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ABSTRACT 
 
Structural design optimization under impact loading faces two difficulties. First, the 
inherent complexity of the finite element model required for modeling the 
complicated physical phenomenon, and second the high computational cost required 
by the iterative nature of numerical optimization. This paper presents a practical 
approach for solving this problem by using the response surface method as an 
approximate model rather than the computationally expensive one. Then numerical 
optimization can be conducted at an affordable computational cost. Finally, only one 
simulation analysis is conducted using the initial finite element model to verify the 
optimum design achieved from numerical optimization. The proposed approach has 
been successfully applied to the problem of designing a thin walled tube under 
impact loading which suggests that this approach can be used for solving design 
optimization problems of other complex structures. 
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INTRODUCTION 
 
Structures under impact loading go through large deformations and stresses exceed 
materials elastic limits into plastic regions. Furthermore, parts are pressed against 
each others under the large forces of impact. This produces contact forces and 
friction between these parts. The whole incident occurs during very short time (about 
100 ms). Considering this, the nonlinear finite element (FE) method required for 
modeling is highly sophisticated and demands huge calculations. For example, a 
simulation of full frontal impact of a full vehicle model may last for more than a half 
day [1].  
 
Optimization is a numerical technique that systematically and automatically searches 
the design space through numerous iterations to find an optimum feasible solution 
[2]. Since, each analysis is computationally expensive; hence conducting 
optimization directly to nonlinear finite element models can be prohibitively 
computationally expensive.  
 
This paper presents a practical approach for solving this problem by using the 
response surface method as an approximate model instead of the computationally 
expensive finite element model. Then numerical optimization can be conducted at an 
affordable computational cost. Finally, only one simulation analysis is conducted 
using the initial finite element model to verify the optimum design achieved from 
numerical optimization. The proposed approach is illustrated in Fig. 1. 
 
 
RESPONSE SURFACE METHOD (RSM) 
 
RSM is a global approximation technique which can be used to construct simple and 
easy to calculate surrogate models of the highly complex nonlinear FE models. The 
output models are in the form of smooth polynomial functions describing the output 
response in terms of the input design variables. Thus the noisy behaviour of output 
responses which typically encountered in crash analysis problems can be easily 
alleviated. These polynomials can then be used in evaluating the system response 
within the design space at an affordable computational cost. However, to create 
these approximate models, several evaluations are required to identify the unknown 
polynomial coefficients. Because crashworthiness evaluations are expensive, Design 
of Experiments (DOE) is used to minimize the number of points at which simulation 
will take place. Simulations are then performed at these strategic points, and data is 
processed by regression analysis to identify the unknown polynomial coefficients [3]. 
The accuracy of the models is quantified to determine their validity to represent the 
system instead of the true (expensive) models. Having these models validated, they 
can be effectively used to perform design optimization at a much lower 
computational cost.  
 
Regression Analysis 
 
Regression analysis is used to identify the unknown polynomial coefficients in RSM. 

Assume εβ += Xy  where y is an (n×1) vector that contains the exact responses 
calculated from Nonlinear FE simulations, X is an (n × p) design matrix determined 
based on the type of choice of the polynomial functions; β is a (p × 1) vector of the 
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unknown model polynomial coefficients, and ε  is a (n × 1) vector that contains the 
errors between exact and approximate responses. Using least squares method [4], 
the coefficients can be calculated as:  
 

( ) yXXX
T1T −

=β  
(1) 

 
Approximate Models 
 
There are four types of regression models, which can be described as follows:  
A linear model (Model 1) that includes only basic variables and does not include any 
interaction between variables which is described as:    
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)
 is the approximated response, ai are the unknown coefficients of the 

approximate models and xi are the design variables, which are considered here as 
the thickness of each part. This type of model, represent a hyper-plane in the 3 
dimension design space with no curvature since only first degree variables are 
included. The constant term represents the initial value of the response.  
 
A linear model with interaction (Model 2) that includes constant, linear, and 
interaction terms as in the following form:  
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This model allows for the first order interaction between variables and it represents a 
hyper-plane in the variables space.  
 
A quadratic model (Model 3) that includes constant, linear, interaction, and squared 
terms in the following form:  
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This model is quite flexible in representing wide varieties of models especially when 
there is no prior knowledge about the type of the model to be used. Thus it is the 
default model of choice in RSM application. It represents a hyper plane in the design 
space with curvature due to the second degree terms.  
 
A pure quadratic model (Model 4) that includes constant, linear, and squared terms 
described in the following form:  
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This model represents a hyper-plane with curvature, but it includes no interacting 
terms.  
 
Meta-model selection is the process in which the designer tries to find the best 
approximation that fits the data. A prior knowledge about the system being modeled 
will facilitate this process. This knowledge can include the type of variables important 



86 AE  Proceedings of the 15th Int. AMME Conference, 29-31 May, 2012 

  

to the output response, which will help in reducing the number of variables by 
screening out important ones. Also, knowledge about the type and level of 
interaction between variables, if any exists, will help in formulating the approximate 
model. However, this information is not always available, and a trial and error 
process is inevitable. In such a case, different meta-models are evaluated based on 
their success in approximating the data; the model with the highest accuracy is then 
selected.  
 
Measuring Accuracy 
 
It is important that the accuracy of the developed meta-model is verified so that it can 
be used with confidence in the optimization process. The coefficient of determination 
known as R2 is typically used to check the model’s ability to identify the variation 
within the output response [4] and is defined as:  
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iy
 is the true output response, here calculated from nonlinear FE analysis, iŷ

 is the 
approximate response calculated from RSM, y is the average of the true response, 

and n is the number of design points used to generate the model. R2 varies between 
0 and 1, where values close to 1 mean that the approximate model has high ability to 
explain the variations within the output response.  
 
It should be noted that the value of R2 can increase by adding unnecessary 
variables. In fact R2 can be brought to 1 if a model with (n − 1) of variables is used to 
fit n points. Therefore, adjR2 is used instead, which adjusts R2 by dividing both SSE 
and SST by their associated degrees of freedom as:  
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where p is the number of design variables. adjR2 will then account for adding 
unimportant design variables. Since for n points, the value of is constant, 
then adjR2 will increase only when adding a new variable results in reducing the 
value of . In fact adjR2 may even decrease when adding a new variable 
decreases the value of (n − p) more than it decreases the value of SSE.  
 
 
DESIGN OF EXPERIMENTS 
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To determine the polynomial coefficients β, simulation is conducted at various points 
in the design space to generate the y responses. The location of these points should 
be chosen carefully to generate accurate models. Naturally, as the number of points 
covering the design space increases, the model’s accuracy also increases. However, 
since crashworthiness simulation is computationally expensive, the number of 
simulations should be optimized to produce accurate models with minimum 
simulation runs. DOE is a statistical technique which can be used to locate the 
optimum number of experiments to be carried on. The D-optimality criterion is one of 

the most popular techniques which depends on maximizing the value of 
XX T

, as 

the value of the variance in β, ( )βvar  is related to ( )XX
T

 as:  
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Therefore considering Eq.(10), maximizing 
XX T

 leads to less variation in β and 
more accurate models.  
 
 
OPTIMIZATION OF A THIN WALLED TUBE 
 
A thin walled tube is divided into three parts as shown in Fig.1. A base design is 
made of steel with a constant walled thickness of 2 mm. Parts thicknesses are 
assumed to be the design variables, where XL [1, 1, 1] and XU [3, 3, 3] are the lower 
and upper bounds on the design variables. The load is assumed as an axial impact 
loading from a 100 kg dropped mass with a 10 m/s pre-impact speed. The load is 
modeled using the RIGIDWALLED PLANAR MOVING FORCES keyword in LS-
DYNA [5]. The tube is modeled using a nonlinear FE model and LS-DYNA is used 
for simulations. The tube walls are modeled with 391 Belytschko-Lin-Tsay shell 
elements. This element provides a balance between accuracy and computational 
efficiency. The tube has a 235 mm length and 55 mm edge length. The material is 
modeled with the MAT PIECEWISE LINEAR PLASTICITY model (model type 24 in 
LS-DYNA) [5]. The material parameters for steel are: a Young’s modulus of 207 
GPa, a Poisson’s ratio of 0.3, a density of 7830 kg/m3, a yield stress of 200 MPa, 
and a tensile strength of 448 MPa. The Cowper-Symonds material strain rate 
sensitivity parameters are assumed to be D=6844 s−1 and q=3.91 as suggested by 
Abrawicz and Jones [6]. The contact between the tube walls is modeled with the 
CONTACT AUTOMATIC SINGLE SURFACE keyword in LS-DYNA. The nonlinear 
FE model verified with the “symmetric crush tube” model in the examples manual in 
LS-DYNA software [5]. 
 
 
RESULTS AND DISCUSSIONS 
 
The D-Optimality criterion is used to generate 15 points as provided in Table 1 and 
nonlinear FE analysis has been conducted at each point. The results of Impact 
Energy (IE) and mass are recorded and used to fit each of the four different RSM 
models (linear, interaction, quadratic and pure quadratic). The value of the adjR2 is 
calculated for each model type and provided in Table 2. Again, the results show that 
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the quadratic model is the most accurate and is used here to model both IE and 
mass in the optimization problem.  
 
The optimization problem is formulated to search for the optimum thickness values 
that maximize IE while maintaining the same weight as the base design and the 
problem can be written as: Using the SQP algorithm, starting from the base design at 
X = (2 2 2), an optimum solution was found after 15 iterations at X* = (3 1.36 1.8) 
and the iteration history is shown in  
Fig. 3. The SQP algorithm is considered one of the most efficient numerical 
optimization algorithms [7]. From  
Fig. 3, it is clear that the algorithm has managed to increase the value of the 
objective function (IE) after 15 iterations. It is also clear that the value of IE has 
stabilized in the last 6 iterations. 
 
The optimum design absorbs 2.75 kJ, which is about 28% larger than that of the 
base design (2.15 kJ) while maintaining the base design mass. A comparison 
between the base and optimum designs are presented in  
Fig. 4. It is clear that optimization has successfully improved the base design by 
increasing its ability to absorb impact energy (IE) without increasing its weight. This 
has been accomplished by obtaining the optimum (best) arrangement of thickness 
values. It should be noted here that this accomplishment has been made practically 
possible by the proposed approach which required only minimum number of the 
computationally expensive nonlinear FE simulations. 
 

Find X ∗ that: 

Minimizes IE 

Subject to: Mass-Mass original ≤ 0 

where, XL ≤ X ≤ XU 

(11) 

 
CONCLUSIONS 
 
Optimization of thin walled structures under dynamic impact loading is a challenging 
engineering task. In this paper, it has been demonstrated that this complicated task 
can be undertaken using design of experiments and regression analysis. The 
creation of approximate models in the form of polynomials those can be easily 
computed has enabled the practical application of optimization using any numerical 
algorithm. The approach has succeeded in improving the design of a thin walled tube 
at an acceptable computational cost. It is believed that this approach can be 
extended for improving large scale structures. 
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Fig.1. Schematic drawing of the proposed approach. 

 
 

 
 

Fig. 2. A view of the finite element model of the thin walled tube. 
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Fig. 3. Iteration history of the thickness optimization problem for thin walled. 
 
 
  
 

 
 

Fig. 4. Comparison between base and optimum design. 
 
 

 



92 AE  Proceedings of the 15th Int. AMME Conference, 29-31 May, 2012 

  

 
Table 1. Design matrix of the RSM model for the thin walled tube. 

 

ID 1 2 3 4 5 6 7 8 

T1 2 1.74 2.19 2.6 2.45 1.54 2.9 2.5 

T2 2 1.79 2.35 2.4 1.41 2.97 2.92 1.8 

T3 2 2.13 2.07 2.09 1.03 2.11 2.04 1.09 

ID 9 10 11 12 13 14 15  

T1 1.23 2.35 1.93 1.39 2.93 2.51 2.12  

T2 1.75 2.96 1.12 2.59 1.29 1.94 1.03  

T3 1.5 2.23 2.35 1.48 2.3 1.92 1.5  

 
 
Table 2. adjR2 values for the different RSM models for thin walled tube Mass and IE. 
 

 Linear Interaction Quadratic Pure quadratic 

Mass 1 1 1 1 

IE 0.82 0.85 0.91 0.88 

 
 


