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SOME PROPERTIES OF ANALYTIC FUNCTIONS DEFINED BY

POLYLOGARITHM FUNCTIONS

P. THIRUPATHI REDDY

Abstract. The main purpose of this paper, is to introduce a new subclass
of analytic functions involving Polylogarithm functions and obtain coecient

inequalities, distortion properties, extreme points, radii of starlikeness and
convexity, Hadamard product, and convolution and integral operators for the

class.

1. Introduction

Let A denote the class of all functions u(z) of the form

u(z) = z +

∞

k=2

akz
k, (1)

in the open unit disc U = z ∈ C : z < 1. Let S be the subclass of A consisting of
univalent functions and satisfy the following usual normalization condition u(0) =
u′(0) − 1 = 0. We denote by S the subclass of A consisting of functions u(z)
which are all univalent in U. A function u ∈ A is a starlike function of the order
ξ, 0 ≤ ξ < 1, if it satises

ℜ

zu′(z)
u(z)


> ξ, z ∈ U. (2)

We denote this class with S∗(ξ). A function u ∈ A is a convex function of the order
ξ, 0 ≤ ξ < 1, if it satises

ℜ

1 +

zu′′(z)
u′(z)


> ξ, z ∈ U. (3)

2020 Mthmtis Sujt Clssition. 30C45, 30C50.
Ky wors n phrss. analytic, starlike, convex, distortion, convolution.

Submitted March 28, 2024. Revised May 5, 2024.

1



2 P. THIRUPATHI REDDY EJMAA-2024/12(2)

We denote this class with K(ξ). Note that S∗(0) = S∗ and K(0) = K are the usual
classes of starlike and convex functions in U respectively. For u ∈ A given by (1)
and g(z) given by

g(z) = z +

∞

k=2

bkz
k (4)

their convolution (or Hadamard product), denoted by (u ∗ g), is dened as

(u ∗ g)(z) = z +
∞

k=2

akbkz
k = (g ∗ f)(z), (z ∈ U). (5)

Note that u ∗ g ∈ A.
Let T denotes the class of functions analytic in U that are of the form

u(z) = z −
∞

k=2

akz
k, ak ≥ 0 (z ∈ U) (6)

and let T ∗(ξ) = T  S∗(ξ), C(ξ) = T  K(ξ). The class T ∗(ξ) and allied classes
possess some interesting properties and have been extensively studied by Silverman
[30].
Let u ∈ A. Denote by Dλ : A → A the operator dened by

Dλ =
z

(1− z)λ+1
∗ u(z) (λ > −1)

It is obvious that D0u(z) = u(z), D1u(z) = zu′(z) and

Dδu(z) =
z(zδ−1u(z))δ

δ!
, (δ ∈ N0 = N  0)

Note that Dδu(z) = z +
∞

k=2 C(δ, k)akz
k where C(δ, k) =


k+δ−1

δ


and δ ∈ N0.

The operator Dδu(z) is called the Ruscheweyh derivative operator (see [25]).
The evolution of polylogarithm function, also known as Jonquiere’s function, was
started in 1696 by two eminent mathematicians, Leibniz and Bernoulli [12]. In
their work, the polylogarithm function was dened using an absolute convergent
series. The development of this function was so signicant that it was utilized
in the research work of other prominent mathematicians such as Euler, Spence,
Abel, Lobachevsky, Rogers, Ramanujan, etc., allowing them to discover various
functional identities of great importance as a result [17]. It should come as no
surprise that the increased utilization of the polylogarithm function appears to be
related to its importance in a number of key areas of mathematics and physics
such as topology, algebra, geometry, complex analysis quantum eld theory, and
mathematical physics [18, 13, 23].
Recntly, Al-Shaqsi and Darus [37], Danyal Soybas Santosh B. Joshi and Haridas
Pawar [33], Al-Shaqsi and Darus [8], Stalin et al. [36] and Thirucheran et al. [37]
generalized Ruscheweyh and Salagean operators using polylogarithm functions on
class A of analytic functions (see also [1, 3, 4, 5, 6, 7, 18, 20, 24, 29, 35, 38]).

We recall here the denition of the well-known generalization of the Riemann
Zeta and polylogarithm function, or simply the nth order polylogarithm function
G(n; z) given by

Φn(b; z) =
∞

k=1

zk

(k + b)n
(n, b ∈ C, z ∈ U) (7)
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where any term with k + b =0 is excluded (see Lerch [16] and also [[9], Section
1.10 and 1.12]). Using the the denition of Gamma function [ [9], p.27] a simply
transformation produces the integral formula

Φn(b; z) =
1

Γ(n)

 1

0

z(log
1

t
)n−1 tb

1− tz
dt, Re b > −1 and Re n > 1.

we note that Φ−1(0; z) =
z

(1−z)2 is Koebe function. For more about polylogarithm

in the theory of univalent functions see [23].
Now, for u ∈ A, n ∈ C, b ∈ C \ Z− and z ∈ U, we dene the function G(n, b; z) by

G(n, b; z) = (1 + b)nΦn(b; z) =

∞

k=1


1 + b

k + b

n

zk. (8)

Also we introduce a function (G(n, b; z))−1 given by

G(n, b; z) ∗ (G(n, b; z))−1 =
z

(1− z)λ+1
, (n ∈ C, b ∈ C \Z−, λ > −1; z ∈ U). (9)

and obtain the following linear operator

Dn
b,λu(z) = (G(n, b; z))−1 ∗ u(z) (10)

Now we nd the explicit form of the function (G(n, b; z))
(−1)

. It is well known that
λ > −1

z

(1− z)λ+1
=

∞

k=0

(λ+ 1)k
k!

zk+1 (z ∈ U). (11)

Putting (8) and (11) in (9), we get
∞

k=1


1 + b

k + b

n

zk ∗ (G(n, b; z))
(−1)

=

∞

k=1

(k + λ− 1)!

λ!(k − 1)!
zk.

Therefore the function (G(n, b; z))
(−1)

has the following form

(G(n, b; z))
(−1)

=

∞

k=1


k + b

1 + b

n
(k + λ− 1)!

λ!(k − 1)!
zk (z ∈ U).

Now we note that

Dn
b,λu(z) = z +

∞

k=2

Θ(k, b,λ, n)akz
k (12)

(n ∈ C, b ∈ C \ Z−, λ > −1; z ∈ U).
where

Θ(k, b,λ, n) =


k + b

1 + b

n
(k + λ− 1)!

λ!(k − 1)!
(13)

It is clear that Dn
b,λ are multiplier transformations. For n ∈ Z, b = 1 and λ = 0

the operators Dn
b,λ were studied by Uralegaddi and Somanatha [39], and for n ∈

Z,λ = 0 the operators Dn
b,λ are closely related to the multiplier transformations

studied by Flett [11], also, for n = −1,λ = 0, the operators Dn
b,λ is the integral

operator studied by Owa and Srivastava [21]. And for any negative real number
n and b = 1,λ = 0 the operators Dn

b,λ is the multiplier transformation studied by

Jung et al.[15], and for any nonnegative integer n and b = λ = 0, the operators Dn
b,λ

is the dierential operator dened by Salagean [27]. Furthermore, for n = 0 and
λ ∈ N0, the operators Dn

b,λ is the dierential operator Dn
λ dened by Ruscheweyh
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[25]. For n,λ ∈ N0 and b = 0 the operators Dn
λ is the dierential operator dened

[8]. Finally, for dierent choices of n, b and λ we obtain several operator investigated
earlier by other author see, for example [2, 10] and [19].
We can now describe a new subclass of functions belonging to the class A by using
the linear operator Dn

b,λ.

Denition 1 For −1 ≤ υ < 1 and ϱ ≥ 0, we let TSn
b,λ(υ, ϱ) be the subclass of

A consisting of functions of the form (6) and fulling the analytic condition

ℜ

z(Dn

b,λu(z))
′

Dn
b,λu(z)

− υ


≥ ϱ


z(Dn

b,λu(z))
′

Dn
b,λu(z)

− 1

 , (14)

for z ∈ E. The class TSn
b,λ(υ, ϱ) can be reduced to the class studied earlier by

Ronning [19, 21] by suitably specialising the values of υ and ϱ. The primary aim of
this paper is to examine some common geometric function theory properties such
as coecient bounds, distortion properties, extreme points, radii of starlikeness and
convexity, Hadamard product, and convolution and integral operators for the class.

2. Coefficient bounds

We get a required and adequate condition for function u(z) in the class TSn
b,λ(υ, ϱ)

in this section. To nd the coecient estimates for our class, we use the approach
proposed by Aqlan et al. [2].

Theorem 1 The function u dened by (6) is in the class TSn
b,λ(υ, ϱ) if and only

if
∞

k=2

[k(1 + ϱ)− (υ + ϱ)]Θ(k, b,λ, n)ak ≤ 1− υ, (15)

where −1 ≤ υ < 1, ϱ ≥ 0. The result is sharp.
Proof. We have f ∈ TSn

b,λ(υ, ϱ) if and only if the condition (14) satised. Upon
the fact that

ℜ(w) > ϱw − 1+ υ ⇔ ℜw(1 + ϱeiθ)− ϱeiθ > υ, −π ≤ θ ≤ π.

Equation (14) may be written as

ℜ

z(Dn

b,λu(z))
′

Dn
b,λu(z)

(1 + ϱeiθ)− ϱeiθ


(16)

= ℜ

z(Dn

b,λu(z))
′(1 + ϱeiθ)− ϱeiθDn

b,λu(z)

Dn
b,λu(z)


> υ. (17)

Now, we let

E(z) = z(Dn
b,λu(z))

′(1 + ϱeiθ)− ϱeiθDn
b,λu(z)

F (z) = Dn
b,λu(z).

Then (16) is equivalent to

E(z) + (1− υ)F (z) > E(z)− (1 + υ)F (z), for 0 ≤ υ < 1.
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For E(z) and F (z) as above, we have

E(z) + (1− υ)F (z)

≥ (2− υ)z −
∞

k=2

[k + 1− υ + ϱ(k − 1)]Θ(k, b,λ, n)akzk

and similarly

E(z)− (1 + υ)F (z)

≤ υz −
∞

k=2

[k − 1− υ + ϱ(k − 1)]Θ(k, b,λ, n)akzk.

Therefore

E(z) + (1− υ)F (z) − E(z)− (1 + υ)F (z)

≥ 2(1− υ)− 2

∞

k=2

[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)ak

or

∞

k=2

[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)ak ≤ (1− υ),

which yields (15).
On the other hand, we must have

ℜ

z(Dn

b,λu(z))
′

Dn
b,λu(z)

(1 + ϱeiθ)− ϱeiθ


≥ υ.

Upon choosing the values of z on the positive real axis where 0 ≤ z = r < 1, the
above inequality reduces to

ℜ





(1− υ)r −
∞
k=2

[k − υ + ϱeiθ(k − 1)]Θ(k, b,λ, n)ak rk

z −
∞
k=2

Θ(k, b,λ, n)ak rk





≥ 0.

Since ℜ(−eiθ) ≥ −eiθ = −1, the above inequality reduces to

ℜ





(1− υ)r −
∞
k=2

[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)ak rk

z −
∞
k=2

Θ(k, b,λ, n)ak rk





≥ 0.

Letting r → 1−, we get the desired result. Finally the result is sharp with the
extremal function u given by

u(z) = z − 1− υ

[k(1 + ϱ)− (υ + ϱ)]Θ(k, b,λ, n)
zk. (18)

3. Growth and Distortion Theorems

Theorem 2 Let the function u dened by (6) be in the class TSn
b,λ(υ, ϱ). Then

for z = r

r − 1− υ

Θ(2, b,λ, n)(2− υ + ϱ)
r2 ≤ u(z) ≤ r +

1− υ

Θ(2, b,λ, n)(2− υ + ϱ)
r2. (19)
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Equality holds for the function

u(z) = z − 1− υ

Θ(2, b,λ, n)(2− υ + ϱ)
z2. (20)

Proof. Since the other inequality can be explained using identical reasoning, we
just prove the right hand side inequality in (6). In view of Theorem 2, we have

∞

k=2

ak ≤
1− υ

Θ(2, b,λ, n)(2− υ + ϱ)
. (21)

Since,

u(z) = z −
∞

k=2

akz
k

u(z) =
z −

∞

k=2

akz
k

 ≤ r +
∞

k=2

akrk ≤ r + r2
∞

k=2

ak

≤ r +

∞

k=2

1− υ

Θ(2, b,λ, n)(2− υ + ϱ)
r2

which yields the right hand side inequality of (19).
Next, by using the same technique as in proof of Theorem 3, we give the distor-

tion result.

Theorem 3 Let the function u dened by (6) be in the class TSn
b,λ(υ, ϱ). Then

for z = r

1− (1− υ)

Θ(2, b,λ, n)(2− υ + ϱ)
r ≤ u′(z) ≤ 1 +

(1− υ)

Θ(2, b,λ, n)(2− υ + ϱ)
r.

Equality holds for the function given by (20).

Proof. Since f ∈ TSn
b,λ(υ, ϱ) by Theorem 2, we have that

Θ(2, b,λ, n) [2(1 + ϱ)− (υ + ϱ)]
∞

k=2

kak ≤ [k(1 + ϱ)− (υ + ϱ)]Θ(k, b,λ, n)ak ≤ 1−υ

or ∞

k=2

kak ≤
(1− υ)

Θ(2, b,λ, n)(2− υ + ϱ)
.

Thus from (21), we obtain

u′(z) ≤ 1 + r

∞

k=2

kak

≤ 1 +
(1− υ)

Θ(2, b,λ, n)(2− υ + ϱ)
r

which is right hand inequality of Theorem 3.
On the other hand, similarly

u′(z) ≥ 1− (1− υ)

Θ(2, b,λ, n)(2− υ + ϱ)
r

and thus proof is completed.
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Theorem 4 If u ∈ TSn
b,λ(υ, ϱ) then u ∈ TSn

b,λ(γ), where

γ = 1− (k − 1)(1− υ)

[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)− (1− υ)
.

Equality holds for the function given by (20).
Proof. It is sucient to show that (15) implies

∞

k=2

(k − γ)ak ≤ 1− γ,

that is
k − γ

1− γ
≤ [k − υ + ϱ(k − 1)]Θ(k, b,λ, n)

(1− υ)

then

γ ≤ 1− (k − 1)(1− υ)

[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)− (1− υ)
.

The above inequality holds true for k ∈ N0, k ≥ 2, ϱ ≥ 0 and 0 ≤ υ < 1.

4. Extreme points

Theorem 5 Let u1(z) = z and

uk(z) = z − 1− υ

[k(ϱ+ 1)− (υ + ϱ)]Θ(k, b,λ, n)
zk, (22)

for k = 2, 3, · · · . Then u(z) ∈ TSn
b,λ(υ, ϱ) if and only if u(z) can be expressed in

the form u(z) =
∞
k=1

ζkuk(z), where ζk ≥ 0 and
∞
k=1

ζk = 1.

Proof. Suppose u(z) can be expressed as in (22). Then

u(z) =

∞

k=1

ζkuk(z) = ζ1u1(z) +

∞

k=2

ζkuk(z)

= ζ1u1(z) +

∞

k=2

ζk


z − 1− υ

[k(ϱ+ 1)− (υ + ϱ)]Θ(k, b,λ, n)
zk



= ζ1z +
∞

k=2

ζkz −
∞

k=2

ζk


1− υ

[k(ϱ+ 1)− (υ + ϱ)]Θ(k, b,λ, n)
zk



= z −
∞

k=2

ζk


1− υ

[k(ϱ+ 1)− (υ + ϱ)]Θ(k, b,λ, n)
zk


.

Thus
∞

k=2

ζk


1− υ

[k(ϱ+ 1)− (υ + ϱ)]Θ(k, b,λ, n)


[k(ϱ+ 1)− (υ + ϱ)]Θ(k, b,λ, n)

1− υ



=

∞

k=2

ζk =

∞

k=1

ζk − ζ1 = 1− ζ1 ≤ 1.

So, by Theorem 2, u ∈ TSn
b,λ(υ, ϱ).

Conversely, we suppose u ∈ TSn
b,λ(υ, ϱ). Since

ak ≤
1− υ

[k(ϱ+ 1)− (υ + ϱ)]Θ(k, b,λ, n)
, k ≥ 2.
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We may set

ζk =
[k(ϱ+ 1)− (υ + ϱ)]Θ(k, b,λ, n)

1− υ
ak, k ≥ 2

and ζ1 = 1−
∞
k=2

ζk. Then

u(z) = z −
∞

k=2

akz
k = z −

∞

k=2

ζk
1− υ

[k(ϱ+ 1)− (υ + ϱ)]Θ(k, b,λ, n)
zk

= z −
∞

k=2

ζk[z − uk(z)] = z −
∞

k=2

ζkz +

∞

k=2

ζkuk(z)

= ζ1u1(z) +

∞

k=2

ζkuk(z) =

∞

k=1

ζkuk(z).

Corollary 1 The extreme points of TSn
b,λ(υ, ϱ) are the functions u1(z) = z and

uk(z) = z − 1− υ

[k(ϱ+ 1)− (υ + ϱ)]Θ(k, b,λ, n)
zk, k ≥ 2.

5. Radii of Close-to-convexity, Starlikeness and Convexity

A function u ∈ TSn
b,λ(υ, ϱ) is said to be close-to-convex of order δ if it satises

ℜu′(z) > δ, (0 ≤ δ < 1; z ∈ E).

Also A function u ∈ TSn
b,λ(υ, ϱ) is said to be starlike of order δ if it satises

ℜ

zu′(z)
u(z)


> δ, (0 ≤ δ < 1; z ∈ E).

Further a function u ∈ TSn
b,λ(υ, ϱ) is said to be convex of order δ if and only if

zu′(z) is starlike of order δ that is if

ℜ

1 +

zu′(z)
u(z)


> δ, (0 ≤ δ < 1; z ∈ E).

Theorem 6 Let u ∈ TSn
b,λ(υ, ϱ). Then u is close-to-convex of order δ in z < R1,

where

R1 = inf
k≥2


(1− δ)[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)

k(1− υ)

 1
k−1

.

The result is sharp with the extremal function u is given by (18).
Proof. It is sucient to show that u′(z)− 1 ≤ 1− δ, for z < R1. We have

u′(z)− 1 =
−

∞

k=2

kakz
k−1

 ≤
∞

k=2

kakzk−1.

Thus u′(z)− 1 ≤ 1− δ if
∞

k=2

k

1− δ
akzk−1 ≤ 1. (23)

But Theorem 2 conrms that
∞

k=2

[k(ϱ+ 1)− (υ + ϱ)]Θ(k, b,λ, n)

1− υ
ak ≤ 1. (24)
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Hence (23) will be true if

kzk−1

1− δ
≤ [k(ϱ+ 1)− (υ + ϱ)]Θ(k, b,λ, n)

1− υ
.

We obtain

z ≤

(1− δ)[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)

k(1− υ)

 1
k−1

, k ≥ 2

as required.
Theorem 7 Let u ∈ TSn

b,λ(υ, ϱ). Then u is starlike of order δ in z < R2, where

R2 = inf
k≥2


(1− δ)[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)

(k − δ)(1− υ)

 1
k−1

.

The result is sharp with the extremal function u is given by (18).

Proof. We must show that
 zu

′(z)
u(z) − 1

 ≤ 1− δ, for z < R2.

We have


zu′(z)
u(z)

− 1

 =



−
∞
k=2

(k − 1)akz
k−1

1−
∞
k=2

akzk−1



≤

∞
k=2

(k − 1)akzk−1

1−
∞
k=2

akzk−1

≤ 1− δ. (25)

Hence (25) holds true if

∞

k=2

(k − 1)akzk−1 ≤ (1− δ)


1−

∞

k=2

akzk−1



or equivalently,
∞

k=2

k − δ

1− δ
akzk−1 ≤ 1. (26)

Hence, by using (24) and (26) will be true if

k − δ

1− δ
zk−1 ≤ [k(ϱ+ 1)− (υ + ϱ)]Θ(k, b,λ, n)

1− υ

⇒ z ≤

(1− δ)[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)

(k − δ)(1− υ)

 1
k−1

, k ≥ 2

which completes the proof.
By using the same approach in the proof of Theorem 5, we can show that zu
′′(z)

u′(z) − 1
 ≤ 1− δ, for z < R3, with the aid of Theorem 2.

Thus we have the assertion of the following Theorem 5.
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Theorem 8 Let u ∈ TSn
b,λ(υ, ϱ). Then u is convex of order δ in z < R3, where

R3 = inf
k≥2


(1− δ)[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)

k(k − δ)(1− υ)

 1
k−1

.

The result is sharp with the extremal function u is given by (18).

6. Inclusion theorem involving modified Hadamard products

For functions

uj(z) = z −
∞

k=2

ak,j zk, j = 1, 2 (27)

in the class A, we dene the modied Hadamard product (u1 ∗ u2)(z) of u1(z) and
u2(z) given by

(u1 ∗ u2)(z) = z −
∞

k=2

ak,1ak,2zk.

We can prove the following.
Theorem 9 Let the function uj , j = 1, 2, given by (27) be in the class TSn

b,λ(υ, ϱ)

respectively. Then (u1 ∗ u2)(z) ∈ TS(υ, ϱ,λ, t, ξ), where

ξ = 1− (1− υ)2

(k + 1)(2− υ)(2− υ + ϱ)(1 + λ)− (1− υ)2
.

Proof. Employing the approach used earlier by Schild and Silverman [28], we
need to nd the biggest ξ such that

∞

k=2

[k − ξ + ϱ(k − 1)]Θ(k, b,λ, n)

1− ξ
ak,1ak,2 ≤ 1.

Since uj ∈ TSn
b,λ(υ, ϱ), j = 1, 2, then we have

∞

k=2

[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)

1− υ
ak,1 ≤ 1

and

∞

k=2

[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)

1− υ
ak,2 ≤ 1,

by the Cauchy-Schwartz inequality, we have

∞

k=2

[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)

1− υ


ak,1ak,2 ≤ 1.
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Thus it is sucient to show that

[k − ξ + ϱ(k − 1)]Θ(k, b,λ, n)

1− ξ
ak,1ak,2

≤ [k − υ + ϱ(k − 1)]Θ(k, b,λ, n)

1− υ


ak,1ak,2, k ≥ 2,

that is


ak,1ak,2 ≤
(1− ξ)[k − υ + ϱ(k − 1)]

1− υ)[k − ξ + ϱ(k − 1)]
.

Note that


ak,1ak,2 ≤
(1− υ)

[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)
.

Consequently, we need only to prove that

(1− υ)

[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)
≤ (1− ξ)[k − υ + ϱ(k − 1)]

1− υ)[k − ξ + ϱ(k − 1)]
, k ≥ 2,

or equivalently

ξ ≤ 1− (k − 1)(1 + ϱ)(1− υ)2

[k − υ + ϱ(k − 1)]2Θ(k, b,λ, n)− (1− υ)2
, k ≥ 2.

Since

A(k) = 1− (k − 1)(1 + ϱ)(1− υ)2

[k − υ + ϱ(k − 1)]2Θ(k, b,λ, n)− (1− υ)2
, k ≥ 2

is an increasing function of k, k ≥ 2, letting k = 2 in last equation, we obtain

ξ ≤ A(2) = 1− (1 + ϱ)(1− υ)2

[2− υ + ϱ]2Θ(k, b,λ, n)− (1− υ)2
.

Finally, by taking the function given by (20), we can see that the result is sharp.

7. Convolution and Integral Operators

Let u(z) be dened by (6) and suppose that g(z) = z −
∞
k=2

bkzk. Then the

Hadamard product (or convolution) of u(z) and g(z) dened here by

u(z) ∗ g(z) = (u ∗ g)(z) = z −
∞

k=2

akbkzk.

Theorem 10 Let u ∈ TSn
b,λ(υ, ϱ) and g(z) = z −

∞
k=2

bkzk, 0 ≤ bk ≤ 1. Then

u ∗ g ∈ TSn
b,λ(υ, ϱ).

Proof. In view of Theorem 2, we have

∞

k=2

[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)akbk

≤
∞

k=2

[k − υ + ϱ(k − 1)]Θ(k, b,λ, n)ak

≤(1− υ).
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Theorem 11 Let u ∈ TSn
b,λ(υ, ϱ) and ℏ be real number such that ℏ > −1. Then

the function Q(z) = ℏ+1
zℏ

z
0

tℏ−1u(t)dt also belongs to the class TSn
b,λ(υ, ϱ).

Proof. From the representation of Q(z), it follows that

Q(z) = z −
∞

k=2

Akzk, where Ak =


ℏ+ 1

ℏ+ k


ak.

Since ℏ > −1, than 0 ≤ Ak ≤ ak. Which in view of Theorem 2, Q ∈ TSn
b,λ(υ, ϱ).

Acknowledgments: The author would like to thank the editor and referees for
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