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ABSTRACT 
 
The transient flow and heat transfer through a porous medium of a non-Newtonian 
viscoelastic fluid between two infinite horizontal porous plates is studied considering 
a temperature dependent viscosity.  The fluid is subjected to a uniform suction from 
above and a uniform injection from below whereas a uniform and exponential 
decaying pressure gradient is applied in the axial direction to drive the fluid motion.  
The plates are kept at two different invariant temperatures.  The equations of motion 
and the energy equation including the dissipations are solved numerically using finite 
differences to yield the velocity and temperature distributions for various values of 
the included physical parameters. 
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NOMENCLATURE 
 
a… 
Bo … 
cp… 
 Ec... 
J ... 
K… 
k… 

M… 
m… 

N… 
Pr… 

Q… 
Re… 
S… 
t… 
T… 
T1… 
T2… 
u… 
w… 
ρ … 
σ … 
β … 
µ … 
µo … 

 

constant 
the magnetic field 
the specific heat capacity 
the Eckert number  

the current density 
 the Darcy permeability  

the thermal conductivity of the fluid. 
the porosity parameter 

the Hall parameter 

the viscosity exponent 
the Prandtl number 

 the viscoelastic parameter  

the Reynolds number  

 the suction parameter 
Time  

the temperature 
The lower constant temperature 
The upper constant temperature 
the fluid velocity in direction x 
the fluid velocity in direction z 
the density of the fluid 
the fluid electrical conductivity 
the Hall factor  

the viscosity of the fluid  

the coefficient of viscosity at temperature T1 

 
 
INTRODUCTION 

 
The flow of a viscous incompressible fluid between two parallel plates has important 
applications in many devices such as accelerators, aerodynamics heating, 
electrostatic precipitation, polymer technology, petroleum industry, purification of 
molten metals from non-metallic inclusions and fluid droplets-sprays [1-3]. The flow 
between parallel plates of a Newtonian fluid with heat transfer, subjected to different 
physical effects, have been studied by many authors [1-9] where the results obtained 
are of great importance in the design of the duct wall and the cooling arrangements.  
The effect of uniform suction and injection through the parallel plates on unsteady 
Hartmann flow of a conducting Newtonian fluid was given by Attia [10,12]. The 
rectangular channel problem has later been extended also to fluids that undergo 
non-Newtonian behavior. The flow of a viscoelastic fluid has attracted the attention of 
many researchers [13-18] due to its important industrial applications [13].   
 
In the present paper, we study of the transient flow and heat transfer through a 
porous medium of a non-Newtonian viscoelastic fluid between two infinite horizontal 
porous plates. A uniform suction from above and injection from below are applied 
perpendicular to the plates and an exponential decaying pressure gradient is applied 
in the axial direction.  The fluid viscosity is assumed to be temperature dependent 
and the two plates are maintained at two constant but different temperatures. The 
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flow through the porous medium deals with the analysis in which the differential 
equation governing the fluid motion is based on the Darcy’s law which accounts for 
the drag exerted by the porous medium [19-21].  The equations of motion and the 
energy equation including the Joule and viscous dissipations represent a set of 
coupled non-linear partial differential equations and is solved numerically using finite 
differences.  The effects of the temperature-dependent viscosity, the viscoelasticity, 
the porosity of the medium, and the suction on the velocity and temperature fields 
are studied. 
 
 

DEFINITION OF THE PROBLEM 
 
The two infinite horizontal plates are placed at the y=±h planes and a uniform suction 
from above and injection from below with a uniform velocity Vyj are applied. The 

motion is driven by an exponential decaying pressure gradient tGedxdp α−−=/  in the 

x-direction, where G and α  are constants.  The lower plate is maintained at a fixed 
temperature T1, whereas the upper plate is maintained at another fixed temperature 
T2 with T2>T1. The flow is through a porous medium where the Darcy model is 
assumed [19-21]. As the horizontal plates are infinite in the x and z-directions, all 
physical quantities, apart from the pressure, have no dependence on x or z.  The 
non-Newtonian fluid considered is viscoelastic and a finite time is required for a 
strain response in the fluid when the stress imposed on the fluid boundaries 
changes.  This amounts for an increment in the apparent viscosity especially at low 
shear rates.  There is no velocity component in the z-direction and the velocity field 
may be written as 
 

jVityVtyV yx

rrr
+= ),(),(  

 
The fluid starts its motion from rest at t=0, that is Vx=0 for t≤0.  The no-slip condition 
at the plates implies that Vx=0 at y=-h and Vx=0 at y=h.  The initial temperature of the 
fluid is assumed to be T1, thus the initial and boundary conditions of temperature are 
T=T1 at t=0, T=T1 at y=-h, t>0 and T=T2 at y=h, t>0. 
 

 

MATHEMATICAL FORMULATION 
 
The non-Newtonian fluid considered is viscoelastic and the shear stress is given by 
[13] 
 

tky

Vx

∂

∂
−

∂

∂
=

τµ
µτ                                                                                                       (1) 

 

where µ is the coefficient of viscosity and k is the modulus of rigidity.  In the limit as k 
tends to infinity or at steady state, the fluid behaves like a viscous fluid without 
elasticity.  The coefficient of viscosity is taken to be temperature dependent 
according to [22]: 
 

)1( TTa
oe

−−= µµ  
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where a is a constant and µo is another constant which is the coefficient of viscosity 
at temperature T1.  The fluid motion is governed by the momentum equation 
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where ρ is the fluid density, G and α are parameters describing the decaying 

pressure gradient, bf  is the body force due to porosity and the last term represents 

the viscoelastic force per unit volume which can be determined using Eq. (1) in the 
form, 
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where the term ))/(/(/)/1(
2 ttyk ∂∂∂∂∂∂ τµµ  which is proportional to )/1(
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The momentum equation becomes 
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where K is the Darcy permeability [19-21]. The second term in the right side of Eq. 
(3) represents the porosity force. 
The temperature distribution is governed by the energy equation [22] 
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where pc  is the specific heat capacity of the fluid at constant volume and k is the 

thermal conductivity. The last term in the right side of Eq. (4) is the viscous 
dissipation term.  Equations (3) and (4) can be made dimensionless by introducing 
the following dimensionless variables 
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Introducing the following dimensionless parameters, 
 

oyhVS µρ /= , the suction parameter, 

KhM /
2ρ= , the porosity parameter, 

kc po /Pr µ= , the Prandtl number, 
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))(/(
12

222
TTchEc po −= ρµ , the Eckert number, 

22
/ khQ o ρµ= , the viscoelastic parameter, 

)( 12 TTaN −= , the viscosity exponent. 

 
Eqs. (3) and (4) may be written, after dropping all primes for convenience, as 
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The initial and boundary conditions become 
 

0),1(,0),1()0,( ==−= tVtVyV                                                                                   (7a) 

 
1),1(,0),1()0,( ==−= tTtTyT                                                                                    (7b) 

 
Equations (5) and (6) represent a coupled system of nonlinear partial differential 
equations, which are solved numerically under the initial and boundary conditions 
(7), using the method of finite difference. A linearization technique is first applied to 
replace the nonlinear terms at a linear stage, with the corrections incorporated in 
subsequent iterative steps until convergence is reached. The Crank-Nicolson implicit 
method [23] is applied at two successive time levels. An iterative scheme is used to 
solve the linearized system of difference equations. The solution at a certain time 
step is chosen as an initial guess for next time step, and the iterations are continued 
until convergence, within a prescribed accuracy. Finally, the resulting block tri-
diagonal system is solved using the generalized Thomas algorithm [23]. The finite 
difference equations relating the variables are obtained by writing the equations at 
the midpoint of the computational cell and then replacing the different terms by their 
second-order central difference approximations in the y-direction. The diffusion terms 
are replaced by the average of the central differences at two successive time levels.  
The computational domain is divided into meshes each of dimension ∆t and ∆y in 
time and space respectively. Grid-independence studies show that the computational 
domain 0<t<∞ and -1<y<1 can be divided into intervals with step sizes ∆t=0.001 and 
∆y=0.005 for time and space, respectively.  Convergence of the scheme is assumed 
when every one of the variables V, T, and their gradients for the last two 
approximations differs by less than 10-6 for all values of y in -1<y<1 at every time 
step.  Computations have been made for G=5, 1=α , Pr=1 and Ec=0.2.  
  
 
RESULTS AND DISCUSSION 
 
Figures 1 and 2 show the time progression of the profiles of the velocity V and 
temperature T for the cases N=0 and N=0.5 and for M=0.5, Q=0.5, and S=0.5. It is 
found that both V and T increase with time for a short interval and then starts 
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decreasing with time up till the steady state.  It is also indicated that increasing N 
increases V and T and the time at which they reach their steady state values due to 
the decrease in viscosity. 
 
Figures 3 to 10 present the variation of the velocity V and the temperature T at the 
mid-plane of the rectangular channel with time for various values of N, M, Q, and S.  
Both V and T do not increase monotonically with time. Figures 3 and 4 show the 
effect of N in both the non-porous and porous cases when Q=0.5 and S=0. It is 
found that both V and T increase with increasing N, that is with the decrease of 
viscosity. It is easy to understand that decreasing the viscosity increases the fluid 
velocity, but the effect of this on temperature is not straightforward. The increase of 
V at the mid-plane implies an increase in velocity gradients but due to the decrease 
in viscosity with increasing N, it is difficult to tell beforehand whether the viscous 

dissipation which is proportional to 2
)/( yVe NT ∂∂−  increases or decreases. The 

results indicate that T increases. 
   

Figures 5 and 6 show the effect of M on both V and T for the cases N=0 and 1 and 
for Q=0.5 and S=0.  For the case N=0, as shown in Fig. 5a, increasing M decreases 
V due to the increase in the damping force while its effect on the steady state time of 
V is small. Also, increasing M decreases T due to the decrease in the viscous 
dissipation. Figures 5b and 6b present a more apparent effect of M on the velocity V 
and the temperature T at small time in the case of large values of N.  
  
Figures 7 and 8 present the effect of Q on V and T at y=0 for N=0 and 1 and for  
M=0.5 and S=0.  It is indicated that increasing N increases both V and T and their 
steady state times for all values of Q and that the effect of Q on V and T depends on 
time.  For small and moderate time, increasing Q decreases both V and T.  But for 
large time, V and T increases with increasing Q. This results in a crossover in V and 
T charts with time which is more apparent for V than for T.  Figures 7a and 8a show 
that increasing Q increases the time at which they reach their steady state values.  
Comparing Figs. 7a with 7b and 8a with 8b shows that the influence of Q on V and T 
is more pronounced for small values of N. 
 
Figures 9 and 10 present the effect of the suction parameter S on both V and T for 
the cases N=0 and 0.5 and for M=Q=0.5.  Increasing S decreases both V and T as a 
result of pumping the fluid from the more slow and cold lower half region to the 
centre of the channel. It is also indicated from Fig. 10 that S has a negligible effect 
on the steady state time of T. The influence of S on V depends greatly on N, while 
the situation is not the same for the temperature T. 
 
 
CONCLUSIONS 
 
The transient flow and heat transfer through a porous medium of a non-Newtonian 
viscoelastic fluid between two parallel porous plates is studied considering the 
viscosity to be temperature-dependent and in the presence of an exponential 
decaying pressure gradient. The effect of the viscosity exponent N, the 
viscoelasticity parameter Q, the porosity parameter M, and the suction parameter S 
on the velocity and temperature fields is discussed. It was found that the variation of 
the viscosity exponent N has a marked effect on the steady state time of both V and 



55 MP  Proceedings of the 15th Int. AMME Conference, 29-31 May, 2012 

 

T. It was also observed that the variation of both V and T with the parameters M, Q, 
and S depends greatly on the viscosity exponent N. It is interesting to detect that the 
variation of the velocity and temperature on the viscoelasticity parameter Q depends 
upon time. 
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Fig. 1 Time development of the profile of V for various values of N 
(M=0.5, Q=0.5, and S=0.5). 
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Fig. 2 Time development of the profile of T for various values of N  

(M=0.5, Q=0.5, and S=0.5) 
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Fig. 3 Time development of V at y=0 for various values of N and M (Q=0.5 and S=0) 
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Fig. 4 Time development of T at y=0 for various values of N and M (Q=0.5 and S=0) 
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Fig. 5 Time development of V at y=0 for various values of N and M (Q=0.5 and S=0) 
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Fig. 6 Time development of T at y=0 for various values of N and M (Q=0.5 and S=0). 
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Fig. 7 Time development of V at y=0 for various values of N and Q (M=0.5 and S=0). 
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Fig. 8 Time development of T at y=0 for various values of N and Q (M=0.5 and S=0). 
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Fig. 9 Time development of V at y=0 for various values of N and S (M=0.5 and Q=0.5). 
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Fig. 10 Time development of T at y=0 for various values of N and S 
(M=0.5 and Q=0.5). 

 
 
 
 
 
 
 


