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ABSTRACT 
 
This paper presents a practical approach for evaluating the effect of uncertainty in 
design variables on the behaviour of structure. The proposed approach shows how 
Monte Carlo simulations can be effectively used to evaluate the uncertainty effects. 
A case study of a structure under static loading has been used to demonstrate the 
approach. The results have shown that using the proposed approach can serve as a 
practical tool for virtual testing of structure designs. This will help the designer in 
estimating and understanding the complicated and unforeseen uncertainty effects on 
structure design performance.    
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INTRODUCTION 
 
Uncertainties in design variables can have a profound effect on structure 
performance. This effect can even be catastrophic as in the two space shuttle 
disasters; Challenger in 1986 and Columbia in 2003 where unforeseen variations in 
system conditions lead to two major disasters [1]. 
 
The existence of uncertainties in structure design is inevitable. Sources of 
uncertainties include but not limited to: loads, geometry and material data. A formal 
design approach for accounting for uncertainties is the safety factor approach which 
is usually based on experience. The safety factor is easy to implement and is largely 
used. However the designer is usually unaware of the effects of uncertainties within 
design and/or system variables. Understanding these effects will help the designer in 
developing better and cost effective designs [2].  
 
The analysis of structure design under uncertainty is essentially based of probability 
theory. The main idea is to predict the likelihood of the occurrence of structure 
performance criterion (e.g., reaching yield stress and/or resonance frequency, etc.) 
under uncertainties. This study is usually termed structural reliability and the reader 
is directed to textbooks [3, 4] for more details on the topic. 
 
The study of structure behavior under uncertainties can be organized in three steps. 
Firstly, design variables are identified where each variable is assigned a distribution 
range. For example, a variable may be assigned a Gaussian distribution with mean 
and standard deviation values. Secondly, design variables are implemented in the 
evaluation of structure response. This step can be executed analytically but only for 
simple structures with simple analytical solutions. However, for complex structures 
where finite element analysis is employed to evaluate structure response, this step is 
impractical due to the large computational cost. In this paper a method for 
overcoming this difficulty application is presented in the following section. Thirdly, 
statistical analysis is used to analysis the resulted structure response under 
uncertainties in the design variables. This step can help the designer in answering 
some questions, such as: Which design variable has the largest and/or smallest 
influence on structure response? Will the structure fail under given values of 
uncertainties? What is the probability of this structure failure? The designer can use 
this information in developing better and cost effective designs. In this paper these 
questions are examined in a case study. 
 
The proposed method replaces the computationally expensive finite element model 
with a data driven model which is an approximate (meta-model) model, i.e., model of 
a model. Approximate models are easy to calculate models instead of the difficult to 
calculate initial models. The process of developing approximate models starts with 
producing or gathering system response data at different points in the design space. 
The quality of the approximate models largely depends on the location of these 
points; hence the science of design of experiments (DOE) [5, 6] is employed to 
maximize the information gain with minimum number of points.  
 
There are several techniques for building approximate models, the most known are 
response surface method [7, 8], Kriging [9] and Neural networks [10, 11]. For a 
comprehensive review of the topic of approximate models and their applications, the 
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reader is referred to references [12, 13] for more information. The response surface 
method (RSM) has been selected here as the technique for building the approximate 
model. RSM is an approximation technique used to construct response functions in 
the form of polynomial (usually second order) functions. The model can be written in 
the following form: 
 

 (1) 

where  is the  design matrix, in which  is the number of undertaken 

experiments and  is the number of unknown model coefficients  and  is a vector 
containing the approximate response values. Regression analysis [14] is used to find 
the values of  those minimizing the value of error between actual response values 
( ) and approximate values . The values of  can be calculated using the following 
equation: 

 (2) 
 
 
METHOD 
 
The proposed method is applied to a case study of designing a hook under static 
loading and is illustrated in Fig. 1. At first the hook is modeled using finite element 
analysis and ANSYS® software is used for simulations [15]. Design of experiments 
is used to strategically locate the design points in the design space which will enable 
the building of the approximate model with minimum number of simulations. 
Regression analysis is then used to find the values of the unknown coefficients ( ) 
previously mentioned in Equation (1). The response surface model can then be used 
to simulate the structure at as many different design points as may be required by 
Monte Carlo simulations since the computational cost is negligible compared to the 
initial FE model. Finally, the simulation results are analyzed using descriptive 
statistics and useful information are extracted and serve as useful tools for 
component development. 
 
 
MODEL DESCRIPTION 
 
The hook as shown in Fig. 2 is required to hold a load of 6000 N and four geometric 
dimensions are selected as design variables. The initial values of the baseline 
design variables are: Angle (1350), thickness (20 mm), depth (20 mm) and lower 
radius (50 mm). The hook is made from steel with Young’s modulus of elasticity (200 
GPa), Yield strength (250 MPa). The CAD model has been created using ANSYS 
design modeler software where the aforementioned design variables have been 
expressed as variables and not as only numerical values, which facilitated running 
ANSYS at different design points in batch mode. The hook is modeled using 
ANSYS® software where 14424 solid elements with 23985 nodes are used to mesh 
the hook model. The inner cylinder is constrained in both radial and axial directions 
and the load is applied as a concentrated load at the inner area of the hook as 
shown in Fig. 3. ANSYS® runs finite element simulations to calculate the Von-Mises 
stress in the hook body. The maximum equivalent stress value is used to calculate 
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the safety factor based on maximum equivalent stress failure theory for ductile 
materials. 
 
 
APPROXIMATE MODEL CREATION 
 
In order to create the approximate models, ANSYS® must be run at different design 
points. To facilitate this process, the four design variables and the safety factor are 
all coded as parameters in the ANSYS® code.  
 
A central composite design is an efficient DOE method for developing response 
surface models [16]. There are several types of approximate models; linear, 
interaction, quadratic...etc. [17]. An interaction model is selected to capture both 
main and interaction effects of the design variables. A typical interaction model 
containing four design variables is represented as follows: 
 

            
   

(3) 

 
Finite element simulations are conducted at each DOE design points. Upper and 
lower limits on each design variable are provided in Table 2, which also shows 
output response (mass and safety factor (SF)) values.  
 
Two approximate models are created; one for mass and the other is for safety factor 
(SF). Regression analysis is used to calculate the unknown coefficients in Equation 
(3) for each model. The quality of the models (goodness of fit) is calculated using the 
adjusted R-square (adjR2) value. This value is calculated using the following 
equation: 
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where  is response value computed from ANSYS® simulation,  is the 

approximate response value evaluated using the approximate model, is the mean 
value of the response, n is the number of design points used to create the 
approximate model and p is the number of unknown approximate model coefficients. 
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MONTE CARLO SIMULATIONS 
 
Monte Carlo simulations (MCS) can be defined as using randomly generated 
variables to estimate mathematical quantities. The term Monte Carlo first appeared 
in a paper published by Metropolis and Ulam in 1949 [18]. For more details on the 
method, the reader is referred to Ref. [19] written by Sobol, I.M. in a concise yet 
informative form.   
 
In the present work, Monte Carlo simulations are applied through the following steps. 
First, each design variable is given a statistical distribution and all possible 
combinations are obtained as the design space for MCS. Then, using the 
approximate models developed in the former section, mass and safety factor can be 
evaluated at a small computational cost compared with running the software 
analysis, which is very important since MCS require very large number of 
evaluations. Finally, the results are analyzed using tools such as descriptive 
statistics and probability analysis. In the present work, all design variables are 
assigned normal distribution where mean values are the baseline design variables 
values with six standard deviations encompassing the range of each variable as 
shown in MATLAB® is used for running the numerical calculations and statistical 
analysis. 
 
 
RESULTS AND DISCUSSIONS 
 
The results shown in Table 2 are used to create the approximate model described in 
Equation (3). The adjR2 values for mass and SF are 0.999 and 0.989 respectively. 
These values very close to one imply an excellent model representation. In other 
words, the approximate models can explain almost 100% of the model variation with 
design variable value changes. 
 
Also the approximate model is used in estimating the relative importance of each 
design variable. This is accomplished by comparing the coefficients (a1, a2 through 
a3a4) in Equation (3). The values are given in Table and illustrated by a bar graph in 
Fig. 4. It is clear that the values of coefficients 1, 2 and 4 are the highest among all 
values, which indicate that the design variables associated with these coefficients 
(Thickness, Depth and Radius), are the most significant. It can also be deduced that 
interaction effects between design variables can be neglected since the values of the 
coefficients of interacting variables are relatively small and hence they can be safely 
ignored in the MCS. This will effectively minimize the required computations since 
the number of total function evaluations in MCS is , where N is the number of 
levels within the range of D design variables. In the present study, assuming there 
are 10 levels with 4 design variables which gives  function evaluations, dropping 
the (Angle) variable will reduce this number to . New response surface models 
are created based on the three important variables (Thickness, Depth and Radius). 
The adjusted coefficient of determination  is used to quantify the new models’, 
the values in  
 
Table 4 shows that the new models for both mass and SF still have an excellent 
quality and can be used in MCS. 
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In conducting MCS, each variable range is divided into ten levels spanning the six 
standard deviations around the values of the initial design variables. MATLAB® is 
used to run the numerical calculations of the response surface models of mass and 
SF in the form of coded polynomial functions of the three design variables 
(Thickness, Depth and Radius). It should be noted that using approximate models 
has largely reduced the computational time from 12 seconds when using ANSYS® to 
run the finite element model to 40 seconds for running all 1000 response surface 
models simulations using MATLAB®. This enabled the practical evaluation of the 
design at numerous design points. Moreover, by calculating the relative importance 
of the design variables based on polynomial coefficients enabled screening out 
unimportant variables, thus reducing the number of simulations required by 
MATLAB® by 10 folds from  to . The MCS results are analyzed and 
descriptive statistics, shown in  
 
Table 5, are used to assess the effect of the uncertainties within the design variables 
on both mass and SF. It can be deduced that uncertainties within the design 
variables have affected the results to a great extent. The mean value of the safety 
factor (SF) has dropped to 0.52 which signals an alarm that the structure will fail in 
many cases as can be seen in Fig. . To calculate the probability of failure 
probabilistic analysis is conducted and the accumulative probability is plotted Fig. 6. 
It can be seen that almost half of the designs will fail (SF < 1). There is 55.4% 
probability that the design will fail or in other words, there is only a 45.6% probability 
that the structure will survive. 
 
 
CONCLUSIONS 
 
The effect of uncertainties within design variables on structural designs performance 
cannot be neglected. In the present work, a practical methodology has been 
introduced to assess this effect. The methodology succeeded in helping the designer 
to estimate the relative importance of the different design variables. It also enabled 
the computation of the expected probability of failure/survivor of the design. Present 
work will serve as a basis for further study on the counter measures which the 
designer can take to decrease the probability of failure, or to design a structure to 
reach a certain survivor probability.  
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Fig. 1. A schematic drawing of the proposed method. 

 
Fig. 2. Design variables of the model. 
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Fig. 3. Model under loads and constraints. 
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Fig. 4. Bar plot of the coefficient values of the approximate model. 
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Fig. 5. A Scatter plot of safety factor values from MCS results. 

 
 
 
 

 

Fig. 6. A cumulative probability plot for safety factor (SF). 
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Table 1. Upper and lower bounds on design variables. 

 Thickness (mm) Depth (mm) LowerRadius (mm) Angle 

Lower bound 15 15 45 120 

Upper bound 25 25 55 150 

 

 
Table 2. Design variables and response values at the DOE points. 

ID 
Thickness 

(mm) 
Depth 
(mm) 

LowerRadius 
(mm) 

Angle 
mass 
(gm) 

SF 

1 20.0 20.0 50.0 135.0 0.9 0.99 

2 15.0 20.0 50.0 135.0 0.8 0.56 

3 25.0 20.0 50.0 135.0 1.0 1.53 

4 20.0 15.0 50.0 135.0 0.7 0.72 

5 20.0 25.0 50.0 135.0 1.1 1.20 

6 20.0 20.0 45.0 135.0 0.8 1.08 

7 20.0 20.0 55.0 135.0 1.0 0.94 

8 20.0 20.0 50.0 120.0 0.9 1.02 

9 20.0 20.0 50.0 150.0 1.0 0.97 

10 16.5 16.5 46.5 124.4 0.6 0.56 

11 23.5 16.5 46.5 124.4 0.7 1.19 

12 16.5 23.5 46.5 124.4 0.9 0.87 

13 23.5 23.5 46.5 124.4 1.1 1.79 

14 16.5 16.5 53.5 124.4 0.7 0.50 

15 23.5 16.5 53.5 124.4 0.8 1.06 

16 16.5 23.5 53.5 124.4 1.0 0.75 

17 23.5 23.5 53.5 124.4 1.2 1.46 

18 16.5 16.5 46.5 145.6 0.6 0.60 

19 23.5 16.5 46.5 145.6 0.8 1.17 

20 16.5 23.5 46.5 145.6 0.9 0.85 

21 23.5 23.5 46.5 145.6 1.1 1.75 

22 16.5 16.5 53.5 145.6 0.7 0.50 

23 23.5 16.5 53.5 145.6 0.9 1.07 

24 16.5 23.5 53.5 145.6 1.0 0.76 

25 23.5 23.5 53.5 145.6 1.3 1.50 
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Table 3. Coefficients Values of the approximate model. 

Coefficients Values 

a1 0.12835 

a2 0.07550 

a3 -0.00410 

a4 0.04864 

a1a2 0.00474 

a1a3 -0.00009 

a1a4 -0.00225 

a2a3 -0.00008 

a2a4 -0.00213 

a3a4 0.00014 

 
 

 

Table 4. Values of adjusted coefficient of determination for approximate models with 
four and three variables. 

 adjR2 4 variables 3 variables 

mass  0.999 0.97 

SF  0.989 0.991 

 
 

 

Table 5. Descriptive statistics of MCS results. 

  Mean Minimum Maximum Standard Deviation 

SF 0.60 0 1.18 0.27 

mass 0.52 0.07 0.88 0.22 

 


