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ABSTRACT  
 
In the previous decades, many numerical and experimental investigations on the 
capabilities of periodic structures for vibration attenuation and localization were 
performed and proved those capabilities for different simple structures. Earlier 
investigation of such phenomenon in periodic plates was not promising due to 
different factors. In this research, experimental and numerical investigations of the 
vibration response of different periodic plates are investigated to examine similar 
behavior of periodic plates. Three different periodic configurations were tested under 
‘almost’ free support boundary conditions. This work is an important over that 
performed by Hull [9]. Milled plates are used to avoid the effect of the adhesive 
material in damping which was used [3]. The experiments involved the excitation 
from one corner of the square plate and measuring the response at the three other 
corners. The results were compared to that of a similar size plain plate. The results 
indicated the reduction of the response of the periodic plates, which have overall less 
weight, by ratios that may exceed 10 db in different frequency bands. The results of 
this work, verified by experiments, encourage more investigation on the localization 
capabilities of those plates as well as the preparation of numerical models that may 
predict those results in a more accurate fashion. 
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NOMENCLATURE 
 
µ Propagation factor.  
α the attenuation in the vibration amplitude between input and output. 
β Phase difference between the input and the output vibration waves.  
 
 
INTRODUCTION   
 
Over the last decades, research on effective methods for attenuating vibration levels 
in structures has been very active. The periodic structure technique is one of these 
effective methods which have a lot of applications especially for the aerospace 
industry such as satellite solar panels, aircraft fuselages and wings. A periodic 
structure consists fundamentally of a number of identical structural components 
which are joined together to form the whole structure. Discontinuities which can be 
induced with various forms such as masses, cross sectional geometries, and 
changes in material, can cause reflections of the vibration wave that may reduce the 
transmitted energy. Yet the degree of attenuation is insufficient or inadequate over a 
broad range of frequencies and the regions between these discontinuities exhibit 
local resonances.  
 
The existence of complete band gaps and resonances in a plate with a periodic 
stubbed surface was demonstrated numerically and experimentally [1]. It was 
demonstrated that as the stub height approaches about triple the plate thickness a 
complete narrow band gap develops. The vibration control of a cantilever aluminum 
plate using a periodic configuration of RL (resistive-inductive) shunted piezoelectric 
patches was investigated in [2]. Numerical and experimental analyses were 
performed also to 4-node Kirchhoff plate elements and a reverse approach was used 
for the finite element analysis. Unit cell analysis showed that increasing the shunting 
resistance reduces the attenuation but increases the region of effectiveness. 
Experimental analyses demonstrated that the tuning capabilities of the RL networks 
can be effectively used within a periodic framework to obtain a broadband control 
effect. Both numerical and experimental results were encouraging in the sense that a 
unit cell approach is capable of accurately predict the actual response of the system.  
 
Also the vibration characteristics of a plate with shunted piezoelectric patches were 
also investigated by Ref. [3]. The response was investigated when the patches were 
periodically distributed. He formulated a plate spectral finite element model and 
compared the results with experimental results, which showed reasonable 
agreement. Later numerical and experimental investigations of the application of a 
periodic array of resistive-inductive (RL) shunted piezoelectric patches for the 

attenuation of broadband noise radiated by a flexible plate in an enclosed cavity was 
investigated [4]. That research showed that the tuning capabilities of simple RL shunt 
circuits were combined with filtering characteristics of periodic structures to obtain a 
tunable periodic plate, and the resultant smart structure experienced significant 
reductions in its noise radiation capability. Numerical simulations demonstrated the 
applicability of Bloch theorem [5] for unit-cell analysis on the in vacuo plate [6] as a 
tool to predict the frequency ranges of effective structural acoustic control. Also, 
experiments were performed to validate the numerical predictions, and to 
demonstrate the effectiveness of the proposed strategy. 
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Recently a thin epoxy plate containing a periodic square array of lead discs hemmed 
around by rubber was considered [7]. The band structures were calculated 
theoretically using a periodic expansion by means of Bloch theorem. The numerical 
results showed that the full band gaps of flexural vibration do exist in the thin plate. It 
was also shown that the width of the first full band gap is about three times larger 
than that in a thin steel plate with 2D binary locally resonant structures. The effect of 
lattice constant [7] and thickness of the plate on the band gap have also been 
demonstrated. Casimir and Kevorkian [8] presented the principle of developing two 
dimensional elements such as plates and they showed how symbolic computation 
software could be used in this purpose. The method of construction of dynamic 
stiffness matrices was applied to the rectangular Kirchhoff continuous elements, and 
a study of harmonic response over a large frequency range was made. It offers a 
clear advantage over finite elements, particularly its high precision and low memory 
cost. In Ref. [8] the effect of periodicity on the frequency response of different forms 
of periodicity was also investigated. 
 
An analytical model that incorporates an infinite number of periodically spaced 
masses into the equations of elasticity that model motion and stress in a two-
dimensional fully elastic solid was studied by Hull [9]. The examination of a periodic 
plate where the periodicity presented by masses on the edge of the plate and where 
the masses reside within the interior of the plate were studied by Hull in this paper. 
The solution of an elastic plate harmonically loaded in space and time containing 
periodic edge masses at a time and embedded masses at another time has been 
derived and compared favorably with previously developed thin plate models at low 
frequencies. Also a numerical and analytical model of a novel design of a sandwich 
plate based on the antagonistic approach, and an application of SMA elements, were 
presented [10]. A two-dimensional model of the flexure of a thin plate reinforced with 
periodic families of separated thin rods, symmetrical about the middle plane, was 
analyzed [11].  
 

When periodic analysis is mentioned, it is to point towards investigating the vibration 
attenuation resulting from periodicity. In the present work, the existence of stop or 
attenuated bands of frequency of some particular selected periodic plates (see 
Figure (1)) has been investigated using the finite element method with respect to a 
reference plain plate by measuring the input-output transfer function at the corners of 
each periodic plate and comparing it with that of the plain plate experimentally. 
 
 
NUMERICAL RESULTS 
 
A 144-DOF finite element model was used to model all the periodic plate cases 
shown in Fig. 1. The cell of interest was assembled of four elements of the same 
dimensions except for the "element thickness". Figure 2 presents a sketch of the cell 
of the plain plate that is used as a reference for the response of the different cases. 
The main axes of the cell are along the lines joining points 1 and 2, x-axis, and the 
line joining points 1 and 4, y-axis. The propagation angle is measured from the x-axis 
counter clockwise. In the plain plate there are no stop "attenuation" bands because 
there is no change (discontinuity) in the cell geometry. 
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Figure 3 presents a sketch of the cell of the periodic plate case #1. Element #1 of the 
cell "thick element" is of thickness 2 mm while the other elements are of thickness 1 
mm. The propagation curves obtained for this case using the same methods 
introduced for plain plate are presented in Fig. 4. The propagation curves for all 
cases are obtained at the three main directions at angles 0o, 45o, and 90oto give 
useful observation. The most significant difference between plain plate and periodic 
plate case #1 is the existence of "gaps" between the surfaces indicating the 
presence of "stop bands". 
 
Case #2 was designed to confine the wave propagating in the plate in both 
directions. The geometry was selected to present geometric periodicity in a radial 
direction from the source point. This configuration is not "repeated" in the x and y 
directions; rather, it expands in a radial-like direction. This configuration follows the 
one presented by Ref. [9] . The cell shape of this case is presented in Fig. 5, where 
element 1 is the thin element of thickness 1 mm and the other elements are of 
thickness 2 mm.  
 
As expected, the new geometry possesses periodic characteristics that are favorable 
compared to those of the previous two configurations. Those characteristics can be 
seen in the shapes of the propagation curves presented in Fig. 6. This cell shape 
has geometric symmetry between nodes 2 and 4 which results in a corresponding 
response.  
 
Figure 6 shows bands of attenuation resulting from the change of plate thickness. It 
also shows the similarity between Figures 6a and 6c and between figures 6b and 6d 
resulting from the plate symmetry in this direction as they represent the response at 
nodes 2 and 4 in the cell. For periodic plate case #3 the cell shape is as presented in 
Fig. 7. Elements 1 and 3 are of thickness 2 mm while elements 2 and 4 are of 
thickness 1mm. 
 
Figure 8 presents the propagation curves for plate case #3 obtained by using the 
same method used for plain plate and plate case #1. Figures 8a and 8b present the 
response at node 4 in the cell. It has no geometry change so there is no stop band in 
the response. On the other hand, the response at nodes 2 and 3 have stop bands as 
shown in figures 8c, 8d, 8e and 8f, respectively. 
 

 

EXPERIMENTAL SETUP   
 
Four plates with different periodic patterns were chosen to investigate their 
characteristics. They are shown in Fig. 1. The basic geometry of the plates is 

 that is fictitiously divided into smaller 5 x 5 cm squares. The plates 

are made of Aluminum alloy 1050 with modulus of elasticity of 73 GPa and mass 
density of . The periodicity is achieved by changing the plates’ 

thicknesses in three different patterns as shown in Fig. 1. All the plates were 
suspended by flexible wires from point (1) to simulate the free boundary conditions. 
All the plates were excited at the same point as shown in Fig. 9 using a permanent 
magnet vibration exciter. The excitation input was measured using force transducer 
and the responses were measured using four accelerometers at the four corners as 
shown in fig. 9. The exciter produced a swept sine excitation signal whose frequency 
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sweeps the frequency range from 0 to 3.2 KHz. This excitation signal is deterministic 
(nonrandom) and hence it can be repeated several times. This removes the leakage 
from the measurements and greatly reduces the experiment time since averaging 
becomes not necessary. Measurements were performed using Brüel & Kjær multi-
channel Analysis System type 3550.   
 
The input-output transfer function (TF) is defined as: 
 

 
 
where  and  are the frequency spectrum of the responses (usually 

acceleration) at the input and output locations respectively. For each plate of Fig. 1, 
three TF’s were measured at corners 2, 3 and 4 with respect to corner 1. These 
corners are shown in Figs. 1a, 1b, 1c and 1d. These TF’s were measured and are 
plotted in Figs. 10, 11 and 12 for the plates of Figs. 1b, 1c and 1d, respectively, as 
compared to the respective TF’s of the plain plate of Fig. 1a. 
 
 
EXPERIMENTAL RESULTS AND DISCUSSION 

 

Figure 10 shows the effect of periodicity on attenuating the vibration of the periodic 
plate case #1.This figure shows the TF’s at the corners 4, 2 and 3 with respect to 
corner 1. As seen in Figure 10-a, significant attenuation bands occurred in the 
frequency bands [375,470], [1040, 1120], [1430, 1580] and [2300, 2400] Hz, with 
about 10dB attenuation. For Figure 10-b, attenuation of about 10dB is observed in 
the frequency bands [380, 525], [1050, 1140] and [1240, 1400] Hz. Due to symmetry 
of the plate of Figure 1-b, corner 3 is similar to corner 4, hence it’s TF is supposed to 
be similar. The little difference between Figure 10-b and Figure 10-c may be a result 
of the inaccuracy of the experimental setup. These bands of attenuation are in 
consistence with the stop bands shown in Fig. 4. 
 
Similar to Fig. 10, the TF’s at corners 2, 3 and 4 with respect to corner 1 of periodic 
plate case #2 are plotted in Figure 11. This figure emphasizes the capability of 
periodic structures to attenuate the vibration. The most significant attenuations are 
observed in Figure 11-a giving 9 dB over the frequency range [1500, 1650] Hz, 10dB 
over [1875, 2150] Hz and over [2565, 2665] Hz. For Figure 11-b, attenuation of 
about 10 dB over the ranges [425, 535], [720, 840], [900, 1020] and [1250, 1350] Hz, 
18 dB over the ranges [1550, 1650], [1725, 1810], and [2475, 2610] Hz are 
observed. Due to similarity of the plate of Figure 1-c, corner 3 is similar to corner 2, 
and also the little difference between their transfer functions is due to experimental 
setup inaccuracies. Some of these attenuated bands shown in Figure 11 are in 
consistence with the stop bands shown in Fig. 6. 
 
Similarly Figure 12 shows the TF’s at corners 4, 2 and 3 with respect to corner 1 of 
the plate of Figure 1-d respectively. This figure shows that the significant bands of 
attenuation occur in the frequency band [1000, 1120] Hz with an attenuation of 12dB 
and [2000, 2150] Hz with an attenuation of 14 dB. In Figure 12-b an attenuation of 
about 9dB is observed in the frequency band [600, 700] Hz and attenuation of about 
13 dB in the band [950, 1150] Hz. There are less significant bands of attenuation 
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shown in figures. It is necessary to remember that the reference plain plate of Figure 
1-a is thicker, which mean that the plain plate is stiffer than the periodic plates.  
  
From the previous study the comparison between numerical and experimental 
results can be presented in Table 1. 

 

Table 1. Numerical and experimental attenuation bands. 

 
Numerical attenuation 

bands 
Experimental attenuation 

bands 

Node 2 
[250:300], [1100:1200], 
[1300:1600], and [1900:2250] 

[250:500], [1100:1200], 
[1400:1600], [1900:2100], and 
[2300:2550] 

Node 3 
[450:500], [1100:1400], 
[1900:2050], and [2550:2650] 

[400:500], [1050:1150], 
[1250:1400], and [2500:2600] 

Periodic 
plate case #1 

Node 4 Same as node 2 due to geometrical symmetry 

Node 2 [1500:2100], and [2800:3100] 

[200:600], [750:850], [950:1650], 
[1750:1800], [1850:2150], 
[2350:2400], [2450:2520], 
[2550:2650], [2750:2850], and 
[2900:3000] 

Node 3 [1500:1800], and [2750:3050] 
[400:500], [850:1400], 
[1500:1650], [1700:1800], 
[2490:2600], and [2780:2850] 

Periodic 
plate case #2 

Node 4 Same as node 2 due to geometrical symmetry 

Node 2 No attenuation bands resulting from continuous geometry 

Node 3 [1100:1600], and [2400:2600] [600:700], and [950:1200] 
Periodic 
plate case #3 

Node 4 
[300:400], [1050:1550], and 
[2850:3200] 

[250:500], [1000:1650], and 
[1850:2150] 

 
 

 

CONCLUSION 
 
Three different patterns of periodic plates with the same size and material were used 
to study numerically and experimentally the characteristics of periodic plates and 
their ability to attenuate vibration. Their attenuation with respect to a plain plate was 
investigated experimentally at different frequency bands. The results obtained show 
the capability of the numerical model to predict the performance of the periodic plate 
as well as the capability of the periodic plates in attenuating vibration in certain 
frequency bands. 
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Fig. 1. The different four cases for the tested plates. 
 

  

  
 

Fig. 2. A sketch of a single cell of plain plate 
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Fig. 3. A sketch of a single cell of plate Case#1. 
 

 

 
 

Fig. 4. Propagation curves of plate case #1 where (a) (b)  

(c)  (d)  (e)  (f) . 
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Fig. 5. A sketch of a single cell of plate Case#2. 

 

 
 

Fig. 6. Propagation curves of Plate case #2 where (a)  (b) 

(c)  (d) (e)  (f)  
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Fig. 7.  A sketch of a single cell of plate Case#3. 

 

 

 
 

 
Fig. 8.  Propagation lines of plate case #3 where (a)  (b)  

(c)  (d) (e)  and 

(f) . 
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Fig. 9. The force transducer attachment to periodic plate case #2 and accelerometer fixation 
at the corners of periodic plate case #3. 

 

 
 

Fig. 10. Transfer function of the periodic plate of Fig.1-b as compared  
to the plain plate of Fig. 1-a. 
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Fig. 11. Transfer function of the periodic plate of Fig. 1-c as compared to  
the plain plate of Fig. 1-a. 
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Fig. 12. Transfer function of the periodic plate of figure 1-d as compared to  
the plain plate of figure 1-a. 


