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ABSTRACT 
 
Rotating machines are an essential element for most of the modern mechanical 
systems. Hence, the reliable and continuous monitoring of their health is always 
receiving attention to ensure safety and reduce downtime. Vibration based fault 
diagnosis is one of the robust and well established techniques used to monitor the 
condition of a rotating machine. The early the fault is detected the more time is 
allowed for proper diagnosis and maintenance planning. The conventional method of 
measuring the vibration on the bearing pedestals proved to be applicable in most 
cases of machines structures and configurations. However, it requires a number of 
vibration sensors at each bearing pedestal for fault diagnosis. The on-shaft vibration 
measurement forms a proper solution as it provides enriched vibration content with 
much less number of sensors, and consequently leads to better fault diagnosis. In 
this paper, the on-shaft vibration measurement technique is presented and its 
applicability to diagnose different faults introduced to an experimental test rig is 
investigated. 
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INTRODUCTION 
 
Condition Monitoring of Rotating Machines 
 
Rotating machines form a major component of almost all industrial facilities and their 
maintenance is of great importance. The vibration-based condition monitoring of 
rotating machines starts with acquiring as much as possible vibration data from the 
machine and continuously monitoring the changes in some selected parameters 
depending on the used analysis technique (time, frequency, time-frequency,...). After 
that, appropriate analysis is done to monitor their behaviour along time. Continuous 
monitoring can lead to early diagnosis of incipient faults [1]. These achievements 
lead at the end to reduced maintenance costs and minimized machine failure 
hazards. Among the many references available, De Silva [2] dedicated a chapter for 
machine condition monitoring and fault diagnostics and Mobley [3] discussed 
condition monitoring in a predictive maintenance framework. 
 
The vibration sensor location is selected to give the maximum signal-to-noise (s/n) 
ratio. Being the nearest stationary part to the vibration source (shaft, bearing, 
gears...), the bearing pedestals are considered as the most suitable position for an 
accelerometer. However, depending on the machine configuration, bearing 
pedestals might not be the best sensor position and direct measurement of the shaft 
vibration is recommended. 
 
To measure the shaft vibration directly, a proximity probe attached to bearing 
pedestal can be used in conjunction with an accelerometer on the pedestal. To avoid 
the proximity sensor limitations and get closer to the shaft, a strain gage may be 
attached to the shaft with a telemetry unit to transmit the measurements to a receiver 
unit [4]. Many available commercial kits are based on this concept and they even 
enable multi sensor measurements. They can measure many parameters such as 
temperature, pressure, torque, etc. 
 
The recent developments in Micro Electro Mechanical Systems (MEMS) and 
miniaturized wireless communication devices gave the opportunity to mount a MEMS 
accelerometer, a power source, and data acquisition and transmission equipments 
on a rotating structure without altering its dynamic characteristics [5]. Their small 
weight hardly affects the rotor balance and the low power consumption enables 
extended operating times before the need for battery recharge. 
 
On-Shaft Vibration Measurement 
 
Taking the measurement on the rotor means that the measurements are done in a 
coordinates system that is already rotating with the same speed of the rotor. 
Bejarano et al. [6] made use of this important feature and treated a rotating cracked 
shaft problem as the well known stationary cracked beam one. They successfully 
detected rotor crack. 
 
In a vibration control context, Sloetjes and De Boer [7] used a strain gage attached 
to an accelerating rotor to measure the overall vibration. They used it to control a 
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piezocermaic batch bonded to the rotor to enhance the rotor stability. They used a 
slip ring assembly to communicate with the devices on the rotor. 
 
Rather than using the overall vibration, its spectral components are known to be 
more informative and can help identifying the fault source. Arebi et al. [8] used an 
on-shaft accelerometer and an encoder to measure the tangential acceleration and 
the Instantaneous Angular Speed (IAS) of a misaligned rotor respectively. They 
monitored the changes in harmonics amplitudes with speed and misalignment 
severity. The signal obtained from the on-shaft accelerometer detected misalignment 
more efficiently than those from the ordinary encoder. However, they noticed 
incomplete conformance between the trends of the harmonics from the 
accelerometer and those from the encoder. 
 
Considering the measurement system components, Arms et al. [9] assembled a 
strain measurement system and installed it on a helicopter pitch link for health 
monitoring. The system comprises energy harvesting and storage units to power a 
microcontroller and a wireless transmitter. 
 
Pattern Classification 
 
Fault detection may be defined as the departure of a measured parameter from a 
range that is known to represent normal operation [2]. One or more parameters can 
be used to accurately describe the machine state. A variety of parameters from 
different domains (time, frequency, ..) were investigated [2, 10, 11]. 
 
For the basic detection level total machine vibration is used for comparison; the 
accumulated experience produced standards (ISO 10816-3) from which safe ranges 
are extracted. However, for the more advanced level of using processed parameters 
(rather than the total machine vibration); limits are customized for each machine and 
analysis types. For example, when using a vibration spectrum to monitor different 
machine harmonics, a threshold is set for each one of the major spectral lines. An 
alarm is triggered when one of the spectral lines exceeds its preset threshold. This 
advanced method gives some guidance to the subsequent step of fault diagnosis 
since it relates the spectral line that triggered the alarm to its generating component 
in the machine. 
 
Early detection of faults gives more time to plan machine shutdown. More 
importantly, it gives more time for fault diagnosis. Fault diagnosis may be defined as 
a procedure of mapping the information obtained in the measurement space and/or 
features in the feature space to machine faults in the fault space [2]. 
 
An experienced analyst can do the mapping manually. Many researchers reported 
how do different faults manifest themselves in different domains [10-12]. To avoid 
the need for experienced analysts and benefit from the advantages of fast computing 
and large databases management, a computer can be used to do the process of 
automatic mapping or in other words “pattern classification”. In the pattern 
classification process, features representing the machine state are gathered to form 
a feature vector, which is then compared against a set of feature vectors 
representing different machine states (a training set). In this work, the investigated 
machine state is classified using the nearest neighbour classifier.  
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The on-shaft vibration measurement is not yet generalized to diagnosis different 
faults in rotating machines. To benefit from the standardized faults diagnosis 
techniques; we need to make sure that it responds to different machine 
conditions/faults in the same way as the on-bearing one does. Up till now, the on-
shaft vibration harmonics were not thoroughly investigated nor compared to the on-
bearing ones. In this work, the on-shaft vibration measurement method is thoroughly 
investigated in time, frequency and order domains. Following that, the capability to 
diagnose different common rotating machines faults is benchmarked using that of 
the conventional on-bearing method. An experimental test rig is used to investigate 
an on-shaft vibration measurement system and to simulate faults. 
 
The rest of this paper constitutes four sections. In section two, the experimental test 
rig is described and modal testing results are shown. In section three, an exploratory 
run up is performed and analyzed in different domains where a mismatching 
between the on-bearing and on-shaft signals is reported. This called for the pattern 
classification approach to diagnose faults, which is discussed in section four. 
 
 
TEST RIG 
 
Description 
 
The test rig consists of a 20 mm diameter shaft with a span of 900 mm supported on 
a relatively rigid foundation through ball bearings, see Figure 1. The shaft also 
carries a balanced disc of 125 mm diameter and 20 mm thickness at mid span. A 
motor is connected to the shaft through a flexible coupling.  
 
Figure 2 shows the proposed vibration measurement scheme. A small tiny micro 
electro-mechanical system (MEMS) accelerometer is mounted on the shaft itself (not 
shown in figure). The accelerometer has a range of ± 40g and sensitivity of about 
200mV/g. It is assumed that the mounting of such a tiny accelerometer may not 
influence the rotor unbalance. The V-Link® from MicroStrain® is the wireless sensor 
node which is then connected to the MEMS accelerometer for wireless transmission 
of the vibration signals. The V-Link module weighs just 97gm and uses a 12 bit 
analogue to digital converter with data sampling rates of 736 Hz and 2048 Hz in 
streaming and data logging modes respectively. 
 
Modal Testing 
 
Modal testing was done on the rig by the Impulse-Response method [13] to identify 
its natural frequencies. A typical Frequency Response Function (FRF) plot is shown 
in Figure 3. The peaks at 33 and 35.5 Hz are identified as the first two critical 
speeds. With these observations the run-up experiment has been conducted which 
is discussed in the next section. 
 
RUN UP 
 
A run-up experiment up to a shaft speed of 1200 RPM with a linear rate of 4.3 
RPM/s has been conducted. The acceleration vibration data has also been collected 
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at bearing 1 as well as from the on-shaft accelerometer. The following subsections 
describe vibration signal analysis in different domains. 
 
Time Waveform Analysis 
 

Figure 4 shows the time history for all signals. It is clear that response amplification 
is observed as the rig passes through integer fractions of its critical speeds. 
Comparing the on-bearing and on-shaft signals, we can conclude that the on-shaft 
measurement had captured almost all the peaks noticed in the on-bearing signals 
with a much higher s/n ratio. On the other side it’s highly affected by gravity. The 
gravity effect appears as an oscillation with amplitude of 1g and a synchronous 
frequency. 
 
Spectral Analysis 
 
The time waveforms did not reveal the spectral content, therefore the Short Time 
Fourier Transformation (STFT) analysis was carried out. Typical spectrogram for the 
on-bearing signal is shown in Figure 5. It shows frequency peaks related to the shaft 
speed (1x) and its higher harmonics (2x, 3x …) as expected. 
 
Additionally, the transient amplitude amplifications noticed in the time waveforms 
appear as distinct spots observed when the shaft speed passes through 1/3, 1/4 and 
1/2 of the critical speeds. Another observation in the spectrogram is that increased 
background noise is found below the speed of 450 RPM. This is referred to a change 
in the carrier frequency of the AC voltage driving the motor. This change was clearly 
audible during the experiments. 
 
With these observations, the STFT analysis has also been carried out for the on-
shaft signal, see Figure 5. As expected, the spectrogram shows the strong feature of 
1x component due to gravity. There is no sign for the noise coming from the motor 
below 450 RPM, which depicts the on-shaft measurement immunity to noise from 
surrounding machines. 
 
Examining the transient response peaks, instead of showing a single peak when the 
rotor passes an integer fraction of a certain critical speed, two peaks are there. This 
is interpreted as an amplitude modulation affecting the on-shaft signal due to the 
rotational motion of the sensor. 
 
Order Analysis 
 
In overall, the time waveform and spectral analyses and the comparison between on-
shaft and on-bearing vibration measurements suggest the following features for the 
on-shaft measurement scheme: 

• An interestingly higher s/n ratio 

• Immunity to structural noise from surrounding sources. 
In spite of these encouraging features, the following problems are noticed: 

• Signal modulation with the rotational speed. 

• Dominant gravity effect. 
This draws doubts to the mechanism generating the on-shaft harmonics and 
consequently their applicability in faults diagnosis and rotor dynamics analyses in 
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general. In this section, additional investigation is done to examine the conformance 
between on-shaft and on-bearing harmonics. The behaviour of the on-shaft 
harmonics (1x, 2x, 3x ...) upon changing speed is investigated. 
 
The run up discussed earlier is reviewed from another perspective. We previously 
computed the STFT for a time domain signal acquired at constant time intervals (i.e. 
∆t=constant). This generated a colour map describing the relation between 
frequency and time (or speed, since they are linearly related according to the ramp). 
That plot makes it difficult to extract rotational speed harmonics since they are 
represented by straight lines starting at origin and having different slopes (1, 1/2, 
1/3...). To make the harmonics extraction much easier, we can transform the run up 
data from the time domain to the angular domain [14], where the data is sampled at 
constant rotational angles (i.e. ∆θ =constant). Upon resampling the time waveform at 
constant angles, the STFT is computed and different harmonics could be easily 
extracted. The first four harmonics are extracted and plotted against speed, see 
Figure 6. As expected, the on-bearing 2x, 3x and 4x harmonics show peaks at 1/2, 
1/3 and 1/4 the critical speeds respectively. 
 
The situation is different for the on-shaft harmonics; some of them (e.g. 1x and 3x) 
share some peaks. Also, some of them comprise peaks belonging to more than one 
of the on-bearing harmonics. For example, the on-shaft 3x includes peaks from both 
on-bearing 2x (at 1/2 the critical speeds) and 4x (at 1/4 the critical speeds). We can 
also notice the gravity effect in the on-shaft 1x harmonic; the whole plot is elevated 
by 1g. 
 
This strong correlation among on-shaft harmonics, in addition to the inherent 
modulation, necessitates automatic fault classification instead of the manual one. 
This is discussed in the following section. 
 
 
FAULTS DIAGNOSIS 
 
Description of Machine States/Faults 
 
In this work, common machine faults; misalignment, unbalance and looseness (in 
addition to a reference state) are considered, see Table 1. To introduce 
misalignment, the outboard bearing pedestal is translated (from its position in the 
reference state) by increments of 0.6 mm in the horizontal plane. Unbalance is done 
by adding small masses to the disc; 3 grams for each one of the two unbalance 
levels. For more accurate evaluation, looseness is introduced by loosening the 
unbalance weight itself (at the second unbalance level). This is expected to let the 
looseness case be very similar to the unbalance one. The combined fault case is 
achieved by introducing unbalance and misalignment simultaneously.  
 
A set of experiments is conducted where faults are seeded to the rig and a 
classification algorithm is applied to diagnose the faults. Since the main purpose is to 
compare the fault diagnosis capabilities on a fair basis, a simple classification 
procedure is followed. 
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Nearest Neighbour Classifier 
 

Figure 7 summarizes the developed classification algorithm. After segmenting the 
acquired vibration samples into a number of observations, they are divided into 
training and testing sets. For each observation, a feature vector is constructed from 
different signal attributes. The attributes can be computed in different domains to 
fully and accurately describe the signal, see Table 2. Feature normalization is 
applied to handle the variation of units in the signal features. 
 
The idea of the nearest neighbour classifier is to search all the training observations 
to find the nearest one (or k nearest ones for the generalized case) to the 
investigated observations. The comparison measure is the Euclidean distance 
between each two examined feature vectors. 
 
In pattern classification, it is known that the higher the number of features used is, 
the higher the size of training set should be. This is why a dimension reduction step 
is needed. To reduce the number of features (initially twelve), many techniques are 
available, such as Principal component Analysis [15]. However, in this work, a very 
simple method is used to assess the features quality through a dimensionless 
Quality Index (QI). 
 
Clearly a good feature should posses the following two criteria: 

- Minimum variance among observations taken at the same machine state. 
- Maximum change upon changes in the machine state. 

 
So if we group observations into clusters based on their respective machine states, 
and calculate the clusters means and variances, we can achieve the above 
mentioned quality criteria by expressing (QI) as: 

  (1) 

Where VOM is the variance of the mean values of all clusters and MOV is the mean 
value of the clusters variances. 
 
After calculating (QI) for all features, the three with highest (QI) can be extracted and 
fed into the classifier. 
 
Results 
 
The rig is run at a constant speed (1200 RPM) and vibration data is sampled at 500 
Hz. The acquisition lasted for five minutes and data were split into thirty two 
observations per machine state. For cross validation, the observations are randomly 
divided into training (twenty observations) and testing (twelve observations) sets. 
The testing set is held out to never affect the training process. The classification 
process is repeated for twenty times and the average results are recorded. 

The features vectors are calculated for all observations and the proposed feature 
quality index method is used to select the best features and reject the bad ones. For 
example, Figure 8 shows the quality indices for features describing the vibration 
signals and Figure 9 depicts the efficiency of this feature selection method by 



94 DV  Proceedings of the 15th Int. AMME Conference, 29-31 May, 2012 

 

contrasting high and low quality features. The higher quality feature shows higher 
stability within the same state and more separation among different states. 

The classification is performed in two phases, an initial one to examine the capability 
of fault detection and a subsequent one to examine the capability of fault severity 
assessment.  For preliminary fault detection, the machine state is considered to be 
absolutely unknown. Hence, the observations under test are compared against all 
known machine states. 

For misalignment and unbalance faults, a generalized state is used for fault 
detection. That is done by combining all the misalignment cases (M1-M3) and the 
unbalance cases (U1-U2) into two general cases; (M) and (U) respectively, as shown 
in Table 1. 

Figure 10 shows the classification results for the fault detection phase. The on-shaft 
measurement shows higher reliability since more observations within each testing 
set are correctly classified. The results show that the on-shaft measurement 
successfully classified all observations except for set number six, while the on-
bearing one got confused distinguishing the unbalance and looseness faults. This is 
because of the great physical similarity between them (as described earlier). In the 
next phase, all of the misalignment, unbalance, and looseness sets are forwarded to 
the fault level assessment round. For that purpose, they are going to be compared 
against the training sets for each one of their respective faults separately. 

Figure 11 and Figure 12 present the fault level assessment results. They show that 
the on-shaft method outperformed the on-bearing one in assessing the unbalance 
fault level and in distinguishing the two close faults of unbalance and looseness. The 
accuracies of both methods in the misalignment fault level assessment are nearly 
equal and acceptable. 
 
 
CONCLUSIONS 
 
On-shaft vibration measurement has been investigated and applied to a laboratory 
scale rotating machine model. The measured vibration has been compared to the 
on-bearing one in different domains. It appeared to have modulation with the 
rotational speed and dominant gravity effect. However it contains enriched vibration 
information compared to that acquired on the bearing pedestals. 
 
The proposed approach has been also applied to diagnose different faults commonly 
found in rotating machines. The PCA is used to reduce the dimensions of the fault 
features vector and the nearest neighbour classifier is used to classify different 
machine states. The fault diagnosis results suggest that the on-shaft vibration gives 
better diagnosis efficiency compared to the on-bearing one. Future work is planned 
for more detailed investigation of the on-shaft vibration measurement and also for 
the diagnosis of more faults. 
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Figure 1: Test rig. 

 

 

 

 

Figure 2: Rig photograph showing the vibration measurement scheme. 
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Figure 3: FRF amplitude for the experimental rig modal testing. 

 

 

 

Figure 4: Measured vibration during run-up (a) on-bearing and (b).on-shaft  
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Figure 5: Spectrogram for the run up for (a) on-bearing and (b) on-shaft signals. 

(a) 

(b) 

Critical 

speed line 

Transient response peaks 

Critical 

speed line 

Modulated transient response peaks 

R
o

ta
ti

o
n

al
 

sp
ee

d
 

R
o

ta
ti

o
n

al
 

sp
ee

d
 



99 DV  Proceedings of the 15th Int. AMME Conference, 29-31 May, 2012 

 

 

Figure 6: Effect of increasing speed on the on-bearing (left column) and on-shaft 
(right column) harmonics; (a) 1x, (b) 2x, (c) 3x, and (d) 4x. 
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Figure 7: Classification algorithm flow chart. 

 

All samples 

Segmentation into observations 

 

Split observations into training 

and testing sets 

Normalisation 

Compute feature 

quality index 

Extract features 

 

 

Compute the distance to each 

point in the training set 

 

Assign the state of the nearest 

point 

Training Testing 

For each 

observation in 

the testing set 

Extract features 

Select best 

features 



101 DV  Proceedings of the 15th Int. AMME Conference, 29-31 May, 2012 

 

 
 

 

 

Figure 8: Feature Quality Index for (a) on-bearing and (b) on-shaft features. 

 

 

Figure 9: Features of (a) high and (b) low quality indices. 
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Figure 10: Classification results for (a) on-bearing and (b) on-shaft vibration 
measurement 
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Figure 11: Classification results for different misalignment levels for (a) on-bearing 
and (b) on-shaft vibration measurement 
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Figure 12: Classification results for different unbalance levels and looseness for (a) 
on-bearing and (b) on-shaft vibration measurement. 
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Table 1. List of investigated machine states 

Set number Machine state/fault Fault level Abbreviation 
Generalized 
state abb. 

1 Reference 1 R - 

2 1 M1 

3 2 M2 

4 

Misalignment 

3 M3 

M 

5 1 U1 

6 
Unbalance 

2 U2 
U 

7 Looseness 1 L - 

8 Combined fault 1 CF - 

 

Table 2. List of used time and frequency features 

Time domain features Frequency domain features 

Mean 1x component 

Standard deviation (Std) 2x component 

Root mean square (RMS) 3x component 

Kurtosis (Kurt) 0.5x band 

Skewness (Skew) 1.5x band 

Peak to peak (PP)  

Crest factor (Cres)  

 


