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ABSTRACT: 

The efficient integration of wind technology into a building - which called building integrated wind 

technology (BIWT) - will be necessary for substantial reduction of CO2. However, the spread of this 

integration faces a major problem which is the absence of a framework that helps the architects to 

determine the suitable integration methods for their buildings. Therefore; an overview of some existing 

wind power technology for integrating WTs to the building is presented. The approaches are further 

discussed and evaluated in order to recognize the most suitable integrations for future WTs, and, finally, 

a conclusion is given as an essential step towards the scientific framework. 
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1. INTRODUCTION 

Buildings are responsible for one-third of global energy 

related CO2 because of their dependency on fossil fuels 

and transmission losses [1]. Therefore; building designers 

are showing an increasing interest in reducing the 

environmental impact of their buildings. Hence, the first 

step is to reduce energy demands and the second is to 

cover most of the remaining needs of building by 

renewable energies. One of the useful approaches being 

used is the integration of wind technologies (WTs) into the 

primary building design to produce energy where it is 

consumed [2].  

BIWT is a building that is designed and shaped with 

WT in mind [2]. Furthermore, WTs, which have many 

types, can be integrated into buildings in many forms 

  

 

Therefore, a systematic framework is needed to achieve 

efficient BIWTs. This framework should include four 

stages: 1) determine site suitability; 2) determine suitable 

integration methods; 3) determine suitable WTs; and 4) 

comparison of energy production and consumption. In this 

regard, the paper aims to introduce the varied methods of 

WTs integration into the buildings, in addition to the 

framework for the determination of suitable integration 

methods as a stage towards the efficient integration of 

wind technologies into buildings. 

2. INTEGRATION METHODS OF WIND 
TECHNOLOGY 

The trend towards BIWT is increasing because the 

building can support the WTs, harness wind to be driven 

towards the WTs, and capture higher wind speeds because 

of the height. Further, this integration can reduce energy 

transmission losses; reduce fossil fuel resources 

consumption; increase CO2 savings; and make a visible 

“green” image [2; 3; 4; 5]. Therefore, the fundamental 

considerations and types of integration methods are 

illustrated in Sections 2.1 and 2.2. 

2.1. Fundamental Considerations for 
Integration MethodsThe efficient integration 

of WTs into buildings must overcome the following 

fundamental considerations. First: treating vibration 

from WTs by vibration dampening at the base and 

head of WT [6]. In addition, acoustic treatment 

should be done by isolating WTs from occupants in 

the building with technical or service spaces. 

Second: designing the external envelope of building 
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to accelerate and not disturb the wind flow towards 

the WT [2]. Third: considering safety requirements 

in supporting the WTs. Furthermore, maintenance 

requirements should be considered by a 

straightforward and a safe access to WTs 

components [7]. Moreover, a space within the 

building for WT system and a passage for cables 

between WT and main switchboard is required [5; 

8]. Finally: Energy yield enlargement by the 

integration of multiple WTs on the same building is 

favorable [5].  

2.2. Integration methods types 

The main methods of WTs integration into buildings 

vary from integration on roof to integration as an external 

envelope. In addition, each main integration method has 

sub-methods which have characteristics and considerations 

as illustrated in Table 1. 

 

Table 1: The shapes, optimum WT positions and building examples for integration methods types. Source: the authors after 

[2; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36]. 
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Integration 

methods types 
Integration methods shape and optimum WT positions Building example 
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Integration 

methods types 
Integration methods shape and optimum WT positions Building example 
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Integration 

methods types 
Integration methods shape and optimum WT positions Building example 
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Integration 

methods types 
Integration methods shape and optimum WT positions Building example 
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It is preferable to install WTs at the windward of building envelope (front and sides) and 

avoid the leeward (rear).  

Windbelt technology integrated with the building parapet 

(by Humdinger company) 
 

3. VARIABLES FOR DETERMINING 
SUITABLE INTEGRATION 
METHODS 

For determining suitable integration methods of WTs 

into a building in an exact site; a framework is created 

based on two main points: (1) Site variables and (2) 
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Integration methods variables, as shown in Fig. 1. These 

two points are illustrated in Sections 3.1 and 3.2.  

 
Figure 1: Variables for the determination of suitable 

integration methods. 

 

3.1. Site Variables 

Site variables that affect the selection of suitable 

integration methods are both wind direction type and 

available height for integration methods which are 

illustrated in Section 3.1.1 and 3.1.2. 

3.1.1. Wind Direction Type 
Wind directions type in the site can be uniform, 

weakly unidirectional, strongly unidirectional and bi-

directional as studied in Table 2. Moreover, each 

integration method has suitable and non-suitable wind 

directions types as shown in Table 3. As a result, for any 

exact site; there are some non-suitable integration 

methods that should be excluded.  

Table 2: Wind directionality classification. Source: the 

authors after [2] 

Classification Criterion 

Uniform No more than 60 % of the wind comes from one 

wind direction* or from one wind direction plus 

75° range from the prevailing wind direction on 

both sides. 

Weakly 

unidirectional 

More than 60 % of the wind comes from one 

wind direction* or from one wind direction plus 

75° range from the prevailing wind direction on 

both sides. 

Strongly 

unidirectional 

More than 75 % of the wind comes from one 

wind direction* or from one wind direction* plus 

75° range from the prevailing wind direction on 

both sides. 

Bi-

directional 

More than 95 % of the wind comes from two 

opposite wind directions or from two opposite 

wind directions plus 75° range from the two 

opposite wind direction on both sides. 

*One wind direction means the prevailing vertical wind 

direction on the site.  

 

 

 

 

 

Table 3: Suitable wind directions types (marked with √) 

for each integration method (concluded from Table 1). 

Wind directions types 

 

Integration methods U
n

if
o

rm
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o
n

g
ly

  

u
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a
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B
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d
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o
n

a
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On roof 

On parapet   √  

Domed √ √   

Vaulted   √ √ 

Concentr- 

-ator on 

roof 

Ducted Wind Turbine Module   √  

Robertson and Leaman's Roof √ √  √ 

IRWES √ √  √ 

Aeolian Roof    √ √ 

Between two shrouds  √ √ √ 

In a duct on building roof   √ √ √ 

On 

building 

side 

Edge or corner  √ √ √ 

Curved side   √ √ √ 

Aeolian Corner  √ √ √ 

WARP system √ √ √ √ 

Between twin buildings  √ √ √ 

Concentrator within a building façade  √ √ √ 

Combined concentrator within a building 

façade 
√ √   

As an external envelope of building √ √ √ √ 

3.1.2. Available Height for Integration 
Methods 

Integration on building roof and in a concentrator on 

building roof methods can only be used above building 

height, i.e. in the distance between building height and 

construction permitted height (which determined by 

height regulations). In addition, other methods can only 

be used under building height i.e. in the distance between 

minimum suitable height for WTs and building height. It 

should be noted that the minimum suitable height for 

WTs is 1.5 times the surrounding obstacles height [37], 

particularly that within 500 m or within 4.5 times the 

surrounding obstacles height whichever is longer upwind 

for the prevailing or exploited wind directions [38; 39].  

Furthermore, each integration method has height 

conditions. Therefore, by comparing building height with 

minimum suitable height for exploiting WTs and 

construction permitted height in the site, some 

integration methods can't be used as shown in Table 4.  

Table 4: The cases of comparison between the building 

height and construction permitted height or suitable 

height to exploit WTs, in addition to excluded 

integration methods (marked with √) for each case. 

Source: the authors after Table 1and [2; 8; 9; 14; 15; 16; 

17; 18; 19; 20; 21; 22; 23; 32; 40; 41]. 
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w
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sh
ro

u
d

s 

O
th
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s 

A Hb = Hc √ √ √ √ √ 
     

B Hb  >  Hc 
 

√ √ √ 
      

C Hb = Hm 
    

 √ √ √ √ √ 

D Hb   <  Hm 
    

  √ √ √  

E Hb  >  Hm √ 
    

√ √ √ √ √ 

* Symbols key: Hc is the construction permitted height; Hm 

is the minimum suitable height for WTs; and Hb is the 

building height. 

 
Figure 2: The cases of comparison between building 

height, construction permitted height and suitable height 

to exploit HAWTs. Source: the authors after [2; 8; 9; 14; 

15; 16; 17; 18; 19; 20; 21; 22; 23; 32; 40; 41]. 

3.2. Integration Methods Variables 

Integration methods variables that affect the selection 

of suitable integration methods are dimensions & shape 

conditions, ability to accelerate wind and ability to 

combine which are illustrated in Sections from 3.2.1 to 

3.2.3. 

3.2.1. Dimensions & Shape Conditions 
The dimensions and shape conditions of integration 

methods effect on the selection of suitable methods, as 

shown in Table 5. 

Table 5: The dimensions and shape conditions of 

integration methods which lead to the exclusion of 

integration methods (marked with √) (concluded from 

Table 1). 
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u
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d
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g
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D1 or D2 >  (Hc - 

Hb)+3m 
 √ √       

D2  >  5 Hb √         

The building design can't 

be separated into two 

towers 

     √ √   

The building attached to 

another building from 

both sides 

   √ √     

The building attached to 

another building from 

one side 

   √      

The building back 

attached to another 

building with height 

equals or higher or 

slightly lower (with less 

than 4m) than Hb 

   √  √ √ √ √ 

The building can't be 

shaped near a circular 

plan 

   √     √ 

D1> 2 Hb      √    

(Hb - Hm) > 0.1 D1      √    

D2 > 0.6 D1       √   

(Hb - Hm) > 1.08 D1        √  

* Symbols key: Hc is the constructions permitted height; 

Hm is the minimum suitable height for WTs; Hb is the 

building height; D1 is the building dimension which in the 

same direction with the prevailing wind flow; and D2 is 

the building dimension which faces the prevailing wind 

flow. 

3.2.2. Ability to Accelerate Wind 
Ability to accelerate wind for integration methods are 

varied as shown in Table 6. This means that, the priority 

of selection should belong to integration method with the 

highest acceleration value.  

 

 

 

 

 

 



   
 

67 

 

Table 6: Selection priority order of integration methods 

depending on the maximum increase in wind speed. 

Source: the authors after [9; 10; 16; 17; 18; 19; 20; 21; 

22; 28; 30; 32; 34; 42; 43; 44]. 
 

Integration methods 

Maximum 

increase in 

wind 

speed(V)* 

Order of 

selection 

priority 

On roof 

On parapet 1.15 V 14 

Domed 1.14 V 15 

Vaulted 1.16 V 13 

Concentrator  

on roof 

Ducted Wind Turbine 

Module 
1.35V 8 

Robertson and Leaman's 

Roof 
1.10 V 16 

IRWES 1.23 V 9 

Aeolian Roof  1.60 V 4 

Between two shrouds 1.40V 7 

In a duct on building roof  1.78 V 3 

On building  

side 

Edge or corner 1.22V 10 

Curved side  1.46V 5 

Aeolian Corner 1.60 V 4 

WARP system 1.80V 2 

Between twin 

buildings 

half sphere-shaped buildings 2.49 V 1 

airfoil-shaped buildings 1.21 V 11 

Concentrator within a building façade 1.78 V 3 

Combined 

concentrator 

within a 

building 

façade 

Flower concept with three 

petals 
1.44 V 6 

Flower concept with four 

petals 
1.20 V 12 

Between building floors 0.78 V 17 

As an external envelope of building 0.78 V 17 

 

 

* It is compared to a free standing wind turbine at the same 

location.  It should be noted that the data of maximum 

increase in wind speed are presented for indicative purposes 

only to choose from different integration methods, as it will 

vary in both the positive and negative direction depending 

on the particular real-life project being considered. Hence, a 

CFD or wind tunnel test is used to determine the exact 

increase in wind speed for a specified building. 

 

 

 

3.2.3. Ability to Combine Integration 
Methods 

Ability to combine more than one integration method 

together on the same building is suitable for some 

integration methods and not for others. Therefore, using 

some integration methods leads to the exclusion of other 

integration methods as shown in the matrix in Table 7. It 

should be noted that, integration as an external envelope 

of building isn't excluded by using any integration 

method. 
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Table 7: Matrix to determine the excluded integration methods (marked with √) for each integration method. 
Integration methods 
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O
n

 r
o

o
f On parapet    √ √ √ √ √ √     √      

Domed     √ √ √ √ √     √      

Vaulted     √ √ √ √ √     √      

C
o

n
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n
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a
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o

n
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o

f 

Ducted Wind Turbine 

Module 
√    √ √ √ √ √     √      

Robertson and Leaman's 

Roof 
√ √ √ √  √ √ √ √     √      

IRWES √ √ √ √ √  √ √ √     √      

Aeolian Roof √ √ √ √ √ √  √ √     √      

Between two shrouds √ √ √ √ √ √ √  √     √      

In a duct on building roof √ √ √ √ √ √ √ √      √      

O
n
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u
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g
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d

e 

Edge or corner           √ √ √       

Curved side           √  √ √       

Aeolian Corner          √ √  √       

WARP system          √ √ √  √ √ √ √ √ √ 

B
et

w
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n
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b
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d
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g

s Between airfoil-shaped 

buildings 
√ √ √ √ √ √ √ √ √    √  √ √ √ √ √ 

Between half sphere-

shaped buildings 
            √ √   √ √ √ 

Concentrator within a building 

façade 
            √ √   √ √ √ 

C
o

m
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in
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 a
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 with four petals             √ √ √ √  √ √ 

 with three petals              √ √ √ √ √  √ 

Between building floors             √ √ √ √ √ √  

 

4. CONCLUSIONS 

This paper presented WTs integration into buildings 

by illustrating the integration methods from integration 

on building roof to integration as an external envelope of 

building. It also defined the set of fundamental 

considerations that should be considered to achieve 

successful integration of WTs into buildings which are 

from vibration treatment to energy yield enlargement. It 

also illustrated that, every integration method has its 

acceleration advantage; suitable wind directions; and 

positioning considerations. Hence, there is no preferable 

integration method in general. But each specific building 

in specific site has the most preferable integration 

methods. As a result, the selection of suitable integration 

methods is affected by both site and integration methods 

variables. This preliminary study could be considered as 

the basis for further research and development of the 

efficient integration of wind technologies into building 

and a key aspect to conduct complete systematic 

framework. 
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