
 

 

 

Discrete Alpha Power Transformed Weibull -G Family of distributions 

By 

Dr. Mai Amed Ibrahim Hegazy 

Lecturer of Statistics  

Faculty of Commerce, Al-Azhar university 

albraa.mohammad@yahoo.com 

Scientific Journal for Financial and Commercial Studies and Research 

(SJFCSR)  

Faculty of Commerce – Damietta University 

Vol.5, No.2, Part 1., July 2024 

APA Citation: 

Hegazy, M. A. I. (2024). Discrete Alpha Power Transformed Weibull -G Family 

of distributions, Scientific Journal for Financial and Commercial Studies and 

Research, Faculty of Commerce, Damietta University, 5(2)1, 41-74. 

Website:  https://cfdj.journals.ekb.eg/ 

 

 

 

 

 

 

 

 

mailto:albraa.mohammad@yahoo.com
https://cfdj.journals.ekb.eg/


Scientific Journal for Financial and Commercial Studies and Research 5(2)1 July 2024 

Dr. Mai Amed Ibrahim Hegazy 

- 42 - 
 

Discrete Alpha Power Transformed Weibull -G Family of distributions 

Dr. Mai Amed Ibrahim Hegazy 

Abstract 

     In this paper, a new flexible discrete family of distributions called discrete 
alpha power transformed Weibull -G family is introduced. Some of its 

distributional and reliability properties including quantiles, mean time to failure, 

R𝑒́nyi entropy, moments and order statistics are obtained. The maximum 

likelihood method is used for estimating the family parameters. The proposed 

distributions which are members of this family are very flexible and can be used 

to model various types of data with increasing, decreasing or bathtub-shaped 

hazard rates. Discrete alpha power transformed Weibull- exponential distribution, 

as a member from this family, is studied in detail. A simulation study is conducted 

to investigate the precision of the theoretical results based on simulated and real 

data through some measurements of accuracy. two real data sets are analyzed to 

illustrate the suitability and applicability of the proposed model.  

Keywords: Alpha power transformation; Weibull-G family; Discrete distributions; 

Discrete alpha power transformed Weibull -G family of distributions; Weibull 

distribution; Maximum likelihood estimation. 

1. Introduction  

     Statistical literature is rich in many continuous distributions and their successful 

applications. Hower, in many applied areas such as lifetime analysis, finance and 

insurance, most of these distributions are not suitable to model some of real data 

sets. As a result, for application purposes, it is required to get the extended forms 

of these distributions for various fields. So, several attempts have been introduced 

by many researchers to generate new families of probability distributions that 

extend well-known families of distributions and at the same time provide great 

flexibility in modeling data in practice. So, several methods for generating new 

families of distributions have been studied. Some of prominent families are, 

Marshall and Olkin (1997), Eugene et al. (2002), Cordeiro and Castro (2011), 

Alzaatreh et al. (2013), Lee et al. (2013), Bourguignon et al. (2014) and Jones 

(2015). 

     Mahdavi and Kundu (2017) presented a method to add an extra parameter to a 

family of distributions, such an addition of parameters makes the resulting 

distribution richer and more flexible for modeling data. The suggested method is 

called alpha power transformation (APT) and it is useful to incorporate skewness 

to a family of distributions. The APT method was applied to many distributions by 
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many researchers, such as Nassar et al. (2017), Dey et al. (2017), Nadarajah and 

Okorie (2018), Mead et al. (2019) and Nassar et al. (2020) . 

Let 𝐺(𝑥; 𝛿) and 𝑔(𝑥; 𝛿)are the cumulative distribution function (cdf) and the 

probability density function (pdf) of any baseline distribution depending on a 

vector of parameter 𝛿 and the cdf of APT family is  𝐹𝐴𝑃𝑇(𝑥; 𝛼, 𝛿) for 𝑥 ∈ ℝ is 

𝐹𝐴𝑃𝑇(𝑥; 𝛼, 𝛿) = {
𝛼𝐺(𝑥;𝛿)−1

𝛼−1
,       𝛼 > 0,  𝛼 ≠ 1,

𝐺(𝑥; 𝛿),                       𝛼 = 1 ,
                                               (1) 

                                                                              

and the corresponding pdf is 

𝑓𝐴𝑃𝑇(𝑥; 𝛼, 𝛿) =

{
𝑙𝑜𝑔𝛼

𝛼−1
𝑔(𝑥; 𝛿)𝛼𝑔(𝑥;𝛿),  𝛼 > 0,  𝛼 ≠ 1,   

𝑔(𝑥; 𝛿),                                  𝛼 = 1,
                                                                  (2) 

where 𝛼  is the shape parameter.  

The Weibull distribution is a very popular lifetime distribution and it has been 

extensively used for modeling data in reliability, engineering, medical, quality 

control and biological studies. It is generally suitable for modeling monotone 

hazard rates. However, when the hazard rates are bathtub, upside down bathtub or 

bimodal shapes, it does not work well. As a result, researchers are motivated to 

develop several generalizations and extensions of Weibull distribution to model 

different kind of data sets. 

 

Bourguignon et al. (2014) proposed the Weibull-G (W-G) family of distributions 

the cdf of W-G family is  𝐹𝑊𝐺(𝑥; 𝜃, 𝛿) for 𝑥 ∈ ℝ is 

𝐹𝑊𝐺(𝑥; 𝜃, 𝛿) = ∫ 𝜃

𝐺(𝑥;𝛿)

𝐺̅(𝑥;𝛿)

0
𝑡𝜃−1𝑒−𝑡

𝜃
𝑑𝑡 = 1 − exp {− [

𝐺(𝑥;𝛿)

𝐺̅(𝑥;𝛿)
]
𝜃

},      (3)                                                           

and the corresponding (pdf) is 

𝑓𝑊𝐺(𝑥; 𝜃, 𝛿) = 𝜃 𝑔(𝑥; 𝛿)
(𝐺(𝑥;𝛿))𝜃−1

(𝐺̅(𝑥;𝛿))𝜃+1
 𝑒𝑥𝑝 {− [

𝐺(𝑥;𝛿)

𝐺̅(𝑥;𝛿)
]
𝜃

}.     (4)                                                                        

 Elbatal et al. (2021) introduced a new extended generator called alpha power 

transformed Weibull-G (APTW-G) family based on combining the APT family 

with the Weibull-G family of distributions. They expected that the proposed 

distributions will be more flexible and will perform better than some existing 

probability distributions to model life testing data. They provided three sub models 

of this family by taking the baseline distributions as exponential, Rayleigh and 
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Lindley. They used the maximum likelihood (ML) method to estimate the 

parameters. 

The cdf of APTW-G family of distributions can be stated by substituting (3) in (1) 

as follows: 

𝐹𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝛿, 𝜃) = {
𝛼1−𝑒

−𝑡𝑖
𝜃

−1

𝛼−1
,       𝛼 > 0,  𝛼 ≠ 1,

1 − 𝑒−𝑡𝑖
𝜃
,                        𝛼 = 1 ,

          (5)                                                                  

and the corresponding pdf is 

𝑓𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝛿, 𝜃) =

{
𝑙𝑜𝑔(𝛼) 𝜃𝑔(𝑥; 𝛿)

(𝐺(𝑥;𝛿))𝜃−1

(𝛼−1)(𝐺̅(𝑥;𝛿))𝜃+1
𝑒−𝑡𝑖

𝜃
𝛼1−𝑒

−𝑡𝑖
𝜃

,  𝛼 > 0,  𝛼 ≠ 1,   

𝜃 𝑔(𝑥; 𝛿)
(𝐺(𝑥;𝛿))𝜃−1

(𝐺̅(𝑥;𝛿))𝜃+1
 𝑒𝑥𝑝 {− [

𝐺(𝑥;𝛿)

𝐺̅(𝑥;𝛿)
]
𝜃

} ,                           𝛼 = 1,
        (6)              

where 𝑡𝑖 =
𝐺(𝑥;𝛿)

𝐺̅(𝑥;𝛿)
 .                             (7)                                                                                                          

 

The survival function (sf); 𝑆𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, , 𝛿, 𝜃), is given by 

  

𝑆𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝛿, 𝜃, ) = {
𝛼−𝛼1−𝑒

−𝑡𝑖
𝜃

𝛼−1
,       𝛼 > 0,  𝛼 ≠ 1,

𝑒−𝑡𝑖
𝜃
,                               𝛼 = 1 ,

       (8)                                                                    

The discretization phenomenon is desirable when the existing continuous 

distributions aren’t appropriate or don’t provide sufficient adequacy in modeling 

lifetime data. Some well-known discrete distributions have limited applicability to 

model discrete failure times. Thus, there is a need to derive appropriate discrete 

distributions by discretizing the continuous distributions to fit various types of 

data. Therefore, the study of discretization of continuous is meaningful. Although 

there are several methods to construct discrete distributions from the continuous 

ones, the general approach of discretization (survival discretization method) of 

some known continuous distributions have been attracting great concern for use as 

lifetime distributions. One of the advantages of using this approach of discretizing 

is that the sf for discrete distributions has the same functional form of the sf for the 

continuous distributions; as a result, many reliability characteristics and properties 

remain unchanged [see, Roy (2003, 2004)]. Many researchers studied the general 

approach of discretization of some known continuous distributions for use as 

lifetime distributions. [See for example, Nakagawa and Osaki (1975), Khan et al. 
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(1989), Bracquemond and Gaudoin (2003), Inusah and Kozubowski (2006), 

Krishna and Pundir (2009), Jazi et al. (2010), Gomez-Deniz and Calderin-Ojeda 

(2011) and Nekoukhou et al. (2012) and Chakraborty (2015)]. Although there are 

several discrete distributions in statistical literature, there is still a lot of space left 

to develop new discretized distributions that are suitable under different 

conditions. This encourages us to provide a flexible family of discrete distributions 

for analyzing a variety of discrete real-world data sets. Therefore, this paper will 

introduce a flexible discrete generator family of distributions, in the so-called 

discrete APTW-G (DAPTW-G) family. Our reasons for introducing the DAPTW-

G family are the following: 

• To generate models for modeling both lifetime and counting data sets. 

• To generate models with a negatively skewed, a positively skewed, or a 

symmetric shape. 

• To provide consistently better fits than other generated discrete 

distributions with the same base line model and other popular discrete 

distributions in statistical literature. 

• To define special models with diverse shapes of hazard rate function. 

The rest of this paper is organized as follows: in Section 2, DAPTW-G family 

of distributions is introduced and some of its properties are studied. In Section 3, 

some members of DAPTW-G family of distributions are presented. DAPTW-E is 

discussed in detail   in Section 4. In Section 5, numerical results based on 

simulation study and real data sets are analyzed to evaluate the performance of the 

maximum likelihood estimates and demonstrate how the results can be used in 

practice.  

2. Discrete Alpha Power Transformed Weibull-G Family of Distributions 

In this section, DAPTW-G family of distributions is constructed using the 

general approach of discretizing, by introducing a grouping on the time axis see 

Roy (2003, 2004). If the continuous random variable (crv) X has the sf, 𝑆(𝑥) =
𝑃 (𝑋 ≥ 𝑥) and times are grouped into unit intervals so that the discrete rv (drv) of 

X denoted by 𝑑𝑋 = ⌊𝑥⌋; which is the largest integer less than or equal to x, will 

have the probability mass function (pmf)   

𝑃(𝑑𝑥 = 𝑥) = 𝑃(𝑥) = 𝑃(𝑥 ≤ 𝑋 ≤ 𝑥 + 1) = 𝑆(𝑥) − 𝑆(𝑥 + 1),        𝑥 = 0,1,2,…  .                                     
(9) 

     The pmf of the drv, 𝑑𝑋, can be viewed as discrete concentration of pdf of X. 

So, given any continuous distribution it is possible to construct corresponding 

discrete distribution using (9).  

The drv 𝑋 is said to have the DAPTW-G family if its cdf is given by 
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𝐹𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝛿, 𝜃) = {
𝛼1−𝑒

−𝑡𝑖∗
𝜃

−1

𝛼−1
,       𝛼 > 0,  𝛼 ≠ 1,

1 − 𝑒−𝑡𝑖∗
𝜃
,                        𝛼 = 1 ,

        (10)                                                              

where 𝑡𝑖∗ =
𝐺(𝑥+1;𝛿)

𝐺̅(𝑥+1;𝛿)
 , 𝑥 = 0,1,2, …  ,            (11)                                                                                            

the pmf of DAPTW-G family can be expressed as  

 

𝑃𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝛿, 𝜃) =  {
𝛼1−𝑒

−𝑡𝑖∗
𝜃

− 𝛼1−𝑒
−𝑡𝑖

𝜃

𝛼−1
,      𝛼 > 0,  𝛼 ≠ 1,   

𝑒−𝑡𝑖
𝜃
− 𝑒−𝑡𝑖∗

𝜃
,                      𝛼 = 1.

     (12)                                                      

 

One can note that when 𝛼 = 1, the family reduce to the discrete odd Weibull-G 

(DOW-G) family of distributions introduced by El-Morshedy et al. (2021). 

The hazard rate (hrf), alternative hazard rate (ahrf) and   reversed hazard rate 

functions (rhrf) can be formulated as  

ℎ𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝛿, 𝜃) =
𝑃𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥)

𝑆𝐷𝐴𝐴𝑃𝑇𝑊−𝐺(𝑥)
 =

𝛼1−𝑒
−𝑡𝑖∗

𝜃

− 𝛼1−𝑒
−𝑡𝑖

𝜃

𝛼−𝛼1−𝑒
−𝑡𝑖

𝜃   ,           𝑥 =

 0,1,2…  ;  𝛼 ≠ 1,                   (13) 

𝑎ℎ𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝛿, 𝜃) =  𝑙𝑛 [
𝑆𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥)

𝑆𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥+1)
] = 𝑙𝑛 [

𝛼−𝛼1−𝑒
−𝑡𝑖

𝜃

𝛼−𝛼1−𝑒
−𝑡𝑖∗

𝜃] , 𝑥 =

 0,1,2…  ;  𝛼 ≠ 1,                     (14) 

and  

𝑟ℎ𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝛿, 𝜃) =
𝑃𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥)

𝐹𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥)
  =

𝛼1−𝑒
−𝑡𝑖∗

𝜃

− 𝛼1−𝑒
−𝑡𝑖

𝜃

𝛼1−𝑒
−𝑡𝑖∗

𝜃
−1

,           𝑥 =

 0,1,2…  ;  𝛼 ≠ 1.                    (15) 

2.1 Some statistical properties 

1.  Quantile function 

The qth quantile function of 𝐷𝐴𝑃𝑇𝑊 − 𝐺, say 𝑥𝑞, is the solution of  

𝐹𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥𝑞; 𝛼, 𝛿, 𝜃) − 𝑞 = 0, 𝑥𝑞 > 0, then 
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 𝑥𝑞 =

⌈
⌈
⌈
 

𝐺−1

[
⌈
⌈
 (−𝑙𝑛(1−

𝑙𝑛(1+𝑞(𝛼−1))

𝑙𝑛(𝛼)
))

1
𝜃

1−(−𝑙𝑛(1−
𝑙𝑛(1+𝑞(𝛼−1))

𝑙𝑛(𝛼)
))

1
𝜃

]
 
 
 

 
 
 
 

,      (16)                                                                                            

where ⌈𝑥⌉denotes the smallest integer greater than or equal to 𝑥, 0 < 𝑢 < 1 and 

𝐺−1 denotes the baseline of quantile function.    

Special quantiles may be obtained using (16). For example, u= 0.5, the median of 

the 𝐷𝐴𝑃𝑇𝑊 − 𝐺 distribution is  

Median =

⌈
⌈
⌈
 

𝐺−1

[
⌈
⌈
 (−𝑙𝑛(1−

𝑙𝑛(1+0.5(𝛼−1))

𝑙𝑛(𝛼)
))

1
𝜃

1−(−𝑙𝑛(1−
𝑙𝑛(1+0.5(𝛼−1))

𝑙𝑛(𝛼)
))

1
𝜃

]
 
 
 

 
 
 
 

 ,      (17)                                                                               

the Bowley skewness and Moors kurtosis based on quantiles can be obtained as 

     Bowley skewness=
𝒙𝟑
𝟒

+𝒙𝟏
𝟒

−𝟐𝒙𝟏
𝟐

𝒙𝟑
𝟒

−𝒙𝟏
𝟒

                   and               Moors kurtosis=

𝒙𝟑
𝟖

−𝒙𝟏
𝟖

+𝒙𝟕
𝟖

−𝒙𝟓
𝟖

𝒙𝟑
𝟒

−𝒙𝟏
𝟒

. 

2. Moments, skewness, kurtosis and index of dispersion   

The rth moments of the rv 𝑥~DAPTW − G family  may be obtained as follows: 

𝜇𝑟
, = 𝐸(𝑋𝑟) = ∑ (𝑥𝑟 − (𝑥 − 1)𝑟)∞

𝑥=1 𝑠𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥)                                                                                                                         

     = ∑ (𝑥𝑟 − (𝑥 − 1)𝑟)(𝛼 − 1)−1(𝛼 − 𝛼1−𝑒
−𝑡𝑖

𝜃
)∞

𝑥=1 ,         𝑥 =  1,2… ; 𝛼 ≠
1, 𝑟 = 1, 2, …  .               (18)        

 

Using (18) the mean (𝜇1
, ) and variance 𝑉(𝑥)can be respectively formulated as 

𝜇1̀ = 𝜇 = ∑  [(𝛼 − 1)−1(𝛼 − 𝛼1−𝑒
−𝑡𝑖

𝜃
)]∞

𝑥=1       (19)                                                                                      

and  

𝑉(𝑥) = ∑  [(2𝑥 − 1)(𝛼 − 1)−1(𝛼 − 𝛼1−𝑒
−𝑡𝑖

𝜃
)]∞

𝑥=1 − (𝜇1̀)
2.  (20)                                                               

Also, one can use the first fourth rth moments to get skewness (𝑠𝑘) and kurtosis 

(𝑘𝑢) as follows: 
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    𝑠𝑘 =
𝜇3́ +3𝜇2́ 𝜇1́+2 𝜇1́

3

(𝑉(𝑥))
3
2

                                           and                    𝑘𝑢 =

𝜇4́−4𝜇3́ 𝜇1́+6𝜇2́ 𝜇1́
2−3 𝜇1́

4

(𝑉(𝑥))
2 .        (21) 

The index of dispersion (𝐼𝐷) is the variance-to-mean ratio and coefficient of 

variation (𝐶𝑉) is the ratio of the standard deviation to the mean, they are applied 

in various situations. The 𝐼𝐷 is widely used in ecology as a standard measure for 

measuring repulsion (under dispersion) or clustering (over dispersion).  

If 𝐼𝐷 < 1 (𝐼𝐷 > 1) the distribution is under-dispersed (over-dispersed), whereas 

the distribution is equi-dispersed when 𝐼𝐷 = 1. The 𝐶𝑉 is a relative variability 

measure, expressing the dispersion of data values around the mean. It should be 

computed only for data measured on a ratio scale, that is, scales that have a 

meaningful zero and hence allow relative comparison of two measurements (i.e., 

division of one measurement by the other). 

3. Order statistics  

     Let 𝐹𝑖(𝑥; 𝛼, 𝛿, 𝜃); the cdf of the 𝑖𝑡ℎ order statistics for random sample 

𝑋1, 𝑋2, … , 𝑋𝑛, from the 𝐷𝐴𝑃𝑇𝑊 − 𝐺 family of distributions is given by 

𝐹𝑖:𝑛(𝑥; 𝛼, 𝛿, 𝜃) = ∑ (
𝑛
𝑟
) [𝐹𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝛿, 𝜃)]

𝑟𝑛
𝑟=𝑖 [1 −

𝐹𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝛿, 𝜃)]
𝑛−𝑟.                           (22) 

Using the binomial expansion for [1 − 𝐹𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝛿, 𝜃)]
𝑛−𝑟 and substituting 

(10) in (22). 

Hence 

𝐹𝑖:𝑛(𝑥; 𝛼, 𝛿, 𝜃) = ∑ (
𝑛
𝑟
)𝑛

𝑟=𝑖 ∑ (
𝑛 − 𝑟
𝑗 ) (−1)𝑗 [

𝛼1−𝑒
−𝑡𝑖∗

𝜃

−1

𝛼−1
]

𝑟+𝑗

𝑛−𝑟
𝑗=0  ,                 𝛼 ≠

1.                           (23)   

Special cases 

Case I: If i=1 in (23) one can obtain the cdf of the first order statistics, as given 

below  

𝐹1(𝑥; 𝛼, 𝛿, 𝜃) = 1 − [1 − 𝐹𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝜆, 𝜉)]
𝑛 = 1 − [1 −

𝛼1−𝑒
−𝑡𝑖∗

𝜃

−1

𝛼−1
]

𝑛

, 𝛼 ≠

1.                            (24) 
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Case II: If i=n in (23) one can obtain the cdf of the largest order statistics, as given 

below  

𝐹𝑛(𝑥; 𝛼, 𝛿, 𝜃) = [𝐹𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝛿, 𝜃)]
𝑛 = [

𝛼1−𝑒
−𝑡𝑖∗

𝜃

−1

𝛼−1
]

𝑛

,           𝛼 ≠ 1.      (25)                             

Also, the pmf of 𝑖𝑡ℎ order statistics of 𝐷𝐴𝑃𝑇𝑊 − 𝐺 family of distributions, is 

defined by 

𝑃𝑖:𝑛(𝑥; 𝛼, 𝛿, 𝜃) =
𝑛!

(𝑟−1)!(𝑛−𝑟)!
∫ 𝑣𝑟−1(1 − 𝑣)𝑛−𝑟𝑑𝑣
𝐹(𝑥;𝜉)

𝐹(𝑥−;𝜉)
.     (26)                                                                  

Using the binomial expansion for (1 − 𝑣)𝑛−𝑟 

𝑃𝑖:𝑛(𝑥; 𝛼, 𝛿, 𝜃) = 

                        
𝑛!

(𝑟−1)!(𝑛−𝑟)!
∑ (

𝑛 − 𝑟
𝑗 )𝑛−𝑟

𝑗=0
(−1)𝑗

𝑠+𝑗
 {[𝐹𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝛿, 𝜃)]

𝑠+𝑗−[𝐹𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥−; 𝛼, 𝛿, 𝜃)]
𝑠+𝑗}

.                  

                         =

𝑛!

(𝑟−1)!(𝑛−𝑟)!
∑ (

𝑛 − 𝑟
𝑗 )𝑛−𝑟

𝑗=0
(−1)𝑗

𝑠+𝑗
{[

𝛼1−𝑒
−𝑡𝑖∗

𝜃

−1

𝛼−1
]

𝑠+𝑗

−[
𝛼1−𝑒

−𝑡𝑖
𝜃

−1

𝛼−1
]

𝑠+𝑗

}            (27)                              

The pmf of the smallest order statistics is obtained by substituting i=1 in (27) as 

follows: 

𝑃1(𝑥; 𝛼, 𝛿, 𝜃) = [1 −
𝛼1−𝑒

−𝑡𝑖
𝜃

−1

𝛼−1
]

𝑛

− [1 −
𝛼1−𝑒

−𝑡𝑖∗
𝜃

−1

𝛼−1
]

𝑛

, 𝛼 ≠ 1.                 (28)                                                       

The pmf of the largest order statistics is obtained by substituting i=n in (27) as 

follows: 

𝑃𝑛(𝑥; 𝛼, 𝜆, 𝜉) = [
𝛼1−𝑒

−𝑡𝑖∗
𝜃

−1

𝛼−1
]

𝑛

− [
𝛼1−𝑒

−𝑡𝑖
𝜃

−1

𝛼−1
]

𝑛

, 𝛼 ≠ 1.       (29)                                                                    

Also, (23) can be used to obtain the pmf of 𝐷𝐴𝑃𝑇𝑊 − 𝐺, (see Arnold et al. 

(2008)). 

4.  R𝒆́nyi entropy 

     The importance of reducing uncertainty and increasing system lifetime is 

widely recognized, with longer lifetimes and lower uncertainties being key 

indicators of higher system reliability. To this end the R𝑒́nyi entropy can be used 
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to measure the uncertainty associated with a non-negative rv x with the pmf 𝑃(𝑥), 
and it is denoted by 𝐻𝜌(𝑥) 

Rényi entropy has many applications in variety of fields such as measuring 

uncertainty in dynamical systems, urban and regional planning, business, 

economics, finance, operations research, queueing theory, spectral analysis, image 

reconstruction, biology and manufacturing. It is defined by 

𝐻𝜌(𝜌) = (1 − 𝜌)−1𝑙𝑜𝑔 {∑(𝑃𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥))
𝜌

∞

𝑥=0

}  

  = (1 − 𝜌)−1𝑙𝑜𝑔 {∑ (
𝛼1−𝑒

−𝑡𝑖∗
𝜃

− 𝛼1−𝑒
−𝑡𝑖

𝜃

𝛼−1
)

𝜌

∞
𝑥=0 } , 𝛼 ≠ 1 𝜌 > 0, 𝜌 ≠ 1 .    (30)                                      

The Shannon entropy can be defined by 𝐸[−𝑙𝑜𝑔(𝑃𝐷𝐴𝑃𝑇𝑊−𝐺(𝑋))], and it can be 

calculated as a special case of the Rényi entropy when 𝜌 → 1.  

5. Mean time to failure, mean time between failure, and Availability 

     Mean Time to Failure (MTTF) is the average time between non-repairable 

failures. It is a very basic measure that helps predict the lifecycle for components 

that cannot be repaired, such a light bulb or a backup tape. It is particularly useful 

as a reliability metric. It can be used to estimate how long a component of critical 

machinery or equipment may last, evaluate the effectiveness and quality of parts 

and components, forecast replacement needs and plan preventive maintenance 

tasks and perform proper inventory management to ensure resources and 

replacement parts are available. Shorter MTTF means more frequent 

replacements. And more replacements mean more downtime, less uptime, higher 

costs, and other impacts on productivity.  

The MTTF is given as follows: 

𝑀𝑇𝑇𝐹 = ∑ 𝑆𝐴𝑃𝑇𝑊−𝐺(𝑥)
∞
𝑥=1 = ∑

𝛼−𝛼1−𝑒
−𝑡𝑖

𝜃

𝛼−1
∞
𝑥=1  ,   𝑥 > 0;   𝛼 ≠ 1.    (31)                                                                

     The Mean Time between Failure (MTBF) is the mean (or average) time 

expected between failures of a given device and is normally measured in hours. It 

is used with items that can be either repaired or replaced and is given bellow  

𝑀𝑇𝐵𝐹 =
−𝑥

𝑙𝑜𝑔 [𝑆𝐴𝑃𝑇𝑊−𝐺(𝑥)]
=

−𝑥

𝑙𝑜𝑔 [
𝛼−𝛼1−𝑒

−𝑡𝑖
𝜃

𝛼−1
]

 ,          𝑥 > 0;   𝛼 ≠ 1.       (32)                                                       

https://limblecmms.com/blog/maintenance-and-reliability/
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     The Availability (𝐴𝑣) is the probability that a system is operational when 

called upon to perform its function. It is quantified as a percentage, and is given 

bellow 

𝐴𝑣 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝐵𝐹
      

    =
∑ 𝑆𝐴𝑃𝑇𝑊−𝐺(𝑥)
∞
𝑥=1  𝑙𝑜𝑔 [𝑆𝐴𝑃𝑇𝑊−𝐺(𝑥)] 

−𝑥
=

∑
𝛼−𝛼1−𝑒

−𝑡𝑖
𝜃

𝛼−1
∞
𝑥=1    

−𝑥
.        (33)                                                                   

2.2 Maximum likelihood estimation for discrete alpha power transformed 

Weibull -G family of distributions 

     In this section, the unknown parameters of the 𝐷𝐴𝑃𝑇𝑊 − 𝐺 family of 

distributions are derived using the ML method based on Type-II censored 

samples. 

     Let (𝑥1, 𝑥2, … , 𝑥𝑛) be a random sample from 𝐷𝐴𝑃𝑇𝑊 − 𝐺 family of 

distributions with pmf as 𝑃𝐷𝐴𝑃𝑇𝑊−𝐺(𝑥; 𝛼, 𝛿, 𝜃). The likelihood function of 

𝐷𝐴𝑃𝑇𝑊 − 𝐺 family of distributions based on Type-II censored sample 

corresponding (8) and (12) is: 

𝐿(𝛼, 𝛿, 𝜃; 𝑥) ∝ {∏ 𝑃(𝑥(𝑖) )
𝑟
𝑖=1 }[𝑆(𝑥(𝑟) )]

𝑛−𝑟
, 

                       = {∏
𝛼1−𝑒

−𝑡𝑖∗
𝜃

− 𝛼1−𝑒
−𝑡𝑖

𝜃

𝛼−1

𝑟
𝑖=1 } [

𝛼−𝛼1−𝑒
−𝑡𝑖

𝜃

𝛼−1
]

𝑛−𝑟

,       (34)                                                             

the natural logarithm of the likelihood function is given by 

𝑙 ≡ 𝑙𝑛𝐿(𝛼, 𝛿, 𝜃; 𝑥) ∝ 𝑙𝑛∏ [
𝛼1−𝑒

−𝑡𝑖∗
𝜃

− 𝛼1−𝑒
−𝑡𝑖

𝜃

𝛼−1
]𝑟

𝑖=1 + (𝑛 − 𝑟)𝑙𝑛 [
𝛼−𝛼1−𝑒

−𝑡𝑖
𝜃

𝛼−1
], 

=∑ 𝑙𝑛 [𝛼1−𝑒
−𝑡𝑖∗

𝜃

− 𝛼1−𝑒
−𝑡𝑖

𝜃

]𝑟
𝑖=1 + (𝑛 − 𝑟)𝑙𝑛 [𝛼 − 𝛼1−𝑒

−𝑡𝑖
𝜃

] − 𝑛 ln(𝛼 − 1). (35)           

The ML estimators of the parameters 𝛼, 𝛿 and 𝜃 can be derived by solving the 

nonlinear likelihood equations obtained by differentiating (35) with respect to 𝛼, 𝛿 

and 𝜃, setting these equations to zero and solving them, immediately yields the ML 

estimators for the 𝐷𝐴𝑃𝑇𝑊 − 𝐺 family parameters. These equations cannot be 

solved analytically; therefore, an iterative procedure like Newton–Raphson is 

required to solve them numerically. 
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3. Some Special Models of Discrete Alpha Power Transformed Weibull -G 

Family of distributions 

     In this section the 𝐷𝐴𝑃𝑇𝑊 − 𝐺 family is applied to a specific class of 

distribution functions such as Lindley and Rayleigh distributions. 

3.1 Discrete alpha power transformed Weibull – Lindley distribution 

     The cdf of the Lindley  distribution with parameter 𝑎 is, 

𝐹(𝑥; 𝛿) = 1 − (1 +
𝑎𝑥

1+𝑎
) 𝑒−𝑎𝑥 , 𝑥 > 0 ;  𝑎 > 0 ,                          (36)                                                                                

Applying Lindley distribution,  

𝑡𝑖 =
𝐺(𝑥;𝛿)

𝐺̅(𝑥;𝛿)
= (

𝑒𝑎𝑥

1+
𝑎𝑥

1+𝑎

− 1) , 𝑡𝑖∗ =
𝐺(𝑥+1;𝛿)

𝐺̅(𝑥+1;𝛿)
= (

𝑒𝑎(𝑥+1)

1+
𝑎(𝑥+1)

1+𝑎

− 1).           (37)                                                                 

Using (10) and (12)-(14), the pmf, cdf, hrf and ahrf of the (𝐷𝐴𝑃𝑇𝑊 −Lindley) 

DAPTW − L  distribution are, respectively, given by 

𝑃𝐷𝐴𝑃𝑇𝑊−𝐿(𝑥; 𝛼, 𝛿, 𝜃) =  

{
 
 

 
 

𝛼1−𝑒

−(
𝑒𝑎(𝑥+1)

1+
𝑎(𝑥+1)
1+𝑎

−1)

𝜃

− 𝛼1−𝑒

−(
𝑒𝑎𝑥

1+
𝑎𝑥
1+𝑎

−1)

𝜃

𝛼−1
,      𝛼 > 0,  𝛼 ≠ 1,   

𝑒
−(

𝑒𝑎𝑥

1+
𝑎𝑥
1+𝑎

−1)

𝜃

− 𝑒
−(

𝑒𝑎(𝑥+1)

1+
𝑎(𝑥+1)
1+𝑎

−1)

𝜃

,                          𝛼 = 1,

                               

(38) 

and 

𝐹𝐷𝐴𝑃𝑇𝑊−𝐿(𝑥; 𝛼, 𝛿, 𝜃) =

{
 
 

 
 

𝛼1−𝑒

−(
𝑒𝑎(𝑥+1)

1+
𝑎(𝑥+1)
1+𝑎

−1)

𝜃

−1

𝛼−1
,       𝛼 > 0,  𝛼 ≠ 1,

1 − 𝑒
−(

𝑒𝑎(𝑥+1)

1+
𝑎(𝑥+1)
1+𝑎

−1)

𝜃

,                        𝛼 = 1 ,

                  (39)                                               

One can note that when 𝛼 = 1, the distribution reduces to the DOW -Lindley 

(DOW-L) which is a member of DOW-G family of distributions introduced by 

El-Morshedy et al. (2021). 
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ℎ𝐷𝐴𝑃𝑇𝑊−𝐿(𝑥; 𝛼, 𝛿, 𝜃) =
𝑃𝐷𝐴𝑃𝑇𝑊−𝐿(𝑥)

𝑆𝐷𝐴𝐴𝑃𝑇𝑊−𝐿(𝑥)
 =

𝛼1−𝑒

−(
𝑒𝑎(𝑥+1)

1+
𝑎(𝑥+1)
1+𝑎

−1)

𝜃

− 𝛼1−𝑒

−(
𝑒𝑎𝑥

1+
𝑎𝑥
1+𝑎

−1)

𝜃

𝛼−𝛼1−𝑒

−(
𝑒𝑎𝑥

1+
𝑎𝑥
1+𝑎

−1)

𝜃   ,  𝑥 =

 0,1,2… ;  𝛼 ≠ 1,  (40) 

and 

𝑎ℎ𝐷𝐴𝑃𝑇𝑊−𝐿(𝑥; 𝛼, 𝛿, 𝜃) =  𝑙𝑛 [
𝑆𝐷𝐴𝑃𝑇𝑊−𝐿(𝑥)

𝑆𝐷𝐴𝑃𝑇𝑊−𝐿(𝑥+1)
] = 𝑙𝑛

[
⌈
⌈
⌈
⌈
 

𝛼−𝛼1−𝑒

−(
𝑒𝑎𝑥

1+
𝑎𝑥
1+𝑎

−1)

𝜃

𝛼−𝛼1−𝑒

−(
𝑒𝑎(𝑥+1)

1+
𝑎(𝑥+1)
1+𝑎

−1)

𝜃

]
 
 
 
 
 

, 𝑥 =

 0,1,2…  ;  𝛼 ≠ 1.        (41) 

 

3.2 Discrete alpha power transformed Weibull – Rayleigh distribution 

The cdf of Rayleigh distribution with parameter 𝛽 is,  

𝐹(𝑥; 𝛿) = 1 − 𝑒−
𝛽

2
𝑥2 , 𝑥 > 0 ;  𝛽 > 0 ,          (42)                                                                                        

In this case, 𝑡𝑖 =
𝐺(𝑥;𝛿)

𝐺̅(𝑥;𝛿)
= (𝑒

𝛽

2
𝑥2 − 1),    𝑡𝑖∗ =

𝐺(𝑥+1;𝛿)

𝐺̅(𝑥+1;𝛿)
= (𝑒

𝛽

2
(𝑥+1)2 − 1).   (43)                                       

Using (10) and (12)-(14), the pmf, cdf, hrf and ahrf of the (𝐷𝐴𝑃𝑇𝑊 − Rayleigh) 

DAPTW − R distribution are, respectively, given by 

𝑃𝐷𝐴𝑃𝑇𝑊−𝑅(𝑥; 𝛼, 𝛿, 𝜃) =  

{
 
 

 
 
𝛼1−𝑒

−(𝑒
𝛽
2
(𝑥+1)2

−1)

𝜃

− 𝛼1−𝑒
−(𝑒

𝛽
2
𝑥2
−1)

𝜃

𝛼−1
,      𝛼 > 0,  𝛼 ≠ 1,   

𝑒
−(𝑒

𝛽
2
𝑥2
−1)

𝜃

− 𝑒
−(𝑒

𝛽
2
(𝑥+1)2

−1)

𝜃

,              𝛼 = 1,

   

(44)                               

and 
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𝐹𝐷𝐴𝑃𝑇𝑊−𝑅(𝑥; 𝛼, 𝛿, 𝜃) =

{
 
 

 
 
𝛼1−𝑒

−(𝑒
𝛽
2
(𝑥+1)2

−1)

𝜃

−1

𝛼−1
,       𝛼 > 0,  𝛼 ≠ 1,

1 − 𝑒
−(𝑒

𝛽
2
(𝑥+1)2

−1)

𝜃

,                     𝛼 = 1,

       (45)                                                

Similarly, when 𝛼 = 1, the distribution reduces to the DOW - Rayleigh (DOW-

R) which is a member of DOW-G family of distributions introduced by El-

Morshedy et al. (2021). 

ℎ𝐷𝐴𝑃𝑇𝑊−𝑅(𝑥; 𝛼, 𝛿, 𝜃) =
𝑃𝐷𝐴𝑃𝑇𝑊−𝑅(𝑥)

𝑆𝐷𝐴𝐴𝑃𝑇𝑊−𝑅(𝑥)
 =

𝛼1−𝑒
−(𝑒

𝛽
2
(𝑥+1)2

−1)

𝜃

− 𝛼1−𝑒
−(𝑒

𝛽
2
𝑥2
−1)

𝜃

𝛼−𝛼1−𝑒
−(𝑒

𝛽
2
𝑥2
−1)

𝜃   ,  𝑥 =

 0,1,2…  ;  𝛼 ≠ 1,   (46) 

𝑎ℎ𝐷𝐴𝑃𝑇𝑊−𝑅(𝑥; 𝛼, 𝛿, 𝜃) =  𝑙𝑛 [
𝑆𝐷𝐴𝑃𝑇𝑊−𝑅(𝑥)

𝑆𝐷𝐴𝑃𝑇𝑊−𝑅(𝑥+1)
] = 𝑙𝑛

[
⌈
⌈
⌈
 

𝛼−𝛼1−𝑒
−(𝑒

𝛽
2
𝑥2
−1)

𝜃

𝛼−𝛼1−𝑒
−(𝑒

𝛽
2
(𝑥+1)2

−1)

𝜃

]
 
 
 
 

, 𝑥 =

 0,1,2… ;  𝛼 ≠ 1.        (47) 

4. Discrete Alpha Power Transformed Weibull – Exponential Distribution 

 The cdf of the exponential distribution with parameter 𝛽 is, 

𝐹(𝑥; 𝛿) = 1 − 𝑒−𝛽𝑥 , 𝑥 > 0 ;  𝛽 > 0 ,                                          (48)                                                                                         

if, 𝑡𝑖 =
𝐺(𝑥;𝛿)

𝐺̅(𝑥;𝛿)
= (𝑒𝛽𝑥 − 1), 𝑡𝑖∗ =

𝐺(𝑥+1;𝛿)

𝐺̅(𝑥+1;𝛿)
= (𝑒𝛽(𝑥+1) − 1).        (49)                                                           

Using (10) and (12)-(14), the pmf, cdf, hrf, ahrf and rhrf of the (𝐷𝐴𝑃𝑇𝑊 − 

Exponential) DAPTW− E  distribution are, respectively, given by 

 

𝑃𝐷𝐴𝑃𝑇𝑊−𝐸(𝑥; 𝛼, 𝛿, 𝜃) =  {
𝛼1−𝑒

−(𝑒𝛽(𝑥+1)−1)
𝜃

− 𝛼1−𝑒
−(𝑒𝛽𝑥−1)

𝜃

𝛼−1
,      𝛼 > 0,  𝛼 ≠ 1,   

𝑒−(𝑒
𝛽𝑥−1)

𝜃

− 𝑒−(𝑒
𝛽(𝑥+1)−1)

𝜃

,                        𝛼 = 1,

                                    

(50) 

and 
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𝐹𝐷𝐴𝑃𝑇𝑊−𝐸(𝑥; 𝛼, 𝛿, 𝜃) = {
𝛼1−𝑒

−(𝑒𝛽(𝑥+1)−1)
𝜃

−1

𝛼−1
,       𝛼 > 0,  𝛼 ≠ 1,

1 − 𝑒−(𝑒
𝛽(𝑥+1)−1)

𝜃

,                      𝛼 = 1 ,

       (51)                                                    

One can note that when 𝛼 = 1, the family reduces to the DOW - Exponential 

(DOW-E) which is a member of DOW -G family of distributions introduced by 

El-Morshedy et al. (2021). 

The hrf, ahrf and   rhrf can be formulated as  

ℎ𝐷𝐴𝑃𝑇𝑊−𝐸(𝑥; 𝛼, 𝛿, 𝜃) =
𝑃𝐷𝐴𝑃𝑇𝑊−𝐸(𝑥)

𝑆𝐷𝐴𝐴𝑃𝑇𝑊−𝐸(𝑥)
 =

𝛼1−𝑒
−(𝑒𝛽(𝑥+1)−1)

𝜃

− 𝛼1−𝑒
−(𝑒𝛽𝑥−1)

𝜃

𝛼−𝛼1−𝑒
−(𝑒𝛽𝑥−1)

𝜃   , 𝑥 =

 0,1,2…  ;  𝛼 ≠ 1,        (52) 

𝑎ℎ𝐷𝐴𝑃𝑇𝑊−𝐸(𝑥; 𝛼, 𝛿, 𝜃) =  𝑙𝑛 [
𝑆𝐷𝐴𝑃𝑇𝑊−𝐸(𝑥)

𝑆𝐷𝐴𝑃𝑇𝑊−𝐸(𝑥+1)
] = 𝑙𝑛 [

𝛼−𝛼1−𝑒
−(𝑒𝛽𝑥−1)

𝜃

𝛼−𝛼1−𝑒
−(𝑒𝛽(𝑥+1)−1)

𝜃] , 𝑥 =

 0,1,2…  ;  𝛼 ≠ 1,         (53) 

and  

𝑟ℎ𝐷𝐴𝑃𝑇𝑊−𝐸(𝑥; 𝛼, 𝛿, 𝜃) =
𝑃𝐷𝐴𝑃𝑇𝑊−𝐸(𝑥)

𝐹𝐷𝐴𝑃𝑇𝑊−𝐸(𝑥)
  =

𝛼1−𝑒
−𝑡𝑖∗

𝜃

− 𝛼1−𝑒
−𝑡𝑖

𝜃

𝛼1−𝑒
−(𝑒𝛽(𝑥+1)−1)

𝜃

−1

,           𝑥 =

 0,1,2…  ;  𝛼 ≠ 1.                   (54) 

Figures 1- 3 display some plots of pmf, hrf and ahrf of the 𝐷𝐴𝑃𝑇𝑊 − 𝐸 

distribution for various values of the parameters. 

Figure 1 indicates that the pmf of 𝐷𝐴𝑃𝑇𝑊 − 𝐸 can be either unimodal or bimodal 

and can be decreasing, increasing, decreasing followed by unimodal, left and right 

skewed with heavy tail, among other useful pmf. Figures 2 and 3 show some plots 

of the hrf and ahrf for various values of the parameters which are decreasing, 

increasing and bathtub shapes. 
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Figure 3. Plots of the ahrf of 𝑫𝑨𝑷𝑻𝑾− 𝑬 for different values of the parameters 

4.1 Some statistical properties of discrete alpha power transformed Weibull 

– exponential distribution  

     In this subsection, some basic properties of the DAPTW-E distribution such as 

quantile function, moments, order statistics, Rényi entropy, mean time to failure, 

mean time between failure and Availability are derived. 

4.1.1 Quantile function 

The qth quantile 𝑥𝑞 of DAPTW-E distribution, for 𝛼 ≠ 1, can be obtained by using 

(16) as 

𝑥𝑞 = ⌈[
1

𝛽
∗ 𝑙𝑜𝑔 {(−𝑙𝑛 (1 −

𝑙𝑛(1+𝑞(𝛼−1))

𝑙𝑛(𝛼)
))

1

𝜃

+ 1}]⌉ ,            0 < 𝑞 < 1.        (55)                           

Hence, the median can be obtained if q=0.5 as given below 

𝑥0.5 = ⌈[
1

𝛽
∗ 𝑙𝑜𝑔 {(−𝑙𝑛 (1 −

𝑙𝑛(1+0.5(𝛼−1))

𝑙𝑛(𝛼)
))

1

𝜃

+ 1}]⌉.                                 (56)                                                                                     

4.1.2 Moments, skewness, kurtosis and index of dispersion 

The rth moments of DAPTW-E distribution cannot be expressed in closed form, 

so a software program should be used to calculate these statistics to recognize the 

properties of DAPTW-E distribution. So, Mathematica 11 program is used to exhibit 

some of them for different values of the parameters lists in Table 1.  
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Table 1 

Some descriptive statistics for DAPTW-E distribution for some values of the 

parameters  

Parameter  Descriptive statistics 

   Mean Median Variance ID Sk Kur 

0.5  

0.15 

 

 

0.8 

 

2.9769 2 9.8062 3.2941 1.2266 4.1530 

5 5.0856 5 12.9398 2.5444 0.5152 2.6739 

10 5.7002 5 12.9692 2.2752 0.3724 2.5896 

 

1.3 

0.05  

2 

11.9651 12 23.5741 1.9702 -0.0065 2.5355 

0.1 5.7326 6 5.9560 1.0390 -0.0062 2.5443 

0.2 2.6162 3 1.5513 0.5930 -0.0039 2.5671 

 

0.5 

 

 

0.1 

 

0.5 5.1354 2 48.3097 8.9645 1.7376 5.8576 

3 5.3890 5 3.1703 0.58829 -0.1354 2.7081 

4 5.5925 6 2.0195 0.3611 -0.3142 2.9396 

From Table 1 it is clear that the DAPTW-E distribution is suitable for modeling 

different types of data sets where it is suitable for modeling over and under 

dispersion data sets where 𝐼𝐷 > (<) 1. It is also can be used for modeling positive 

and negative skewed and can be used to model either platykurtic (𝐾𝑢 < 3) or 

leptokurtic (𝐾𝑢 >  3) data. 

4.1.3 Order statistic  

    From (23) and (27) the cdf and pmf of the 𝑖𝑡ℎ order statistics for a random 

sample 𝑋1, 𝑋2, … , 𝑋𝑛, from DAPTW-E distribution is given by  

𝐹𝑖:𝑛(𝑥; 𝛼, 𝛽, 𝜃) = ∑ (
𝑛
𝑟
)𝑛

𝑟=𝑖 ∑ (
𝑛 − 𝑟
𝑗 ) (−1)𝑗 [

𝛼1−𝑒
−(𝑒𝛽(𝑥+1)−1)

𝜃

−1

𝛼−1
]

𝑟+𝑗

𝑛−𝑟
𝑗=0  ,             

𝛼 ≠ 1 ,                   (57) 

and 
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𝑃𝑖:𝑛(𝑥; 𝛼, 𝛽, 𝜃) = 

𝑛!

(𝑟−1)!(𝑛−𝑟)!
∑ (

𝑛 − 𝑟
𝑗 )𝑛−𝑟

𝑗=0
(−1)𝑗

𝑠+𝑗
{[

𝛼1−𝑒
−(𝑒𝛽(𝑥+1)−1)

𝜃

−1

𝛼−1
]

𝑠+𝑗

−[
𝛼1−𝑒

−(𝑒𝛽𝑥−1)
𝜃

−1

𝛼−1
]

𝑠+𝑗

}.    

(58)       

                    

Special cases  

The pmf of the smallest order statistics is obtained as follows: 

𝑃1(𝑥; 𝛼, 𝛽, 𝜃) = [1 −
𝛼1−𝑒

−(𝑒𝛽𝑥−1)
𝜃

−1

𝛼−1
]

𝑛

− [1 −
𝛼1−𝑒

−(𝑒𝛽(𝑥+1)−1)
𝜃

−1

𝛼−1
]

𝑛

, 𝛼 ≠ 1.                                       

(59)                                                 

The pmf of the largest order statistics is  

𝑃𝑛(𝑥; 𝛼, 𝛽, 𝜃) = [
𝛼1−𝑒

−(𝑒𝛽(𝑥+1)−1)
𝜃

−1

𝛼−1
]

𝑛

− [
𝛼1−𝑒

−(𝑒𝛽𝑥−1)
𝜃

−1

𝛼−1
]

𝑛

,    𝛼 ≠ 1.        (60)                                        

4.1.4 R𝒆́nyi entropy 

The R𝑒́nyi entropy can be given as  

𝐻𝜌(𝜌) = (1 − 𝜌)−1𝑙𝑜𝑔 {∑ (
𝛼1−𝑒

−(𝑒𝛽(𝑥+1)−1)
𝜃

− 𝛼1−𝑒
−(𝑒𝛽𝑥−1)

𝜃

𝛼−1
)

𝜌

∞
𝑥=0 } , 𝛼 ≠ 1 𝜌 >

0, 𝜌 ≠ 1 .                 (61)                              

The Shannon entropy can be calculated as a special case of the Rényi entropy 

when 𝜌 → 1.  

4.1.5 Mean time to failure, mean time between failure, and Availability 

The MTTF, MTBFand Av are given as follows: 

𝑀𝑇𝑇𝐹 = ∑
𝛼−𝛼1−𝑒

−(𝑒𝛽𝑥−1)
𝜃

𝛼−1
∞
𝑥=1  ,                         𝑥 > 0;   𝛼 ≠ 1,        (62)                                         
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𝑀𝑇𝐵𝐹 =
−𝑥

𝑙𝑜𝑔 [𝑆𝐴𝑃𝑇𝑊−𝐺(𝑥)]
=

−𝑥

𝑙𝑜𝑔 [
𝛼−𝛼1−𝑒

−(𝑒𝛽𝑥−1)
𝜃

𝛼−1
]

 ,                         𝑥 > 0;   𝛼 ≠ 1,                                     

(63)                                                          

and  

 𝐴𝑣  =
∑ 𝑆𝐴𝑃𝑇𝑊−𝐺(𝑥)
∞
𝑥=1  𝑙𝑜𝑔 [𝑆𝐴𝑃𝑇𝑊−𝐺(𝑥)] 

−𝑥
=

∑
𝛼−𝛼1−𝑒

−(𝑒𝛽𝑥−1)
𝜃

𝛼−1
∞
𝑥=1    

−𝑥
,        𝑥 > 0;   𝛼 ≠ 1.                                            

(64)    

 

4.2 Maximum likelihood estimation for discrete alpha power transformed 

Weibull -exponential distribution               

The natural logarithm of the likelihood function of DAPTW-E can be written in 

the form:    

ℓ ≡ 𝑙𝑛𝐿(𝛼, 𝛽, 𝜃; 𝑥) ∝∑𝑙𝑛 [𝛼1−𝑒
−(𝑒𝛽(𝑥+1)−1)

𝜃

− 𝛼1−𝑒
−(𝑒𝛽𝑥−1)

𝜃

]

𝑟

𝑖=1

 

             +(𝑛 − 𝑟)𝑙𝑛 [𝛼 − 𝛼1−𝑒
−(𝑒𝛽𝑥−1)

𝜃

] − 𝑛 ln(𝛼 − 1).                (65)                                       

The ML estimators can be derived by setting the partial first derivatives of (65) 

with respect to 𝛼, 𝜃 and 𝛽, respectively, to zeros. The system of the non-linear 

equations can be solved numerically using the Newton-Raphson method, to obtain 

the ML estimators 𝛼̂, 𝜃 and 𝛽̂. 

5. Numerical Results  

     This section aims to evaluate the performance of the ML estimates based on 

simulated and real data through some measurements of accuracy. 

5.1 Simulation study  

     In this subsection, a simulation study is conducted to illustrate the performance 

of the presented ML estimates based on a simulation study which is describes in 

the following: 

• Select different combinations of true values for the parameters.  

• Generate 1000 samples (number of replication (NR)) of sample sizes 30, 

50 and 100 and 200 from DAPTW-E based on complete sample levels of  
𝑟

𝑛
× 100 percentage of uncensored observations Type-II censoring. 
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• For each model parameter and for each sample size, the ML estimates are 

computed. 

• Repeat the previous steps 1000 times for each sample size and for selected 

sets of the parameters. 

The ML averages, relative absolute biases (RABs), Relative errors (REs), 

Estimated risk (ERs) and variances of the ML estimates of the parameters, sf, 

hrf and ahrf are computed as follows: 

1) Averages = 
∑ estimatesNR
i=1

NR
 

2) RABs (estimate) = 
|bias (estimate)|

true value
 , 

3) REs =
ER(estimate)

true value
 , 

4) Variances (estimate) = ER(estimate) − bias2 (estimate). 

The simulation study is performed using Mathematica 11. 

The results are presented in Tables 2-5 for different combinations of the 

parameters based on complete sample and level of  
𝑟

𝑛
× 100 percentage of 

uncensored observations Type II censoring 70%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. 
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ML averages, relative absolute biases, relative errors, variances of ML 

estimates, 95%confidence 

 intervals of the parameters from DAPTW-E distribution for based on 

complete sample size  

(𝛂 = 𝟓,    𝛃 =  𝟎. 𝟐, 𝛉 = 𝟑,   𝒙𝟎 = 𝟏 𝐚𝐧𝐝     𝑵𝑹 =  𝟏𝟎𝟎𝟎 )  

 

Table 3. 

n 𝝋 Average RAB RE Variance UL LL Length 

 

 

 

30 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

8.1654 0.6331 0.6347 0.0501 8.6042 7.7266 0.8776 

0.1920 0.0398 0.0424 8.5857 × 10−6 0.1978 0.1863 0.0115 

2.2399 0.2534 0.2551 0.0079 2.4146 2.0652 0.3494 

0.9907 0.0050 0.0053 3.1203× 10−6 0.9941 0.9872 0.0069 

0.0501 0.1054 0.1523 2.4758 × 10−5 0.0598 0.0403 0.0195 

0.0514 0.1085 0.1572 2.7758 × 10−5 0.0617 0.0410 0.0207 

 

 

60 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

8.1489 0.6298 0.6305 0.0214 8.4355 7.8623 0.5731 

0.1918 0.0410 0.0421 3.7172 × 10−6 0.1956 0.1880 0.0076 

2.2503 0.2499 0.2506 0.0031 2.3594 2.1413 0.2181 

0.9909 0.0047 0.0048 9.0869 × 10−7 0.9928 0.9890 0.0037 

0.0495 0.0928 0.1145 9.2395 × 10−6 0.0554 0.0435 0.0119 

0.0507 0.0953 0.1177 1.0256× 10−5 0.0570 0.0445 0.0126 

 

 

 

100 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

8.1673 0.6335 0.6338 0.0106 8.3690 7.9657 0.4032 

0.1917 0.0413 0.0419 1.7740× 10−6 0.1943 0.1891 0.0052 

2.2495 0.2502 0.2505 0.0015 2.3326 2.1731 0.1529 

0.9910 0.0047 0.0047 4.3458× 10−7 0.9922 0.9897 0.0026 

0.0493 0.0899 0.1012 4.4226× 10−6 0.0535 0.0452 0.0082 

0.0506 0.0923 0.1039 4.9035× 10−6 0.0550 0.0463 0.0087 

 

 

200 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

8.1651 0.6330 0.6332 0.0056 8.3115 8.0187 0.2928 

0.1917 0.0415 0.0418 9.7218× 10−7 0.1936 0.1898 0.0039 

2.2510 0.2497 0.2498 0.0008 2.3068 2.1953 0.1115 

0.9910 0.0047 0.0047 2.2433× 10−7 0.9919 0.9901 0.0019 

0.0493 0.0879 0.0942 2.3549× 10−6 0.0523 0.0463 0.0060 

0.0505 0.0902 0.0967 2.6071× 10−6 0.0537 0.0474 0.0063 

 

 

 

500 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

8.1642 0.6328 0.6329 0.0020 8.2518 8.0766 0.1752 

0.1917 0.0416 0.0417 3.4324× 10−7 0.1928 0.1905 0.0023 

2.2513 0.2496 0.2496 0.0003 2.2840 2.2186 0.0653 

0.9910 0.0046 0.0047 7.5711× 10−8 0.9915 0.9905 0.0011 

0.0492 0.0875 0.0897 8.0124× 10−7 0.0510 0.0475 0.0035 

0.0505 0.0898 0.0921 8.9312× 10−7 0.0523 0.0486 0.0037 
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ML averages, relative absolute biases, relative errors, variances of ML 

estimates, 95%confidence 

 intervals of the parameters from DAPTW-E distribution for based on 

complete sample size  

(𝛂 = 𝟐,    𝛃 =  𝟎. 𝟒, 𝛉 = 𝟏. 𝟔,   𝒙𝟎 = 𝟏 𝐚𝐧𝐝     𝑵𝑹 =  𝟏𝟎𝟎𝟎 )  

 

 

 

n 𝝋 Average RAB RE Variance UL LL Length 

 

 

 

30 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

3.4293 0.7146 0.7153 0.0036 3.5467 3.3118 0.2349 

0.3915 0.0211 0.0418 0.0002 0.4199 0.3632 0.0566 

1.0977 0.3139 0.3165 0.0042 1.2248 0.9707 0.2541 

0.7703 0.0252 0.0356 0.0004 0.8091 0.7314 0.0778 

0.4338 0.2730 0.2735 0.0001 0.4543 0.4133 0.0410 

0.5690 0.3734 0.3739 0.0003 0.6052 0.5327 0.0725 

 

 

60 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

3.4169 0.7084 0.7086 0.0011 3.4821 3.3517 0.1304 

0.3896 0.0260 0.0346 0.0001 0.4075 0.3717 0.0357 

1.1084 0.3073 0.3083 0.0017 1.1883 1.0285 0.1598 

0.7732 0.0216 0.0268 0.0002 0.7979 0.7484 0.0494 

0.4342 0.2723 0.2726 5.8359 × 10−5 0.4492 0.4192 0.0299 

0.5696 0.3727 0.3730 0.0002 0.5961 0.5431 0.0531 

 

 

 

100 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

3.4140 0.7070 0.7070 0.0005 3.4593 3.3686 0.0906 

0.3894 0.0265 0.0316 4.7470× 10−5 0.4029 0.3759 0.0270 

1.1102 0.3061 0.3067 0.0009 1.1685 1.0519 0.1166 

0.7736 0.0210 0.0242 0.0001 0.7919 0.7552 0.0368 

0.4346 0.2716 0.2718 4.0836 × 10−5 0.4471 0.4221 0.0250 

0.5703 0.3719 0.3721 0.0001 0.5925 0.5481 0.0444 

 

 

200 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

3.4113 0.7056 0.7057 0.0002 3.4406 3.3820 0.0586 

0.3891 0.0273 0.0299 2.3677× 10−5 0.3986 0.3795 0.0191 

1.1124 0.3047 0.3050 0.0004 1.1536 1.0712 0.0824 

0.7741 0.0204 0.0220 4.4353× 10−5 0.7872 0.7610 0.0261 

0.4348 0.2713 0.2714 2.1157 × 10−5 0.4438 0.4258 0.0180 

0.5706 0.3716 0.3717 0.0001 0.5865 0.5546 0.0319 

 

 

 

500 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

3.4097 0.7049 0.7049 0.0001 3.4271 3.3924 0.0347 

0.3889 0.0276 0.0286 8.5471× 10−6 0.3947 0.3832 0.0115 

1.1134 0.3041 0.3042 0.0002 1.1384 1.0885 0.0498 

0.7743 0.0201 0.0207 1.6027× 10−5 0.7822 0.7665 0.0157 

0.4349 0.2711 0.2711 8.3004 × 10−6 0.4406 0.4293 0.0113 

0.5708 0.3713 0.3714 2.6015× 10−5 0.5808 0.5608 0.0200 
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Table 4. 

ML averages, relative absolute biases, relative errors, variances of ML estimates, 95%confidence 

 intervals of the parameters from DAPTW-E distribution for based on Type-II censoring  

(𝛂 = 𝟏. 𝟑,    𝛃 =  𝟎. 𝟑, 𝛉 = 𝟐,   𝒙𝟎 = 𝟏 𝐚𝐧𝐝     𝑵𝑹 =  𝟏𝟎𝟎𝟎 )  
n r 𝝋 Average RAB RE Variance UL LL Length 

 

 

 

 

 

 

30 

 

 

 

21 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

2.3667 0.8205 0.8268 0.0174 2.6254 2.1080 0.5174 

0.3200 0.0667 0.0817 0.0002 0.3477 0.2923 0.0554 

0.9563 0.5218 0.5293 0.0314 1.3038 0.6089 0.6949 

0.7617 0.1515 0.1595 0.0020 0.8494 0.6740 0.1754 

0.3227 0.1870 0.1999 0.0008 0.3777 0.2677 0.1100 

0.3904 0.2280 0.2398 0.0014 0.4641 0.3166 0.1475 

 

 

30 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

2.2667 0.7436 0.7468 0.0082 2.4437 2.0897 0.3540 

0.3007 0.0024 0.0435 0.0001 0.3262 0.2752 0.0510 

1.3039 0.3480 0.3549 0.0195 1.5773 1.0305 0.5468 

0.8388 0.0656 0.0743 0.0010 0.9004 0.7773 0.1230 

0.3291 0.1709 0.1739 0.0002 0.3543 0.3038 0.0505 

0.3993 0.2104 0.2137 0.0004 0.4367 0.3618 0.0750 

 

 

 

 

 

 

60 

 

 

 

42 

𝜶 

𝜆 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

2.3561 0.8124 0.8151 0.0073 2.5231 2.1080 0.3339 

0.3191 0.0636 0.0714 0.0001 0.3382 0.2923 0.0382 

0.9660 0.5170 0.5202 0.0135 1.1935 0.6089 0.4550 

0.7650 0.1478 0.1517 0.0009 0.8250 0.6740 0.1200 

0.3269 0.1763 0.1858 0.0005 0.3725 0.2677 0.0911 

0.3963 0.2162 0.2233 0.0008 0.4518 0.3166 0.1109 

 

 

60 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

2.3563 0.7356 0.7366 0.0026 2.3565 2.1560 0.2005 

0.2993 0.0023 0.0293 7.6732× 10−5 0.3165 0.2821 0.03434 

1.3218 0.3391 0.3419 0.0077 1.4944 1.1493 0.3451 

0.8433 0.0606 0.0647 0.0004 0.8827 0.8038 0.0789 

0.3297 0.1692 0.1714 0.0001 0.3509 0.3085 0.0424 

0.4002 0.2086 0.2109 0.0003 0.4317 0.3692 0.0620 

 

 

 

 

 

 

100 

 

 

 

70 

𝜶 

𝜆 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

2.3514 0.8088 0.8099 0.0029 2.4567 2.2461 0.2106 

0.3188 0.0627 0.0667 4.6929× 10−5 0.3322 0.3054 0.0269 

0.9721 0.5140 0.5145 0.0061 1.1251 0.8190 0.3060 

0.7667 0.1460 0.1477 0.0004 0.8066 0.7267 0.0799 

0.3295 0.1698 0.1708 4.1580× 10−5 0.3438 0.3151 0.0287 

0.3998 0.2094 0.2104 0.0001 0.4198 0.3797 0.0401 

 

 

 

100 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

2.2525 0.7327 0.7328 0.0003 2.2875 2.2175 0.0699 

0.2993 0.0022 0.0138 1.6777× 10−5 0.3074 0.2913 0.0161 

1.3201 0.3348 0.3404 0.0013 1.3896 1.2507 0.1389 

0.8433 0.0605 0.0612 0.0001 0.8589 0.8277 0.0312 

0.3311 0.1658 0.1665 3.4402× 10−5 0.3426 0.3196 0.0230 

0.4021 0.2047 0.2055 0.0001 0.4193 0.3850 0.0343 
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Table 5. 

ML averages, relative absolute biases, relative errors, variances of ML estimates, 95%confidence 

 intervals of the parameters from DAPTW-E distribution for based on Type-II 

censoring  

(𝛂 = 𝟏. 𝟔,    𝛃 =  𝟎. 𝟑, 𝛉 = 𝟐,   𝒙𝟎 = 𝟏 𝐚𝐧𝐝     𝑵𝑹 =  𝟏𝟎𝟎𝟎 )  
n r 𝝋 Average RAB RE Variance UL LL Length 

 

 

 

 

 

 

30 

 

 

 

21 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

2.8893 0.8058 0.8133 0.0311 3.2350 2.5437 0.6914 

0.3175 0.0605 0.0798 0.0002 0.3488 0.2875 0.0612 

1.0037 0.5058 0.5148 0.0368 1.3644 0.6125 0.7518 

0.7922 0.1318 0.1423 0.0024 0.8832 0.6922 0.1910 

0.3123 0.1808 0.2012 0.0011 0.3721 0.2422 0.1299 

0.3747 0.2169 0.2359 0.0019 0.4534 0.2826 0.1708 

 

 

30 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

2.7637 0.7273 0.7273 0.0098 2.9576 2.5698 0.3879 

0.2986 0.0046 0.0434 0.0001 0.3240 0.2732 0.0507 

1.3303 0.3349 0.3415 0.0179 1.5927 1.0678 0.5248 

0.8582 0.0541 0.0631 0.0009 0.9159 0.8005 0.1154 

0.3092 0.1754 0.1800 0.0002 0.3387 0.2796 0.0591 

0.3701 0.2124 0.2172 0.0005 0.4120 0.3282 0.0837 

 

 

 

 

 

 

60 

 

 

 

42 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

2.8624 0.7890 0.7910 0.0081 3.0388 2.6859 0.3529 

0.3165 0.0552 0.0627 0.0001 0.3341 0.2990 0.0350 

1.0142 0.4929 0.4956 0.0109 1.2186 0.8098 0.4088 

0.7945 0.1243 0.1276 0.0007 0.8457 0.7433 0.1023 

0.3150 0.1599 0.1692 0.0004 0.3559 0.2741 0.0819 

0.3787 0.1942 0.2005 0.0005 0.4249 0.3324 0.0925 

 

 

60 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

2.7794 0.7371 0.7388 0.0064 2.9367 2.6220 0.3147 

0.3017 0.0057 0.0380 0.0001 0.3238 0.2796 0.0441 

1.3107 0.3447 0.3484 0.0105 1.5115 1.1099 0.4016 

0.8540 0.0587 0.0633 0.0005 0.8957 0.8122 0.0835 

0.3152 0.1594 0.1639 0.0002 0.3431 0.2873 0.0558 

0.3788 0.1939 0.1988 0.0004 0.4194 0.3382 0.0811 

 

 

 

 

 

100 

 

 

 

70 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

2.8674 0.7789 0.7809 0.0080 3.0217 2.6707 0.3510 

0.3172 0.0485 0.0583 9.3661× 10−5 0.3335 0.2956 0.0379 

1.0052 0.4842 0.4872 0.0120 1.2461 0.8173 0.4288 

0.7925 0.1196 0.1232 0.0007 0.8516 0.7460 0.1056 

0.3156 0.1617 0.1625 3.5707× 10−5 0.3260 0.3026 0.0234 

0.3792 0.1969 0.1978 0.0001 0.3943 0.3605 0.0338 

 

 

 

100 

𝜶 

𝜷 

𝜽 

𝑺(𝑥𝟎) 
𝒉(𝑥𝟎) 
𝒂𝒉 (𝑥𝟎) 

2.7624 0.7265 0.7269 0.0015 2.8386 2.6861 0.1525 

0.3008 0.0027 0.0207 3.7970× 10−5 0.8129 0.2887 0.0242 

1.3346 0.3327 0.3335 0.0020 1.4231 1.2461 0.1769 

0.8584 0.0539 0.0550 0.0001 0.8776 0.8391 0.0385 

0.3164 0.1560 0.1579 8.2545× 10−5 0.3342 0.2986 0.0356 

0.3805 0.1902 0.1923 0.0001 0.4065 0.3546 0.0519 



Scientific Journal for Financial and Commercial Studies and Research 5(2)1 July 2024 

Dr. Mai Amed Ibrahim Hegazy 

- 67 - 
 

From Tables 2-5, the following observations can be noted,  

• The ML averages of the estimates perform better when the sample size n 

increases. 

• The REs, RABs, and variances of the ML estimates decrease in most cases 

when the sample size n increases. Also, the lengths of the confidence 

intervals get shorter when the sample size increases. 

• The REs, RABs, and variances of the ML estimates decrease when the level 

of censoring decreases. The lengths of the confidence intervals become 

narrower when the sample size increases. 

5.2 Applications 

     This subsection aims to demonstrate empirical importance of the proposed 

DAPTW-E distribution through analyzing two real lifetime data sets. 

     The fitted model is compared using some criteria, namely, Akaike Information 

Criterion (AIC), Akaike Information Criterion with correction (AICC) and 

Bayesian Information Criterion (BIC) with some distributions such as discrete 

Weibull (DW) introduced by Nakagawa and Osaki (1975), discrete Marshall-Olkin 

Weibull (DMOW) proposed by Opone et al. (2021), discrete Marshall-Olkin 

generalized exponential (DMOGE) presented by Almetwally et al. (2020), discrete 

Zubair Weibull (DZW) derived by AL-Kashlan et al (2023), discrete alpha power 

Weibull (DAPW) obtained by EL- Helbawy et al. (2022) and discrete alpha power 

Exponential (DAPE) which is a sub model from DAPW introduced by EL-

Helbawy et al. (2022). 

     The best distribution corresponds to the lowest values of AIC, AICC and BIC, 

also the highest p-value,  

where    AIC = −2 log L + 2k,   BIC = −2 log L + k log n    and AICC = AIC 

+
2𝑘(𝑘+1)

𝑛−𝑘−1
, where k is the number of the parameters and n is the sample size and L 

is the maximized value of the likelihood function for the estimated model. Tables 

6 and 7 display the values of p-value, AIC, BIC and AICC for the two data sets. 

Application 1: 

     The first application represents the failure times of 50 devices (in weeks) put on a 

certain life test taken from Bodhisuwan and Sangpoom (2016). The data are: 0.1, 0.2, 

1, 1, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 

60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86 and 

86.  
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Application 2: 

The second data set is lifetime data which gives the failure times for 15 electronic 

components in an acceleration lifetime test provided by Lawless (2003). The data 

are: 1.4, 5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 23, 30.6, 37.3, 46.3, 53.9, 59.8 and 

66.2. 
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Table 6. 

 Parameter estimates with their corresponding standard errors and 

goodness of fit for  

various models fitted for the first data 

Model parameter Estimate SE K-S P-value -2ℒ AIC BIC AICC 

DNAPTW 

 

𝛼 

𝛽 

𝜃 

 

12.0977 

0.1100 
0.1342 

 

0.9717 

1.0635 
1.0633 

0.14 0.7016 482.747 488.747 494.483 489.268 

DAPW 

𝛼 

p 

𝛽 

6.2094 

1.0993 

0.2396 

1.0164 

1.0558 

1.0625 
0.24 0.1086 745.099 751.099 756.836 751.621 

DAPE 

𝛼 

𝛽 

 

8.7497 
0.0495 

0.9970 
1.0639 0.26 0.0640 956.23 956.23 960.054 956.485 

DMOW 

𝛼 

𝜃 

𝛾 

1.6671 

0.9914 
1.2678 

1.0514 

1.0567 
1.0545 

0.18 0.3829 484.392 490.392 496.128 492.341 

DMOGE 

𝛼 

𝜃 

𝜆 

10.2403 
0.9089 

5.1447 

0.9856 
1.0573 

1.0246 
0.26 0.0651 782.908 788.908 794.644 789.43 

DZW 

𝛼 

𝜃 

𝛾 

0.7294 

0.7039 
0.8861 

1.0587 

1.0589 
1.0575 

0.2 0.2623 488.483 494.483 500.219 495.005 

DW 
𝛼 

𝛽 

 

0.3983 
0.1790 

1.0612 
1.0629 0.22 0.1720 614.456 618.456 622.28 618.711 

Table 7. 

 Parameter estimates with their corresponding standard errors and 

goodness of fit for  

various models fitted for the second data 

Model parameter Estimate SE K-S P-value -2ℒ AIC BIC AICC 

DAPTW-E 
𝛼 

𝛽 

𝜃 

2.5493 
0.1056 

0.1902 

1.4958 
1.5402 

1.5387 
0.2 0.9383 142.904 148.904 151.029 151.086 

DAPW 

𝛼 

p 

𝛽 

5.4988 

1.0379 

0.2702 

1.4426 

1.5233 

1.5372 
0.4167 0.0755 210.275 216.275 218.399 218.456 

DAPE 

𝛼 

𝛽 

1.9226 

0.0657 

1.5072 

1.5410 0.4667 0.0653 235.571 239.571 240.988 240.571 

DMOW 

𝛼 

𝜃 

𝛾 

2.7667 

0.9089 

1.0735 

1.4918 

1.5256 

1.5226 
0.2667 0.6781 151.151 157.151 159.275 159.333 

DMOGE 

𝛼 

𝜃 

𝜆 

4.7255 
0.8447 

0.5010 

1.4564 
1.5268 

1.5330 
0.4 0.1844 178.25 184.25 186.374 186.432 

DZW 

𝛼 

𝜃 

𝛾 

8.3798 

0.6776 

0.6023 

1.3916 

1.5298 

1.5312 
0.25 0.7515 144.177 150.177 152.302 152.359 

DW 
𝛼 

𝛽 

0.4137 

0.2841 

1.5346 

1.5370 0.3333 0.3855 171.05 175.05 176.466 176.05 
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     Figures 4 and 5 present the PP and QQ plots, fitted pdf and TTT plot for the 

two real data sets, which indicates that the DAPW-E distribution provides better 

fit to the data sets.  The TTT plot for the first real data set which is displayed in 

Figure 4 provides evidence that the first data set possesses bathtub hrf, but the TTT 

plot of the second real data set in Figure 5 indicates that the hrf is decreasing 

function. 

     Regarding Tables 6 and 7, it is clear that the DATW-E, DAPW, DAPE, 

DMOW, DMOGE, DZW and DW distributions perform quite well for analyzing 

the two data sets. However, the DATW-E distribution is the best distribution 

among all the tested distributions; it has smallest values of −2𝑙𝑛𝐿, AIC, BIC, 

CAIc, lowest K–S values and highest p-values. 

6. Conclusion  

In this paper, a family of discrete distributions is proposed. Generalizations of 

discrete Lindley, discrete Rayleigh and discrete exponential, are obtained using 

this family. Also, many other discrete distributions can be obtained as sub 

models. As a particular case, discrete alpha power transformed Weibull- 

exponential distribution is introduced. Some of its properties are studied. The 

ML estimators for the model parameters are derived. The discrete alpha power 

transformed Weibull- exponential distribution appears to be more suitable for 

modeling real data sets and is a better alternative to some distributions. We 

wish the proposed model is applied to a wider range of applications in 

medicine, engineering and other fields of research fields. 
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