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             The potential of machine learning (ML) to revolutionize analytical 

sciences, especially, Raman and ROI spectra collection for RNA nucleotides 

is paramount. ML provides exceptional opportunities for the speedy 

extraction of vast information from the complex dataset generated by various 

analytical techniques including spectroscopy which could expedite the 

determination of the behaviour of complex molecules with the utmost 

accuracy. Ribonucleic acid (RNA) molecules exist in all living cells. These 

polymers play significant roles in various biochemical processes, such as 

translation and protein synthesis. The function of RNA as a catalyst for 

several cellular reactions in addition to its significant role in gene expression 

shapes the biological system. The functional versatility of RNAs depends on 

their ability to fold in various structural conformations, which necessitates 

delineating the motifs and elements’ structures in RNA to gain a 

comprehensive insight into the functional versatilities of these biopolymers. 

Moreover, the pivotal role of these polymers in diagnosis and therapy could 

be comprehended by functional activity analysis of RNAs using Raman and 

ROA spectroscopy in conjunction with ML and artificial intelligence. The 

current review aimed to shed light on the impact of ML algorithms on Raman 

and ROA spectroscopic RNA structural data analysis. Additionally, this 

review summarizes the RNA structural organization and methodological 

approaches of ML-assisted Raman and ROA spectroscopies for RNA in 

tandem with traditional algorithms. The future directions of the ML-assisted 

Raman and ROA for RNA structural analysis have also been highlighted to 

boost biomolecular research efficiency and accuracy.  

INTRODUCTION 

                  Raman (R) and Raman Optical Activity (ROI) spectroscopies are highly sensitive 

measurement techniques based on the principle of light-chemical bond vibrational interaction 

in molecules of the material (Hobro et al., 2008; Madey & Yates Jr 2013), that have been 

employed extensively in analytical sciences (Ayres et al., 2021; Fan et al., 2011). Light 

interaction with chemical-bond electron density results in molecular vibration-excitation and 

light frequency shift explains the Raman effect (Ahmed & Jackson 2014). Moreover, the effect 

is also observed when the elastic scattering of light and energy exchange with material 

excitation, for instance, lattice vibration in solid material occurs. Therefore, the vibrational 

fingerprint inherently associated with a specific molecular structure could be inquisitively 

analyzed to gain insight into molecular identification and characterization (Das & Agrawal 

2011; Garcia-Rico et al. 2018).   
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              The application of Raman analysis 

has been recognized in various scientific areas 

including pharmaceutical science for 

characterizing unknown biomolecules of 

medicinal interest (Craig et al., 2013; Li-Chan 

1996; Movasaghi et al., 2007). Despite the 

high potential of the Raman spectroscopy 

technique, it is complicated to process and 

extract valuable information from the spectral 

data of complexity with random noise that 

necessitates the robust processing technique 

(Gautam et al., 2015; Pelletier 2003). The key 

components of the Raman spectroscopy and 

Raman scattering phenomenon are illustrated 

in Figures 1a & 1b (Orlando et al., 2021; 

Rostron et al., 2016). 

 

 
Fig. 1. Illustration of the (a); key components of the Raman spectroscopy and (b); Raman 

scattering phenomena. Plank’s constant (h), frequency of the incident light (υ0), Vm: frequency 

of molecular vibration (υm), and energy at the ground level (E0). 

 

 

               Long data processing time and 

error-prone analytical results with traditional 

computational approaches are not sufficient 

to meet the multidimensional Raman 

spectroscopy-based research about biological 

molecules including structural insight of 

RNA (Antonio & Schultz 2014; Butler et al., 

2016; Guo et al., 2021). Therefore, with the 

advent of artificial intelligence (AI), recently, 

machine-learning (ML) emerged as a 

potential analytical tool/technique to address 

such issues with its capabilities to make 

automated predictions and mine deep 

complex data including spectral data (Kusters 

et al., 2020; Xu et al., 2021). AI is 

accomplished based on training with pre-

labeled data to provide predictions on fresh 

data input which plays a crucial role in 

expediting the experimental and 

computational analysis (Duarte & Ståhl 2019; 

Lewis & Denning 2018). Consequently, ML 

could be used to analyze the spectral datasets 

obtained from Raman spectroscopy to unfold 

the structural complexity of the RNA 

structural organization (Qi et al., 2023). ML 

is advantageous over traditional 

chemometrics and qualitative and 

quantitative statistical methods because it can 

analyze high-dimensional datasets efficiently 

and find significant connections and patterns 

beyond the functional groups level in a 

molecule (Adhikari et al., 2023; Leardi 2002; 

Rocha et al., 2020). The applications of 

decision trees, support vector machines, 

random forests, and artificial neural networks 

ML algorithms have been described and 
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reported in recently published scientific 

reports (Bhatti et al., 2023; Charbuty & 

Abdulazeez 2021; Ding et al., 2011), in the 

recent past which could play a vital role in 

Raman spectral comprehensive data analysis 

more effectively compared to the traditional 

data processing technique (Carey et al., 

2015). 

                 ML algorithms in tandem with 

traditional processing techniques such as 

principal component analysis (PCA), partial 

least-square regression (PLS), linear-

regression (LR), linear-discriminant analysis 

(LDA), least-square (LS), and quadrant-

discriminant analysis (QDA) in conjunction 

with spectral preprocessing techniques have 

been reported to be employed to automated 

classification of the spectral data of 

biomolecules (RNA), therefore, these 

algorithms have been identified as the 

remarkable research subject in the last few 

years (Fan et al., 2023; Han et al., 2022; Luo 

et al., 2022; Zhang et al., 2020). The 

application of artificial intelligence 

potentially expedites the determination of 

molecular patterns and connections based on 

analyzing a given data set and predicting 

valuable results. Though there are review 

articles on the application of ML in various 

scientific areas are, however, information on 

the impact of ML on Raman spectroscopic 

analysis of RNA has not sufficiently 

published. Therefore, this review aimed to 

summarize the structural organization of 

ribonucleic acid and the impacts of ML on 

Raman and ROA spectral analysis of motifs 

and elements in RNA structure along with the 

future direction of spectral research with the 

application of ML. The methodological 

approaches for the ML-assisted Raman and 

ROA spectroscopies are depicted in Figure 2.  

 
 

Fig. 2. Depiction of the Machine Learning Approaches assisted the Raman and Raman Optical 

Activity (ROI) spectroscopies for RNA structures. PCA; principal component analysis, PLS; 

partial least square regression, LR; linear regression, LDA; linear discriminant analysis, LS; 

least square, and QDA; quadrant discriminant analysis. 
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Structural Organization of RNAs:  

              NA negatively charged biopolymer 

with 2'-hydroxyl group imparting which 

differentiates it from DNA 

thermodynamically and conformationally that 

reflects in the structure and the function of 

RNA (Fohrer et al., 2006). A variety of RNA 

exists each with specific functional features 

including catalysis, protein synthesis, and 

gene expression regulation (Minchin & 

Lodge 2019). RNA conformation is explained 

under 3 different structural organization 

levels: (A) primary structure, (B) secondary 

structure, and (C) tertiary structure. The 

sequence of nucleotides in RNA defines the 

primary organizational level while the 

secondary structure involves different base 

pairing modes (canonical and noncanonical) 

that describe the two-dimensional (2D)-

folding of the biopolymer. Moreover, the 

tertiary structure involves the interaction 

between various secondary structural motifs 

that leads to overall three-dimensional 

arrangements of RNA (Abraham et al., 2008; 

Dirheimer et al., 1994; Eric Westhof & Pascal 

Auffinger 2000).  

              The primary structural organization 

encompasses an arrangement with a sequence 

of four different nucleotides of ribonucleic 

acid (Madison 1968). Although RNA (a 

single-stranded molecule) has the potential 

for folding itself to form diverse structural 

motifs. The pairing of the adjacent 

nucleotides is what defines the secondary 

structure of the ribonucleic acid. Unlike 

proteins, the secondary structural stability of 

RNA is unrelated to its tertiary conformation. 

As a result of it, RNA folding involves first 

the formation followed by the consolidation 

of its secondary structure (Dima et al., 2005).  

    RNA base pairing follows a 

canonical (Watson–Crick) base-pairing 

(interaction of Guanine-cytosine while 

adenine-uracil with H-bonds). Moreover, the 

Watson-Crick interaction is prevalent among 

RNA molecules, and it has a remarkable 

attribute in the formation of RNA helices. In 

addition, it also follows non-canonical (Non-

Watson-Crick) base pairing which constitutes 

about 40% of the total base pairing in RNA 

molecules (Lemieux & Major 2002). This 

mode of pairing provides distinctive sites for 

interactions with proteins, ligands, and 

metals. Furthermore, noncanonical base 

pairing is critical for the existence of the A-

form structure of RNA (Lemieux & Major 

2002; Sharma et al., 2010). Common 

noncanonical pairings include the G-U-

Wobble pair, A+:C, and G-A-pairs. The G-U 

wobble-pair is the most frequently detected 

base pair in RNA. Moreover, wobble 

interaction produces distinctive structural, 

chemical, and ligand binding capabilities. In 

addition, G-U base-pairs are 

thermodynamically more stable. This stability 

allows the wobble base to be involved in 

various biological activities (Halder & 

Bhattacharyya 2013). On the other hand, A+: 

C base pairs are observed in ribozymes and 

some RNA loops. In this type of interaction, 

the addition of a proton exposes a hydrogen 

(H)-bond to the cytosine-carbonyl group. This 

feature provides further chemical diversity to 

RNA (Chen et al., 2012; Halder & 

Bhattacharyya 2013). Moreover, G: U-base-

pairs are spotted commonly in internal loops 

of RNA tertiary structure, therefore, they 

assist the folding of RNA and also enhance 

the ligand binding capability of RNA 

molecules (Chen et al., 2005).  

Suborganization of Secondary RNA 

Structures: 

                RNA secondary structures include 

a. stems, b. loops and c. pseudoknots. A stem 

develops when two or more adjacent 

complementary nucleotides are paired. On the 

other hand, the unpaired nucleotides in the 

stems are called loops (Holbrook 2005; 

Svoboda & Cara 2006). There are different 

types of RNA loops present in various 

locations within the biopolymer, examples 

include: (i) Hairpin, (ii) Internal loop, (iii) 

Bulge, and (iv) Multibranch loop or junction. 

Hairpin loops are one of the fundamental 

RNA secondary structures (Jia et al. 2004; 

Svoboda & Cara 2006). They are formed in 

various parts of different types of RNA. Each 

stem-loop has distinctive criteria, such as 
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nucleotide sequence, size of the loop as well 

as stem length (Holbrook 2005). The 

prevalence and versatility of hairpin loops 

reflect their important role in different 

biological functions, for example, regulation 

of gene expression, stimulation of RNA 

folding, and recognition of RNA binding 

proteins (Svoboda & Cara 2006). 

Types of RNA Secondary Structure: 

               The presence of four nucleotides in 

an RNA loop forms a structure called 

tetraloops. According to the sequence of the 

residues, there are three main types of 

tetraloops: GNRA, UNCG as well as CUUG 

(A, U, G/C stand for N, and R stand for A/G). 

Although each family has distinct nucleotide 

sequences, they are structurally very similar. 

Functionally, various roles of different types 

of tetraloops have been reported. For 

example, the GNRA tetraloop acts as a site for 

protein interaction (Thapar et al., 2014). 

Moreover, the UUCG tetraloop serves as a 

site for RNA folding and prohibits clustering 

of large molecules whereas; GAAA plays a 

critical role in interactions stabilizing tertiary 

structure (Nicolas Leulliot et al., 1999; 

Thapar et al., 2014).  

                  Internal loops are another type of 

RNA secondary motif. These loops are 

formed because of the unpaired nucleotides 

present between two stems (Schroeder & 

Turner 2000). In addition, internal loops have 

two subdivisions: symmetric internal loops, 

which include an equal number of the 

residues or strands, and asymmetric internal 

loops, which involve unequal numbers of 

nucleotides. Internal loops are crucial for 

many biologically significant functions, with 

one of these being to provide free energy for 

RNA folding (Hammond et al., 2010). Bulges 

can be defined as unpaired regions of 

nucleotides that arise only from one RNA 

strand. The size of the bulge varies from 

single to numerous residues. 

                Furthermore, bulges influence the 

assembly of RNA architecture (Danaee et al., 

2018). The fourth kind of RNA loop is the 

Multibranch loop. The M-loop is a complex 

structure from which several loops exit. 

Numerous Multibranch loops are present in 

rRNA since they are critical for configuring 

RNA secondary structure (Diamond et al., 

2001). Moreover, pseudoknots are considered 

one of the most prominent structures of RNA 

(Staple & Butcher 2005). They have evolved 

because of the pairing of a hairpin-loop 

having a single-stranded complementary 

sequence. Sometimes, base-pairing 

phenomena occur between 2 or more than 2 

hairpin loops. The formation of pseudoknots 

in catalytic RNAs is more obvious than in 

other RNA types (Hajdin et al., 2013). In 

addition, RNA pseudoknots are required for 

many biological functions of human RNA, 

such as telomerase activity (Theimer et al., 

2005), therefore, in addition, the presence of 

pseudoknots in viral RNA is essential for 

replication and gene expression (Brierley et 

al., 2007).  

RNA Structural Motifs and Structural 

Elements: 

                Structural motifs and structural 

elements are two terms used for further 

understanding of various structures of 

molecules (Butcher & Pyle 2011; Hendrix et 

al., 2005). RNA motifs are specific areas 

within the molecule with defined lengths and 

sequences of nucleotides. They usually 

behave as one unit and perform specific 

structural or biological functions (Kinjo & 

Nakamura 2012). Motifs in RNAs are 

primarily identified by a unique sequence of 

nucleotides in some areas of functional 

RNAs, such as tRNA and rRNA (Hendrix et 

al. 2005), examples of some of these motifs 

include different tetraloops, the kink-turn, the 

sarcin–ricin loop, and the T-loop are tabulated 

in Table 1.  
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Table 1. Tabulation of structural details of RNA motifs. 

 

RNA Structural 

motifs and elements 

 

Description 

GNRA tetraloop This tetraloop is composed of four unpaired nucleotides 

following the GNRA sequence where N stands for the A, C, G, 

or U and R stands for A/G. 

Lonepair triloop This motif includes a single base-paired nucleotide coated by 

three three-nucleotide hairpin loops. (Lee et al. 2003) 

T-loop 

 

 

One of the structural components of tRNA. This loop contains 

five unpaired nucleotides that form a   U-turn structure which is 

surrounded by a noncanonical base-pair. (Krasilnikov 2003)  

Sarcin- ricin loop 

 

Composed of two secondary structures: GAGA tetraloop and 

bulged G motif. (Korennykh et al. 2007) 

Kink turn Made from two helices in which a three-nucleotide-bulge is 

positioned righltly on its 3’-side by A-G as well as G-A base pairs 

and canonical base pairing on its 5’ side. Forming kink in the 

backbone of the helix. (Schroeder et al. 2010)  

D-loop 

 

One of the motifs in tRNA is composed of dihydrouracil in 

addition to 7-11 base pairs. (Nicolas et al. 2002) 

Hook turn Occurs in RNA double strands where two asymmetric internal 

loops are present. One of the two helices is short (S) while the 

other one is intended to be longer (L). An A-turn helix and the 

(S) strand bend forming a hook turn. (Zhong & Zhang 2012) 

C-loop This motif includes two asymmetric helices with two or more 

base triples which are produced by 2 stacked canonical base-pairs 

having interacted with loop-bases. (Afonin & Leontis 2006) 

Kissing loop Occurs when two hairpins interact with each other via canonical 

base pairing. (Salim et al. 2012) 

U-turn Sharp bends in the RNA backbone as a result of UNR sequence 

coated by pyrimidine (Y) in the form of Y-Y, Y-A, or G-A base-

pair (Gutell et al. 2000).   

S-turn Two continuous bends in RNA backbone resemble ‘S’ shape 

(Hendrix et al. 2005).  

Cross-strand stack 

 

Base pairing between one helix and an opposite helix (Lee et al. 

2006). 

 

RNA Tertiary Structure: 

               The diverse types of secondary 

structural elements and motifs interact with 

one another developing a more sophisticated 

structural organization that determines the 

overall comprehensive architecture of the 

molecule (Abraham et al., 2008). Despite its 

role in formulating RNA overall 

conformation, a tertiary configuration is also 

directly related to many biological functions 

performed by ribonucleic acid (E. Westhof & 

P. Auffinger 2000). Moreover, the 

interconnection between different secondary 

structural motifs involved in RNA tertiary 

structure can be divided into three main 

interactions: (a) between two double strands, 

(b) between a helical strand and an unpaired 

region, and (c) between two unpaired regions 

(Abraham et al., 2008). Interaction between 

two double strands can be subdivided into: a) 

Coaxial stacking and b) adenosine platform. 

Coaxial stacking occurs when two double 

strands are next to each other this causes 

stacking of their terminal base pairs (Tyagi & 
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Mathews 2007; Zhang et al., 2011). 

Interaction between helical strand and 

unpaired region in which the binding between 

a double strand and a single region involves 

four types of organizations: a) triplex, b) tetra 

loop, c) metal core, and d) ribose zipper. The 

triplex includes the binding of a double 

helical strand with one single strand.  

               The triplex -forming 

oligonucleotides (TFOs) present in the single 

helix bind with the double strand via non-

Watson –Crick base pairing. (Buske et al., 

2011). Tetraloops are important structural 

motifs with numerous biological functions. 

Furthermore, tetraloops can produce another 

critical type of binding known as tetra loop- 

tetraloop receptor interaction (Moore 1999). 

This type of interaction is an important RNA 

motif that can bring different structures to 

proximity.  

              The binding of tetraloop with a 

receptor is mainly established between 

GNRA tetraloop and a target receptor 

containing a GAAA motif in the minor 

groove of RNA. Moreover, hydrogen bonds 

are formed between the OH groups present in 

the receptor as well as the GNRA. In addition 

to the H-bonding, the adenosine platform 

performs a crucial role in binding with A2   

from the tetraloop adding more stability to the 

motif (Westhof & Fritsch 2000).  

Raman and ROA Spectroscopies for 

Structural Analysis of Ribonucleic Acid: 

               The role of vibrational-

spectroscopies in structural biology is 

paramount because of their sensitivity to 

unfold vast structural information and their 

applicability to diverse biomolecules under 

various conditions (Hobro et al., 2008). 

Raman spectroscopy and ROA are the two 

principal vibration spectroscopies (Ashton et 

al., 2007). ROA operates based on the 

Raman-scattering phenomenon of light and 

measures chirality allied with the Raman 

transition as illustrated in Figure 3 (Batista Jr 

et al., 2015). Measuring Raman and ROA 

spectra simultaneously from the same 

specimen are achieved they exhibit high 

sensitivity to diverse attributes of macro-

molecular-structure, therefore, the data 

retrieved shows complementarity (Batista Jr 

et al. 2015). The combined potential of the 

Raman and ROA have been exploited to 

investigate RNA structure to a greater extent 

(Hobro et al., 2007). Despite being 

complementary techniques, the Raman and 

ROA could also be used independently for 

RNA structural analysis (Barron et al., 2003). 

Moreover, these techniques have been used, 

recently, to identify structural conformations, 

for instance, the GNRA tetraloop(Hernández 

et al. 2003; N Leulliot et al. 1999). Novel 

RNA structural information could be obtained 

by ROA (Blanch et al., 2002). Additionally, 

Raman and ROA spectroscopic spectra may 

be inquisitively evaluated to delineate the 

alteration in RNA sequences and structure by 

analyzing the specific spectral changes 

(Blanch et al., 2002).  
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Fig. 3. Illustration of Rama data enhancement strategies. GAN; generative adversarial network 

 

Data Enrichment for Raman and ROA 

Spectra: 

               One of the crucial factors for 

machine learning is the training dataset size 

which impacts the performance of ML and 

deep learning significantly (Dargan et al., 

2020). For multi-classification studies of ML-

assisted Raman and ROA spectra, the amount 

of Raman data to the considerable level is an 

additional challenge because its availability 

with researchers usually remains minimal 

(Shorten & Khoshgoftaar 2019). 

Additionally, small data-based deep learning 

throws the issue of overfitting (Shorten & 

Khoshgoftaar 2019). Therefore, to address 

this issue, an ordered/hierarchical data 

augmentation/enhancement strategy is 

applied using a generative adversarial 

network (GAN) method (Kim & Lee 2022). 

The data enrichment hierarchy starts with a 

Raman spectrum and advances to encompass 

various signal processing ML algorithms to 

enhance the spectra counts artificially in a 

dataset (original) which includes the addition 

of white-Gaussian-noise (GN) to the 

originally generated signal data, employing 

baseline-removal-algorithms (BRA), noise-

reduction-filtering (NRF), clustering process 

(C), shifting (S), and finally merging the data 

followed by further enhancement by 

employing the GAN framework (Kim & Lee 

2022). Figure 3 illustrates the data 

enhancement strategy (Kim & Lee 2022).  
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Future Perspectives and Conclusions: 

                ML-assisted Raman and ROA 

spectroscopies reflect great potential in 

expediting ribonucleic acid research with 

high precision and considerable accuracy. 

Machine learning is based on the analysis of 

huge data divided into training and test 

datasets, which helps in automatizing the 

whole process to provide accurate, valuable 

prediction results. These vibration 

spectroscopic techniques are one of the most 

appropriate analytical tools for studying RNA 

sequences, motifs, and elements and their 

conformation alterations under various 

conditions. However, the limited data size of 

Raman spectra remains a potential challenge 

for the ML-assisted Raman and ROA 

spectroscopies which needs to be addressed 

with priority. In addition, establishing a 

public database with standard normalization 

and data processing methods for obtaining 

Raman spectra worldwide would be the future 

direction to address the Raman spectral data 

size. Furthermore, minimizing the time taken 

to retrieve the required number of Raman 

spectroscopic imageries with the enhanced 

spectrophotometric device efficiency would 

for extracting reliable RNA structural 

information. Moreover, the miniaturization of 

a spectrophotometer and the advancement of 

ML techniques, in the future, would be a 

powerful combinatorial tool for future in-

depth analysis of RNA structures along with 

other biomolecular structures. ML-assisted 

data Raman spectroscopy would also guide 

more effective analysis of the huge and 

complex biomolecular data and therefore, it 

would be able to revolutionize the nucleic 

acid and protein research’s speed, accuracy, 

and reliability along with minimizing 

manpower and analysis cost.  
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