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ABSTRACT 
 
The nonlinear dynamic analysis of a hoisting viscous damping string with time-varying 
length is investigated. The hoisting string is modeled as a taut translating string with a 
rigid body attached at its low end. A systematic procedure for deriving the system 
model of hoisting viscoelastic string with time-varying is presented. The governing 
equations are developed employing the extended Hamilton’s principle considering 
coupling of axial movement and flexuarl deformation of string. The Galerkin’s method 
and the 4th Runge-Kutta method are employed to numerically analyze the resulting 
equations. The motions of elevator hoisting system are presented to illustrate the 
proposed mathematical models. The results of simulation show that the material 
viscous damping helps stabilize the transverse vibration. The modeling methods can 
represent the transverse vibration of hoisting viscous damping string with 
time-varying length. 
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NOMENCLATURE 
 
a axial acceleration of the string (m/s2) 
A cross section area of the string (m2) 
c1, c2 constant coefficients of transverse damping 
C damp matrix 
d diameter of the string(m) 
E Young’s Modulus of the string (N/m2) 
Ek kinetic energy of flexible hoisting system (J) 
Ee elastic strain energy of the string (J) 
Fc the viscous damping distributed force (N) 
g gravitational constant(m/s2) 
I inertia(m4) 
j axial jerk of the string(m/s3) 
k integer 
K stiffness matrix 
l length of the string(m) 
m mass of rigid body(kg) 
M mass matrix 
n number of included modes 
P longitudinal tension(N) 
qi generalized coordinates 
Q vector of generalized coordinates 
S higher order item of generalized coordinate 
t time(s) 
v axial velocity of the string(m/s) 
W  work done by the transverse damping forces (J) 
x spatial variable(m) 
y transverse displacement of the string(m) 
ζ transformed spatial variable 
ε strain measure 
ρ linear density of the string(kg/m) 
φi trial function used in Equ.(13) 
δij Kronecker delta 
 
 
INTRODUCTION 
 
While rope is employed in hoisting industry such as mine hoists, elevators, cranes etc, 
it is subject to vibration due to its high flexibility and relatively low internal damping 
characteristics [1-3]. Most often these systems are modeled as either an axially 
moving tensioned beam or string with time-varying length and a load at its lower end 
[4, 5]. It was shown that the vibration energy of the rope changes in general during 
elongation and shortening. When the rope length is being shortened, vibration energy 
increases exponentially with time, causing dynamic instability [6]. So the vibration of 
the rope with time-varying length has been studied by some researchers.  
 
Kotera and Kawai [7] analyzed free vibrations of a string with time-varying length and 
a weight at one end. New variables of position and time are introduced which allow 
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the equation of motion to be solved by Laplace transformation. Almost exact solutions 
of free vibrations induced by a distributed initial displacement are also obtained. 
Kaczmarczyka and Ostachowiczb [8] studied coupled vibration of deep mine hoisting 
cable and built a distributed-parameter model. They found that response of the 
catenary-vertical rope system may feature a number of resonance phenomena.  
 
Kimure and Iijima et al. [9-12] published a series of studies on vibrations of elevator 
rope. Finite difference analyses of the rope vibration were performed by considering 
the time-varying length of the rope, based on the assumption that the movement 
velocity is constant. The calculated results of the finite difference analyses are in fairly 
good agreement with the calculated results of the exact solution. The above studies 
assume that the velocity is constant during the process of modeling. Some 
researches [13-15] assumed that the transport speed is characterized as a small 
simple harmonic variation about the constant mean speed. The assumption has its 
physical meaning. For example, if the axially moving rope with time-varying length 
models a string on a rotating pulley, the rotation vibration of the pulley will result in a 
small fluctuation in the axial speed of the string.  
 
However, the study of vibrations of varying length rope with arbitrary varying axial 
velocity is a relatively less studied problem in literature. Zhu and Chen [16] 
investigated a comprehensive, theoretical and experimental study of the uncontrolled 
and controlled lateral responses of a moving cable in a high-rise elevator. A novel 
experimental method was developed to validate the uncontrolled and controlled 
response and shown good agreement with the theoretical predictions. Zhang and Zhu 
et al. [17] derived the governing equation and energy equation of longitudinal 
vibration of flexible hoisting system with arbitrarily varying length and velocity. 
Extensive research efforts on the flexible hoisting rope with time-varying length have 
been done in the last few decades as aforementioned, however, most studies 
assumed the rope is linearly elastic, and damping was ignored since the primary 
focus was on the intrinsic stability.  
 
In the paper, the dynamic characteristics of the hoisting viscous damping rope with 
time-varying length are the subject of this investigation. The governing equations are 
developed employing the extended Hamilton’s principle. The derived governing 
equations are shown to be partial differential equations (PDF) with variable 
coefficients. On choosing proper mode functions that satisfy the boundary conditions, 
the solution of the governing equations was obtained using the Galerkin’s method. 
The motions of elevator hoisting rope were illustrated to evaluate the proposed 
mathematical models. According to the numerical simulations, the effects of the 
viscous damping of material on the dynamic characteristics are analyzed for the 
hoisting rope with time-varying length. Based on the proposed dynamic analysis, 
further vibration control will be adopted for such the hoisting systems in the near 
future. 
 
 
MODEL OF HOISTING SYSTEM 
 
Hoisting system can be simplified as an axially moving string with time-varying length 
and a rigid body m at its lower end, as shown in Fig.1. The rail and the suspension of 
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the rail are assumed to be rigid. The string has Young’s modulus E, diameter d and 
the density per unit length ρ. The origin of coordinate is set at the top end of string 
and the instantaneous length of string is l(t) at time t. The instantaneous translational 
velocity, acceleration and jerk of the string are v(t) , a(t) and j(t) respectively. At any 
instant t, the transverse displacements of string is described by y(x,t), at a spatial 
position x(t), where 0≤x(t)≤l(t). The following assumptions constrain the analysis: 1. 
Young’s modulus E, diameter d and density ρ of the string are always constants; 2. 
only transverse vibration is considered here. The elastic distortion of string arousing 
from the transverse vibration is much less than the length of the string;  

 
The kinetic energy of flexible hoisting system is computed by: 
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The elastic strain energy of the string is: 
 

∫∫ +







+=

)(

0

2
)(

0

2

2

1

2

1
)(

tl

xx

tl

e dxEIydxEAPtE εε                       (2) 

 

The first and the second terms on the right of Equ.(2) represent axial strain energy of 
the string, the third term represents bending strain energy of the string. P(x,t) is the 
quasi-static tension in the string and is given by 
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And ε represents the strain measure at spatial position x of the string and can be 
expressed as: 
 

( ) dxdxds /−=ε                                                          (4) 
 

As shown in Fig.2, ds can be expressed as: 
 

( ) dx
x

y
dx

x

y

x

y
dxdxdyds





















∂

∂
+≈












+









∂

∂
−









∂

∂
+≈+≈

242

2

2

1
1

8

1

2

1
1/1 L            (5) 

 

Substituting Equ.(5) into Equ.(4) yields: 
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The virtual work done by the transverse damping forces of the string is given by 
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where Fc is the viscous damping distributed force [2] in the string, and 
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where c1 and c2 are constant coefficients of transverse damping. According to the 
characteristics of top restriction of the string, the boundary conditions at x(t)=0 are 
 

0),0( =ty , 0),0( =tyt                                          (9) 

 

On substitution of Equs.(1), (2) and (7) in the extended Hamilton’s Principle, 
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and apply the variational operation and the procedure for integration by parts to 
obtain, 
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Setting the coefficients of δy in Equ.(11) to zero yields the governing equation for the 
string, 
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The first four terms in Equ.(12) correspond to the local, Coriolis, tangential, and 
centripetal acceleration, respectively. Equ.(12) is a partial differential equation which 
describes the dynamics of the flexible hoisting string. The equation defined over 
time-dependent spatial domain rendering the problem non-stationary. Hence, the 
exact solution to this problem is not available, and recourse must be made to an 
approximate analysis. In what follows, numerical techniques are employed to obtain 
approximate solution for the governing equation. 
 
 
DISCRETIZATION OF THE GOVERNING EQUATION 
 
Equation (12) is a partial differential equation with infinite dimensions and many 
parameters are time-variant. It is impossible to obtain an exact analytical solution 
from Equ.(12). In this section, Galerkin’s method is applied to truncate the 
infinite-dimensional partial differential equation into a linear finite-dimensional 
ordinary differential equation with time-variant coefficients. Then, solve them with 
numerical methods. In order to map Equ.(12) onto the fixed domain, a new 
independent variable ζ=x/[l(t)] is introduced and the time-variant domain [0, l(t)] for x 
is converted to a fixed domain [0, 1] for ζ. According to the characteristic of taut 
translating string, the solution of y(x, t) is assumed in the forms [5,13]: 
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where qi(t) (i=1,2,3,…,n) is the generalized coordinate respect to y(x,t), n is the 
number of included mode. φi(ζ) is trial function[5,13], 
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Consequently, expansion Equ.(13) results in the expressions for partial derivatives of 
transverse displacement functions: 
 

∑ =
=

n

i iix tq
l

txy
1

'
)()(

1
),( ζϕ ， ∑ =

=
n

i iixx tq
l

txy
1

''

2
)()(

1
),( ζϕ ， ∑ =

=
n

i iixxxx tq
l

txy
1

)4(

4
)()(

1
),( ζϕ , 

∑∑ ==








+−=

n

i iii

n

i iixt tq
l

v

l

v
tq

l
txy

1

'

2

''

21

'
)()()()()(

1
),( ζϕζϕ

ζ
ζϕ & , 

)()()()(
2

)()(
2

)()(),(
1

''

2

22
''

2

2

1

'

1
tq

l

v

l

a

l

v
tq

l

v
tqtxy i

n

i iii

n

i ii

n

i iitt ∑∑∑ === 







+−+−= ζϕ

ζ
ζϕ

ζ
ζϕ

ζ
ζϕ

ζ
ζϕ &&&  

(15) 
 

Substituting Eq9.(13)-(15) into Equ.(12), multiplying the governing equation by φk(ζ) 
(k=1,2,3,…,n), integrating it from ζ=0 to 1, and using the boundary conditions and the 
orthonormality relation for φi(ζ) yield the discretized equation of transverse vibration 
for the flexible hoisting string with time-variant coefficients 
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matrices of mass, damp and stiffness respect to Q, respectively. S(Q) is higher order 
item of generalized coordinate. Where entries of the matrices are expressed as 
follows: 
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where the superscript“＇”denotes partial differentiation for normalized variable ζ, δij is 
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the Kronecker delta defined by δik =1 if i=k and δik =0 if i≠k (i=1,2,3,…,n, k=1,2,3,…,n). 
If the initial displacement and velocity of the string are given by )0,(xy  and )0,(xy

t
, 

respectively, where 0＜x＜l(0), the initial conditions for the generalized coordinate 

can be obtained from Equ.(13) and (15), 
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Solving the ordinary differential Equ.(16) with numerical methods may yield the 
instantaneous values of Q. Substituting these values into Equ.(13) may yield the 
instantaneous values of transverse vibration of the string y(x, t). 
 
 
NUMERICAL SIMULATION AND DISCUSSIONS 
 
Equation (16) is a second-order ordinary differential equations with variable 
coefficients. They will be used to investigate the dynamic responses of hoisting 
viscous damping string with time-varying length. The solutions of the equation are 
obtained by the Runde-Kutta method. Kimura [9-12] published a series of studied on 
vibrations of a string with time-varying length. However, these studies considered the 
string with uniform motions only. In the study, we will consider the speed changes with 
time. In what follows, the motions of elevator hoisting system were illustrated to 
evaluate the proposed mathematical model. Elevator hoisting system is simplified as 
an axially translating viscous damping string with a rigid body attached at its lower 
end. The simulation parameters for the elevator are given in Table 1. The flight time 
for a travel distance of 135m (45 stories) is 33 second. Fig.3 gives the prescribed 
displacement, velocity, acceleration and jerk curves of elevator hoisting system. 
Utilizing the curves as the input of Equ.(16) with aid of MatLab may obtain dynamic 
responses of elevator hoisting system. In this work, all numerical analyses were 
implemented with aid of MatLab. 
 

Table 1. Simulation parameters. 
 

Items value 

Density per unit length ρ(kg/m) 0.707 

Young’s modulus E (N/m2) 2.01×1011 

String diameter d(m) 14×10-3 

Hoisting mass m(kg) 300 

Minimum length of the string lmin (m) 5 

Maximum length of the string lmax (m) 140 

Maximum velocity vmax(m/s) 5 

Maximum acceleration amax(m/s2) 1 

Maximum jerk jmax(m/s3) 1 

Total travel time t(s) 33 

Number of transverse modes n 4 
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Consider the free vibration caused by a distributed initial displacement and released 
from rest. The initial displacement and velocity are respectively 
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where y0=0.005m is the initial amplitude. Transverse vibration responses of hoisting 
viscous damping string at 2m above the car during movement of elevator are 
illustrated in Figs.4 and 5. 
 
Figure 4 displays reducing vibration amplitudes with increasing length of the rope 
during downward movement. This is due to the energy of flexible hoisting system 
transfers from the transverse vibration to the axial motion by bringing some mass into 
the domain of effective length, i.e., the axially hoisting rope is dissipative during 
downward movement, thus leading to a stabilized transverse dynamic reponse. A 
possible physical interpretation of the result is as follows: during downward 
movement negative external work is required to maintain the prescribed axial motion 
which, in turn, brings about a convection of mass in the domain of effective length. At 
the same time, frequencies of the transverse vibration reduce with increasing length 
of the rope. This is due to the fact that the mass of the rope increase and the stiffness 
of the rope decrease, i.e., the rope becomes somewhat “softer”.  
 
By contrast, in Fig.5, we observe that vibration amplitudes of the rope increase with 
decreasing length of the rope during upward movement. This is due to the energy of 
flexible hoisting system transfers from the axial motion to the transverse vibration by 
leaving some mass out of the domain of effective length, i.e., the axially hoisting rope 
gains energy during upward movement, thus leading to an unstabilized transverse 
dynamic reponse. A possible physical interpretation of the result is as follows: during 
upward movement positive external work is required to maintain the prescribed axial 
motion which, in turn, brings about a convection of mass out of the domain of effective 
length. In the mean time, frequencies of the transverse vibration increase with 
decreasing length of the rope. This is due to the fact that the mass of the rope 
decrease and the stiffness of the rope is increase, i.e., the rope becomes somewhat 
“stiffer”. 
 
Further, Figures 4 and 5 show that the viscous damping takes effect on the vibration 
amplitude. The response amplitude decreases as the viscous damping increases. 
Higher viscous damping leads to amplitude reduction faster, as shown Figs.4(c) and 
5(c). The reduced response amplitude indicates that the material viscous damping 
makes the dynamic system more stable. 
 
 
CONCLUSIONS 
 
The nonlinear vibration characteristics for a flexible hoist string with time-varying 
length considering coupling of axial movement and flexural deformation is analyzed in 
this paper. The flexible hoisting system is modeled as an axially moving string with 
time-varying length and a load m at its lower end. The governing equations are 
derived by using Leibnitz’s rule and the extended Hamilton’s principle. The Galerkin’s 
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method is used to truncate the infinite-dimensional partial differential equations into a 
set of nonlinear finite-dimensional ordinary differential equations with time-variant 
coefficients. Based on the numerical simulations, the following conclusions can be 
obtained: The natural frequencies of flexible hoisting string with time-varying length 
are increasing because of the reducing mass and the increasing stiffness of the string, 
and the energy transforms from the axial movement into the flexible deformation. By 
contrast, the natural frequencies are decreasing because of the increasing mass and 
the reducing stiffness of the string, and the energy coverts from the flexible 
deformation into the axial movement. The material viscous damping always 
dissipates energy and helps stabilize the transverse vibration during movement of the 
hoisting system. The proposed the theoretical model in this paper will be helpful for 
the researchers to comprehend its dynamic behavior and develop the proper method 
to suppress the vibration in practice. 
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Illustrations 

 
 

Fig.1. Schematic of hoisting viscoelastic string with time-varying length. 
 

 
 

Fig.2. A small element of the string in a deformed position. 
 

 

 

Fig.3. Movement profile of the elevator: (a) )(tl ; (b) )(tv ; (c) )(ta ; (d) )(tj . 
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Fig.4. Transverse vibration responses of hoisting viscous damping string at 2m above 

the car during downward movement of the elevator: (a)c1=0; (b) c1=0.0003; (c) 
c1=0.0008. 

 
 

 

Fig. 5. Transverse vibration responses of hoisting viscous damping string at 2m 
above the car during upward movement of the elevator: (a)c1=0; (b) 
c1=0.0003; (c) c1=0.0008.  


