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Abstract: 

Outliers are those special points that differ significantly from most sample data. It can skew the 
data and present less accurate prediction results and detecting them is very important for obtaining 
more accurate predictions.The manuscript aimed to compare several regression models, including 
the multiple regression model using ordinary least squares (OLS), the quantile regression model 
(QR), and the ridge regression model (RR), to identify the model with high efficiency in the 
presence of extreme values in the data, both before and after treating the extreme values in the 
data. The comparison was applied to regression model of a sample of 62 sugary patients on kafr 
el- shikh university hospital, to study the effect of blood sugar level(x1), high blood pressure(x2), 
low blood pressure(x3), and weight (x4) on the cumulative glucose rate(y).The study was 
conductedasfollows: 
1. Outliers were detected in the variables, namely the cumulative glucose rate variable, blood sugar 
level, low blood pressure, and weight, while no outliers were detected in the high blood pressure 
variable.This was done by relying on the Box plot. 
2. The extreme values in the data were treated using the trimmed mean method. 
3. The regression model was estimated in the presence of extreme values and after treating them. 
It was found that the best regression models before and after treating the data were the quantile 
regression model, which has the lowest mean squared errors before and after treating the data. 

 
Keywords: outliers, Quantile regression, Ridge regression, OLS, medical data.  
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1. Introduction: 
Ordinary Least Square (OLS) method is one of the most important methods for estimating 
regression parameters. This method is based on a set of assumptions that may be difficult to obtain, 
and if they are available, the OLS method becomes the most appropriate for estimating regression 
parameters. If these assumptions are not available, the OLS method is invalid, and alternative 
methods must be sought. The violation of these assumptions used violated makes the OLS method 
biased and inefficient. This happens when random errors are distributed non-normally due to the 
presence of outliers.  
 
Medical data usually has outliers, so using (OLS) method to estimate regression parameters, 
Quantile regression, and ridge regression as alternative methods are used to reach to the efficiency 
one of the regression models in this case. 
The issue of outliers and their effect on statistical analysis has been of interest to many researchers: 
Carcaiso, &Grilli (2023) compared the method, which models the quantile regression coefficients 
using parametric functions, in place of the conventional method, which involves jittering the count 
variable utilized on data from university students to assess the impact of emergency remote 
instruction because of COVID-19 on the number of credits the students obtained. The result 
showed that the selection of the parametric functions is still guided by the jittering technique. (Li & 
Leeuwen, (2023) developed connections between dependency-based traditional anomaly detection 
methods for outliers detection and contextual anomaly detection methods using Quantile 
Regression Forests. ( Muspratt , &Mammadov,(2023)) applied a modified version of anomaly 

detection algorithm by enacting refined targeting capability based on the identification of sub-
extreme anomalies. The result showed that final candidate volumes are controlled with greater 
accuracy and sensitivity. 

 

Also, (Fernández, et al., (2022)) proposed a new supervised outlier estimator by pipelining an 
outlier detector with a supervised model to reach the targets of the later supervise how all the 
hyperparameters involved in the outlier detector are optimally selected. Furthermore, 
(Xiyujiao,and & Felixpretis (2022) proposed two sets of tests on the presence of outliers in 

regression models applying to a panel difference-in-differences model of transport CO2 emissions 
in response to the introduction of North America’s first major carbon tax.. (Abu El-Ela, (2020)) 
addressed the problems of multicollinearity and outliers using the method of combining the active 
regression model and ridge regression, by applying it to the pure water stations of the Water 
Holding Company in Egypt. (Abonazel, (2020) is designed Robust estimation method in case of 
outliers in the data in linear regression model to the influence of outliers using OLS. AL Rezami 
(2020), regression analysis was applied to the relationship between Semester average and 
Cumulative average using algorithm was presented based on the simple and multiple of 
determination coefficient, and the sum of averages to estimate multiple outliers when outliers are 
real. Vignotto, &Engelke (2020) proposed two algorithms for anomaly detection relying on 
approximations from extreme value theory that are more robust and showed the effectiveness of 
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them on real data sets and in simulations. (Affindi, et al., (2019), compared the performance 
between ridge MM and ridge LTS estimators depending on The Root Mean Square Error (RMSE) 
and Bias. Ridge regression estimator was suggested to handle severe multicollinearity, Least 
Trimmed Squares (LTS) estimator and MM estimator are recommended in tackling the outlier 
issues and when the two problems occur simultaneously.   
It is clearly seen that all previous studies agreed with the current study in the necessity of 
discovering outliers and their impact on the regression models, and they differed with the current 
paper on treatment methods. The remainder of the paper is divided into the second section, research 
methodology, the third section, Results and Discussion, and the fourth section, results, and 
recommendations . 
 

2. Methodology: 
The primary goal of this research represents a comparison between the estimate of the multiple 
regression model using three methods (OLS), (QR), and the (RR) to reach the optimal model, 
which is the least sensitive in the presence of outliers.  
The presence of extreme values can be encountered in three types: in the dependent or independent 
variables or both. Also, the regression model affects the estimates of the model’s parameters and 
the statistics associated with it (Cousineau & Chartier (2010)). Detecting extreme values is one of 
the objectives of statistical analysis, and there are several methods for detecting extreme values, 
in this paper we will depend on Box – Plot graph. which is used to detect outliers in data. 
  
2.1. Treatment Methods: 
After detecting the extreme values, they are treated using one of the following methods: 
 
2.1.1. Deletion method: 
After identifying outliers in the data, they are excluded or deleted from the data. Rahman & Al 
Amri (2011) emphasize that outliers are often removed to improve the accuracy of estimation 
parameters. 
 
2.1.2. Trimmed mean method: 
 In the Trimmed mean method, the data is sorted in ascending order and the median value is 
calculated (Júnior, et al (2019)). Then, the outliers are estimated based on their size relative to the 
rest of the data as follows: 

 If the outliers are smaller than the median, the largest value in the data and the outlier to be 
estimated are deleted, and the mean of the remaining values is calculated, which is an 
estimate of the outliers . 

 If the outliers are larger than the median, the smallest value in the data and the outlier are 
deleted, and the mean of the remaining values is estimated, which is the estimate of the 
outliers, and so on. 
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2.2. Estimation methods: 
To estimate the multiple regression model of medical data with outliers, this paper is using three 
methods (OLS), (QR), and the (RR) to reach the optimal method. 
 
a)  Ordinary least squares (OLS) 

If the linear regression model is as follows: (Li & Zhu; 2008) 
y=X B+ ∈                                            (1) 

where, 
y: response variable vector (n x1) 
X: a matrix of degree (n x p) 
∈: random error vector of degree (n x1) And it was ∈ ≈ 𝑁(0, 𝜎ଶ) 
Using the ordinary least squares (OLS) method, if the conditions are met, the estimates are: 

ℬ෡௢௟௦ = (𝑥 𝑥́ )ିଵ(𝑥́ 𝑦 )                                        (2) 
The estimates are obtained by minimizing the sum of squared residuals as follows: 

𝑆𝑆𝐸 = (𝑦 − 𝑥𝐵)´ (𝑦 − 𝑥𝐵)                                (3)    
It is well known that the OLS estimator is unstable and more sensitive in the presence of outliers, 
i.e. in the case where the random error does not follow a normal distribution. In this case, its 
estimates cannot be relied upon the prediction process. 
 
b) Quantile regression model (QR): 

Quantitative regression is one of regression methods analysis and an extension of linear regression 
in case the conditions of linear regression are not met. Therefore, quantile regression is the best 
alternative (li & Zhu 2008). It does not assume that the random errors follow a normal distribution, 
unlike linear models, and it is also not affected by outliers because there are regression lines that 
pass near these values. Thus, it can be said that it provides a statistical model that is more 
comprehensive than classical models (OLS). Therefore, quantile regression is one of the robust 
models. 

𝑦௜ = 𝑋ప
ሗ  Β௣ +∈௜       𝑖 = 1,2, … … … … . 𝑛                 (4) 

where; 
𝑦௜: dependent variable. 
𝑥௜: vector of independent variables. 
Β௣: The vector of parameters at the quantity (P) where 0<P<1. 

∈௜ : represents the random error that has a constrained distribution (Hideo,  &Genya ,(2011) 

න 𝐹௉(∈௜)
଴

ିஶ

 𝑑 ∈௜= 𝑃     Or 𝐹௘ 
ିଵ(𝑝) = 0                         (5) 

                                           
 and assuming that the distribution of the random error is: (Koenker & Bassett; 1978) 

𝐹௣(∈௜) = 𝑝 (1 − 𝑝)   𝑒𝑥𝑝൛ିఘ೛(∈೔)ൟ                                     (6) 
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And the estimation of the parameters of the quantile regression model is done by minimizing the 
following loss function: 

min ෍ 𝜌௣

௡

௜ୀଵ

 ൫𝑦௜ − 𝑥ప̀ ℬ௣൯                                (7) 

We can show graphically both the OLS, Quantile regression as illustrated in figure (1), and figure 
(2). 
 

Figure 2 Ordinary Least Square method Figure 1 quantile Regression method     

  
  

From figure (1), we note that the estimated regression line uses the ordinary least squares (OLS) 
method. However, sometimes cannot provide us with complete information about the relationship 
between the dependent variable and the independent variables due to one of the reasons that have 
been mentioned before. While quantile regression gives us a clear picture of the relationship 
between the dependent variable and the independent variables because many regression lines are 
estimated at different quantiles as shown in the figure (2) where there are four regression lines 
estimated by quantile regression (QR) at four different levels. 
 
c) Ridge Regression model (RR): 

Ridge regression is one of the specialized methods in multiple regression analysis when it suffers 
from the problem of multicollinearity. It has shown effective results in eliminating this problem, 
as the presence of this problem leads to inflation of the variance of the parameters when using the 
least squares method in estimation. This is the same symptom as the presence of extreme values, 
and therefore it is expected to do the same task (Lukman, et al. (2014)).  The idea of ridge 
regression is to find the value of the constant (K), which is called the bias parameter, which is a 
positive quantity added to the main diagonal elements in the matrix (X'X) that leads to reducing 
the variance of the estimated parameters. Where adding the constant (K) with small values causes 
a rapid change in the values of the estimated parameters. With the increase of the value of (K), the 
values of the parameters begin to stabilize gradually until they reach a limit where the change is 
very small. The ridge regression model estimates the parameters by minimizing the sum of squared 
errors (SSE) as follows: 
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SSE = min ෍(𝑦௜ − 𝛽଴ − ෍ Β௝𝑥௜௝)ଶ                          (8)

௣

௜ୀଵ

௡

௜ୀଵ

 

 
The shrinkage equation is as follows: 

ℬ෡ = min ෍(𝑦௜ − 𝛽଴ − ෍ Β௝𝑥௜௝)ଶ + 𝑘 ෍ Β௝
ଶ)

௣

௝ୀଵ

  (9)

௣

௜ୀଵ

௡

௜ୀଵ

 

The equation consists of two parts: the first is the sum of squared errors (SSE), and the second is 
called the penalty function, as shown below: 

ℬ෡ = 𝑆𝑆𝐸 + 𝑘 ෍ Β௝
ଶ

௣

௝ୀଵ

                                               (10)   

By minimizing the sum of squared errors, we obtain the following ridge regression estimates: 

ℬ෡ோோ = ൣ𝑥̀𝑥 + 𝑘 𝐼௣൧
ିଵ

(𝑥̀𝑦)                                    (11) 

Where; 

ℬ෡ோோ: The vector of estimated parameters in ridge regression is given by the following equation: 

ℬ෡ோோ = [(𝑥̀𝑥 + 𝑘 (𝑥̀𝑥)(𝑥̀𝑥)ିଵ]ିଵ(𝑥̀𝑦)          (12) 

ℬ෡ோோ = ൣ𝐼௣ + 𝑘(𝑥̀𝑥)ିଵ൧(𝑥𝑥)ሗ ିଵ 𝑥̀𝑦 

ℬ෡ோோ = 𝑍ோோ  ℬ෡௢௟௦ = ൣ𝐼௣ + 𝑘(𝑥̀𝑥)ିଵ൧
ିଵ

     ℬ෡௢௟௦       (13) 

 
From the above, ridge regression estimates are a linear transformation of least squares estimates,  

𝑀𝑆𝐸ோ = 𝑣𝑎𝑛𝑎𝑛𝑐𝑒 ൫𝐵෠ோ൯ + (𝑏𝑖𝑎𝑠 𝑖𝑛 𝐵෠ோ)ଶ                          (14) 

K: bias parameter. 
The larger the value of the parameter K, the greater the amount of bias and the smaller the variance. 
Therefore, the value of K must be chosen so that the decrease in the value of the variance is greater 
than the increase in the square of the bias. At that time, the mean squared error of ridge regression 
is less than the variance of least squares estimates. Also, increasing the value of K reduces the 
value of the (R2). Therefore, ridge regression estimates are not necessarily the best fitting model 
for the data, but they are looking for the best equation with fixed coefficients (unbiased with 
increasing K) (Alkhamisi; 2007). 
 

3. Results and Discussion: 
To compare the performance of three regression models: multiple regression using Ordinary Least 
Squares (OLS), Quantile Regression (QR), and Ridge Regression (RR) in the presence of extreme 
values in the data. The data was processed using the Trimmed Mean method to identify the optimal 
model that works efficiently in the presence of extreme values, i.e., the model that is least sensitive 
to the effect of extreme values. The comparison was based on several statistical criteria, including 
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the (R2) and the mean squared error (MSE). The models were applied to a sample of 62 sugary 
patients were, 
the dependent variable (y) represents the average cumulative sugar level, while the independent 
variables are:  
(X1) blood sugar level, 
 (X2) high blood pressure,  
(X3) low blood pressure, and (X4) weight. 
 The analysis was conducted using several statistical packages, including Stata 15, Stat graphic 18, 
and EViews 12.  
 
3.1. Outlier Detection 
Detecting extreme values in data is one of the first steps in statistical analysis, and this is done 
using a Boxplot, as illustrated in the following figures. 
Through figure (3), and table (1) we observe that both the dependent variable (Y), and the 
independent variables (X1, X3, X4) have extreme values 
 
Table 1, extreme values in the data variables 

Variables Outliers 
Y(the average cumulative sugar level) (12 ,13, 39, 40, 41) 
X1 (blood sugar level) (40, 13) 
X2 (high blood pressure) No outliers 
X3 (low blood pressure) (10, 48). 
X4 (weight) ( 41) 

 
Figure 3 Data base with outliers 

 
 
After processing the extreme values using the trimmed mean method, all variables were free of 
extreme values, as shown in figure (4).  
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Figure 4: Data base After processing outliers 

 
 
To confirm the effect of extreme values on the independent and dependent variables, descriptive 
statistics for the variables were examined before and after processing the extreme values, as shown 
in table (2). 
 
Table 2: Descriptive statistics 
 

Median   Mean Variables 
after 
processing 

with 
outliers 

after processing with 
outliers 

 

6.87 6.8 6.8 7.226 Y 
163 162.5 162.5 191.967 X1 
144.5 144.5 144.5 152.887 X2 
88.5 88 88 89.081 X3 
89 88.5 88.5 97.323 X4 
Deviation S.   
after 
processing 

with 
outliers 

Variables 

2.32 2.49 Y 
94.33 96.34 X1 
33.32 33.32 X2 
11.012 11.41 X3 
21.12 24.35 X4 

 
From table (2), we noticed some changes that occurred in the descriptive statistics of the variables 
 that had extreme values, either by a decrease in the standard deviation or a slight increase in the 
mean and median. 
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Estimation Methods of Multiple Regression Model: 
A multiple regression model was estimated using ordinary least squares (OLS) and the results were 
as follows: 
 
Table 3: the results of ordinary Least squares: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table (3) shows the Ordinary Least Squares (OLS) estimates before and after processing the 
variables with extreme values, we observed that: 

1. in the presence of extreme values, the F-statistic was significant at a level of 0.05 or less, 
indicating that the null hypothesis was rejected, and the alternative hypothesis was 
accepted, i.e., the significant regression model.  

2.  𝑜𝑛𝑙𝑦, 𝛽ଵ, 𝛽ସ  are significant. 
 
After processing the extreme values, 

3. the significance of the model accepted, i.e., the significant regression model, as indicated 
by the F-value. 

4. all parameters are significant except 𝛽ଷ 
5.  that processing the extreme values led to an increase in the interpretive power of the model 

from 83.55% to 85.17%, and the mean squared error decreased from 1.094 to 1.073.  

(OLS) with outliers Variables  
P- value  St. error Value 
0.9195 2.265 1.285 𝛽଴ 
000 1.698 1.983 𝛽ଵ 
0.1397 0.04554 0.6818 𝛽ଶ 
0.6440 0.1182 0.549 𝛽ଷ 
0.007 1.6445 1.8029 𝛽ସ 
  0.8355 R2 
  1.094 MSE 
0.000  72.351 F 
0.9586  0.8447 Normality Test (Jb) 
  2.135 MAE 

OLS after processing outliers Variables 
P- value St. error Value  
0.067 2.153 1.315 𝛽଴ 
0.000 1.376 2.02 𝛽ଵ 
0.091 .0213 0.8178 𝛽ଶ 
0.537 .0971 0.7176 𝛽ଷ 
0.000 1.496 1.976 𝛽ସ 
  0.8517 R2 
  1.073 MSE 
000  81.83 F 
0.0416  1.725 Normality Test (Jb) 

1.821 MAE 
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6. After testing the normality assumption of the data using the Jarque Bera test before 
processing the variables with extreme values, the P-value was 0.9586, which was greater 
than the 5% significance level, indicating that the null hypothesis of non-normality was 
accepted.  

7. the Jarque Bera test values changed to 0.0416, which was less than 0.05, indicating that the 
null hypothesis was rejected, and the alternative hypothesis was accepted, i.e., the variables 
followed a normal distribution, as shown in the following figures: 

 

Figure 5 Normality with outlier Figure 6 Normality after processing outlier 

  
 

3.2.2. Ridge regression (RR) 
Based on the results obtained using the Ordinary Least Squares (OLS) method, which is misleading 
in the presence of extreme values, another method called Ridge Regression was used to estimate 
the model parameters using the Ridge Trace method. This was done to determine the optimal value 
of the Ridge parameter (K), which ranges from 0 to 1, with an increment of 0.005, that leads to the 
most stable model with the lowest mean squared error. The analysis was conducted using the 
statistical package Stat graphic 18, and the optimal value of K was found to be 0.005. The 
estimation results are as follows: 
 
Table 4: The result of ridge regression: 

 (RR)with outliers 
P- value  St. error Value Variables 
0.2753 2.351 1.302 𝛽଴ 
0.0012 1.596 1.972 𝛽ଵ 
0.076 0.0254 0.6819 𝛽ଶ 
0.615 0.1171 0.546 𝛽ଷ 
0.001 1.653 1.814 𝛽ସ 
  83.23% R2 
  1.045 MSE 
  0.7851 MAE 
 (RR)after processing outliers 
P- value St. error Value Variables 
0.231 2.112 1.42 𝛽଴ 
0.000 1.302 2.135 𝛽ଵ 
0.0231 0.0115 0.765 𝛽ଶ 
0.520 0.0762 0.549 𝛽ଷ 
0.000 1.3510 2.013 𝛽ସ 
  86.1% R2 
  1.023 MSE 
  0.6135 MAE 
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From table (4), we observed that: 
1. 𝑜𝑛𝑙𝑦, 𝛽଴, 𝛽ଷ  are not significant in both regression models with outliers and after processing 

outliers. 
2. the interpretive power of the Ridge Regression model increased from 83.23% to 86.1% 

after processing the extreme values, with a decrease in the mean squared error from 1.045 
to 1.023.  

This indicates the robustness of the Ridge Regression model to extreme values. Additionally, some 
variables showed high significance in the Ridge Regression model, while they were insignificant 
in the Ordinary Least Squares method. 
 
3.2.3. Quantile Regression (QR): 
Using data with extreme values can lead to significant errors in data analysis when using traditional 
methods such as Ordinary Least Squares (OLS). Therefore, Quantile Regression (QR) was used to 
analyze this relationship by testing quantiles equal to p=.50 and p=.95. The reason for this test is 
that the data is always centered around the median, i.e., when p=.50, while the other value, which 
is the extreme quantile value, is when p=.95. We chose this value because if the regression line is 
good at this value, it is also good at quantile values close to it, i.e., the regression line at any other 
quantile, whether p=.25 or p=.75, is a good line for prediction and estimation. 
Table 5 :The results of quantile Regression 
 

QR with outliers Variables  
P- value  St. error Value 
0.607 1.644 0.6625 𝛽଴ 
0.000 0.025 2.135 𝛽ଵ 
0.43 0.0672 0.6397 𝛽ଶ 
0.085 0.1613 0.0291 𝛽ଷ 
0.0109 0.1113 1.853 𝛽ସ 
  0.7915 R2 
  1.023 MSE 
  1.012 MAE 
0.8144  0.4108 Normality Test  

(QR)after processing outliers Variables  
P- value  St. error Value 
0.532 1.35 1.231 𝛽଴ 
0.000 0.0179 2.416 𝛽ଵ 
0.2215 0.0524 0.842 𝛽ଶ 
0.0462 0.1529 0.3512 𝛽ଷ 
0.0215 0.1013 2.0146 𝛽ସ 
  0.8214 R2 
  0.9875 MSE 
  0.9012 MAE 
0.002  12.15 Normality Test  
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 From table (5), we observed that: 
1.  The Quantile Regression model achieved an interpretive power of 79.15% in the presence 

of extreme values, and after processing the extreme values, the interpretive power of the 
model increased to 82.14%. 

2.   the mean squared error decreased from 1.023 to 0.9857.  
3. 𝑜𝑛𝑙𝑦, 𝛽ଵ, 𝛽ସ  are significant in regression models with outliers and after processing 

outliers𝛽ଵ, 𝛽ସ, 𝛽ଷ are significant. It means that some variables showed high significance 
after processing the extreme values . 

4. The normality assumption of the data was tested using the Jarque Bera test in the presence 
of extreme values, where the P-value was 0.8144, which was greater than the 5% 
significance level, indicating that the null hypothesis of non-normality was accepted. 

5.  After processing the extreme values, the P-value was 0.002, which was less than the 5% 
significance level, indicating that the null hypothesis was rejected and the alternative 
hypothesis was accepted, i.e., the data followed a normal distribution. 

 Therefore, the model became more stable after processing the data from the extreme values. 
 
3.2.4.  Comparison of Models Estimations 

To identify the optimal and least sensitive model that works efficiently in the presence of the 
problem of extreme values, the following comparison was made: 

 
Table 6: Comparison of Estimation Methods 

Data base with outliers  
QR RR OLS 
0.7915 0.8323 0.8355 R2 
1.023 1.045 1.094 MSE 
1.012 1.07851 1.085 MAE 
X1, x4 X1, x4 X1, x4 significant 

Variables 
after processing outliers Variables  

QR RR OLS 
0.8214 
(3.77%) 

0.8618 
(3.54%) 

0.8517 
(1.94%) 

R2 

0.9875 
(-3.47%) 

1.023 
(-2.1%) 

1.073 
(-1.92%) 

MSE 

0.9072 
(-10.35%) 

1.06735 
(-1.035%) 

1.072 
(-1.19%) 

MAE 

X1, x4, x3 X1, x4, x2 X1, x4, x3 significant 
Variables 
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Based on the output of Table (6), we found that: 

1. In the presence of outliers, Although, the QR regression has the smallest R2, it also has the 
smallest MSE and MAE. So, it is the best method estimation in this case.  

2.  After treating outliers, the superiority of the QR regression model was evident, as it was 
found to have the largest increase in the R2 after treating the extreme values, and the highest 
percentage decrease in the mean squared errors, followed by the ridge regression model. It 
means that is the best model for outliers’ data.  

 

4. Conclusion and Recommendations: 
The research aimed to compare several regression models, including the multiple regression model 
using ordinary least squares (OLS), the quantile regression model (QR), and the ridge regression 
model (RR), to identify the model with high efficiency in the presence of extreme values in the 
data, both before and after treating the extreme values in the data. The study was conducted as 
follows: 

1. Outliers were detected in the variables, namely the cumulative glucose rate variable, blood 
sugar level, low blood pressure, and weight, while no outliers were detected in the high 
blood pressure variable. This was done by relying on the Box plot. 

2. The extreme values in the data were treated using the trimmed mean method.  
3. The regression model was estimated in the presence of extreme values and after treating 

them. It was found that the best regression models before and after treating the data were 
the quantile regression model, which has the lowest mean squared errors before and after 
treating the data. 

It was also the model with the highest percentage increase in the coefficient of determination and 
the highest percentage decrease in the mean squared errors, followed by the ridge regression 
model. 
 
Therefore, the researchers recommend: 

1. The quantile regression model should be used as one of the models that are preferred to be 
used in the presence of the problem of extreme values especially on the medical data. 

2. Assumptions of regression analysis should be verified before using regression to obtain 
more accurate results. 

3. It is necessary to pay attention to the process of estimating extreme values in future research 
studies without trying to delete those values, due to their importance and impact on the 
accuracy of the results. 
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