sharkia province, Egypt detected invA and bcfC in S.typhimurium, S.enteritidis and S. new port isolates from leafy greens, animals, human and waste water samples. The respective occurrence of invA gene versus bcfC gene in the aforementioned salmonella isolates were (100% versus 88.9%), (100% versus 100%) and (50% versus 100%). Nwiyi et al. (2015) detected invA gene in S. enteritidis isolated from chicken. The recorded high frequencies of *invA* and *bcf* Cgenes in the present study confirm the previous results that little or no variation occurred for most genes incorporated in SPIs (invA) and for the fimbrial markers (bcfC), thus these genes were present throughout most serotypes (Osman et al., 2014b). The invA is the Salmonella invasion gene which is essential for entry of bacteria into epithelial cells and is a putative inner membrane component of SPI-1 dependent Egypt. J. Vet. Sci. Vol. 47, No, 2 (2016)

type III secretion system (TTSS-1) virulence apparatus (Hur *et al.*, 2011), whereas *bcf*Cis bovine colonization factor and fimbrial usher (Boriello *et al.*, 2012). The RAPD-PCR patterns of 9 *S. enteritidis* isolates from different sources were investigated using a single amplification profile. The profiles were discriminated by the number and position of the amplified fragments. Visual comparison of the banding patterns revealed multiple DNA fragments ranged in size between 2300 bp and 700 bp. The primer sets produced 6 profiles (referred to as E1 to E6). The discriminatory power of the RAPD-PCR was calculated by Simpson's index of diversity and *D* value was 0.9 indicating high discriminatory power. The dendrogram analysis of the examined isolates from sample kofta, intestinal content, swab breast, sample thigh, cluster II contained isolates from sample thigh, swab pane, hand swab and a single isolate from stool.

Conclusions

From this study, it could be concluded that *Salmonella* spp were highly prevalent in the examined chicken, chicken meat, chicken products, human stools and hand swabs Serotyping of recovered *Salmonella*, however, clarified predominance of *S. enteritidis* and *S. typhimurium* in examined sources, but other serovars were also encounter reflecting wide variance in the examined sources. Virulotyping of recovered *Salmonella* serovars verified widespread distribution of virulence associated genes among isolates and provided additional evidence on risk of virulent *salmonellosis* posed from chicken and their products for human.

References

- Al-ferdous, T., Kabir, S.M.L., Amin, M.M. and Hossain, K.M.M. (2013) Identification and antimicrobial susceptibility of *Salmonella* species isolated from washing and rinsed water of broilers of Animal and Veterinary Advances. *Journal of Medical Microbiology*, 5 (1), 1-8.
- Andino, A. and Hanning, I. (2015) Salmonella enterica: survival, colonization, and virulence differences among serovars. Sci. World J., 2015, 1-16.
- Boriello, G., Lucibelli, M.G., Pesciaroli, M., Carullo, M.R., Grazaiani, C., Ammendola, S., Battistoni, A., Ercolini, D., Pasquali, P. and Galiero, G. (2012) Diversity of *Salmonella* spp. Serovars isolated from the intestines of water buffalo calves with gastroenteritis. *BMC Vet. Res.*, 8, 201-206
- Braden, C.R. (2006)*Salmonella enteric* serotype Enteritidis and eggs: a national epidemic in the. United States. *Clinical Infectious Diseases*, **43** (4), 512-7.
- Crump, J.A., Luby, S.P. and Mintz, E.D. (2004) The global burden of typhoid fever. *Bull World Health Organ*, 82, 346-353.
- Felix, A. (1944) Technique and interpretation of Weil-Felix test least in typhus fever. *Trans. Roy. Soc. Trop. Med. Hyg.*, **37** (5), 321-341.

- **Finegold, S.M. Com and Martin, W.J. (1982)** "*Diagnostic Microbiology*" 6th ed., The C.V. Mosby Pany, St. Louis, Toronto, London.
- Hunter, P.R. and Gaston, M.A. (1990): numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J. Clin. Microbiol., 78 (11), 1058-1059.
- Hur, J., Choi, Y.Y., Park, J.H., Jeon, B.W., Lee, H.S., Kim, A.R. and Lee, J.H. (2011) Antimicrobial resistance, virulence associated genes and pulsed field gel electrophoresis profiles of *Salmonellaenterica* subsp. *Entericaserovar Typhimurium* isolated from piglest with diarrhea in Korea. J. Vet. Res., 75, 49-56
- **Ibrahim, M.A., Nahed, H.G. and Abdel-Hamid, M.A. (2013)**Seroepidemiological studies on poultry Salmonellosis and its public health importance. *J. World Poult. Res.*, **3** (1), 18-23.
- ISO 6579 (2002) "Microbiology-General Guidance on Methods for Detection of Salmonella", 4th ed., International Organization for Standardization, Geneva, Switzerland.
- Karen, A.B., Thales, Q.F., Anderlis, B., Hamilton, L.S.M., Carlos, T.P.S. and Viadimir, P.N. (2013) Detection of virulence-associated genes in Salmonella enteritidis isolated from chicken in south of Brazil. *Pesq. Vet. Bras.*, 33 (12), 1416-1422.
- Kauffman, F. (1974) Serological diagnosis of Salmonella species. Kauffman White Scheme, Copenhagen, Denmark.
- Marcus, R., Varma, J.K., Medus, C., Boothe, E.J., Anderson, B.J., Crume, T., Fullerton, K.E., Moore, M.R., White, P.L., Lyszkowicz, E., Voetsch, A.C. and Angulo, F.J. (2007) Reassessment of risk factors for sporadic Salmonella serotype Enteritidis infection : A case –control study in five food Net sites , *Epidemiol. Infect.*, 135, 84-92.
- Maysa, A.I.A. and Abd-Elall, A.M.M. (2015) Diversity and virulence associated genes of *Salmonellaentericaserovars* isolated from waste water agricultural drains, leafy green producing farms, cattle and human along their courses. *Revue Med. Vet.*, 166 (3), 96-106.
- Mir, I.A., Kashyap, S.K. and Macherchandani, S. (2015) Isolation, serotyping diversity and antibiogram of *Salmonella enteric*isolated from different species of poultry in India. *Asian Pac. J. Trop. Biomed.*, 5 (7), 561-567.
- Mohamed, K. (2013) Prevalence of *Salmonella* in meat products. *Global Veterinaria*, **11** (5), 685-688.ISSN 1992-6197.

- Moussa, I.M., Yosra, S.A., Abdullah, A.A., Ashgan, M., Azza, S.G. and Refai, M.K. (2013) Molecular characterization of *Salmonella* virulence genes isolated from different sources relevant to human health. www.world-food. *Int. J. Food Agri. Environ.*, 11, 197-201.
- Murray, C.J. (2003) Environmental aspects of *Salmonella*. In *Salmonella* in domestic animals, *Wray, C. and Wray, A.* (Ed.), *CABI Publ.*, pp. 265-283.
- Muthu, G., Suresh, A., Vishnuprabu, D., Munirajan, A.K., EstherMary, S., Sathishkumar, E., Gopinath, P. and Srivani, S.(2014) Detection of virulence genes from Salmonella species in Chennal, India. CIB Tech J. Microbiol., 3, 11-14.
- Nader, M.I., Rasheed, M.N. and Hammed, H.H. (2015) Molecular identification of Salmonellatyphimurium from chicken, meat and human by PCR. Intl Conf. on Medical Genetics, Cellular and Molecular Biology, Pharmaceutical and Food Science (GCMBPF-2015) June 5-6 2015 Istanbul.
- Nwiyi, P.O., Soyoola, M. and Oguoma, I.O. (2015) Detection of virulence genes in Salmonella isolated from chicken and chicken waste water. *Global Advanced Res. J. Microbiol.*, 4 (11), 125-129.
- Olsen, J.E., Brown, D.J., Madsen, M. and Bisgaard, M. (2003) Cross-contamination with *Salmonella* on a broiler slaughter house line demonstrated by use of epidemiological markers. J. Appl. Microbiol., 94, 826-835.
- Oluyege, A.O., Babalola, J.A., Igbalajobi, A.O. andOloruntuyi, A.B. (2015) Isolation and characterization of *Salmonella* typhi from widal positive patients attending Ekiti State University Teaching Hospital. *Int. J. Curr. Microbiol. App. Sci.*, 4 (10), 774-784
- Osman, K.M., Marouf, S.H., Erfan, A.M. and Al-Atfeehy, N. (2014a) Salmonella enterica in imported and domestic day-old turkey poults in Egypt: repertoire of virulence genes and their antimicrobial resistance profiles. *Res. Sci. Tech. off. Int. Epiz.*, 33, 1017-1026.
- Osman, K.M., Marouf, S.H., Mehana, O.A. and Al-Atfeehy, N. (2014b) Salmonellaenterica serotypes isolated from squabs reveal multidrug resistance and a distinct pathogenicity gene repertoire. *Res. Sci. Tech. Off. Int. Epiz.*, 33, 997-1006.
- Parvej, M.S., Nazir, K.H.M.N.H., Rahman, M.B., Jahan, M., khan, M.F.R. and Rahman, M. (2016) prevalence and characterization of multidrug resistant *Salmonella Entericaserovar Gallinarumbiovar* Pullorum and Gallinarum from chicken. *Veterinary World*, 9 (1), 65-70.

- Phagoo, L. and Neetoo, H. (2015) Antibiotic resistance of Salmonella in poultry farms of Mauritius. J. World Poult. Res., 5 (3), 42-47.
- Ramya, P., Madhavarao, T. and Rao, L.V. (2012) Study on the incidence of Salmonella Enteritidis in poultry and meat samoles by culture and PCR methods. *Vet.World*, 5 (9), 541-5.
- Saad, M.S., Edris, A.M., Shaltout, F.A. and Shimaa, E.V. (2011) Isolation and identification of Salmonella and *E. coli* from meat and poultry cuts by using multiplex PCR. *Benha Veterinary Medical Journal*, 22 (2), 152-160.
- Samar, S.(2015) Detection of Salmonella species in cut-up chicken carcasses. M.V.Sc. Thesis., Vet. Med. Benha University, Egypt.
- Yanfen, J.R.K., Raveendra, R.P., Valeria, P., Cornelius, L.R., Kenneth and John, F.P. (2010) Assessment of 2 Salmonella entericserovar Typhimurium –based vaccines against necrotic enteritis in reducing colonization of chickens by Salmonella serovars of different serogroups. The Canadian Journal of Veterinary Research, 74, 264-270.

(Received 8/2/2017; accepted 6/6/2017)

الاهمية الصحية لمرض السالمونيلا في الدجاج والانسان في محافظة القليوبية

لبني مجد علي سالم*، مايسة عبدالبديع ابراهيم، نشوة عثمان خليفة* و مروة** عكاشة عبدالحليم سالم* *قسم الامراض المشتركة – كلية الطب البيطري – جامعة بنها و **قسم الامراض المشتركة – كلية الطب البيطري – جامعة الزقازيق – مصر

اوضحت هذه الدراسة تواجد ميكروب السالمونيلا بنسبة عالية في الفراخ ولحومها ومنتجاتها و براز الاشخاص ومسحات من ايدي العمال. كما اوضحت التحاليل السيرولوجية ان السالمونيلا انتيرتييدس و السالمونيلا تيفيميريم هما العترات الكثر شيوعا في العينات التي تم فحصها يالاضافة الي عترات اخري تم عزلها من نفس العينات. كما اوضح اختبار البلمرة الجزيئية وجود الجينات المسؤلة عن الضراوة في عترات السالمونيلا التي تم عزلها وانتقالها من الفراخ ومنتجاتها الي الانسان.