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 ABSTRACT  
 
Two-dimensional steady laminar natural convection in a differentially heated cavity 
filled with water and has various aspect ratios due to buoyancy force effect is 
analyzed numerically. The governing mass, momentum and energy equations are 
considered and a finite volume algorithm is used to capture the numerical solution. 
The left vertical side wall of the cavity is linearly heated while the right vertical one is 
maintained at constant cold temperature. The bottom wall is maintained at constant 
hot temperature while the top wall is considered thermally insulated. The Rayleigh 
number is varied from 103 to 106, while the cavity aspect ratio (W/H) is varied as 0.5, 
1.0 and 2.0 respectively. Results are presented in the form of streamline and 
isotherm contours. The results of the present work explain that the natural 
convection phenomenon is significantly influenced by changing the cavity aspect 
ratio, so that when the aspect ratio is high the convection effect is week and vice 
versa. Also, it is found that non-uniform heating in the left vertical sidewall of the 
cavity plays a major role to improve the heat transfer rates. For uniform and non-
uniform heating of the bottom wall and left vertical sidewall respectively, the local 
Nusselt number at these walls increases from its minimum value at the left edge of 
these walls toward maximum value at the right edge. While, the average Nusselt 
number for both left side and bottom walls increases with increasing of Rayleigh 
number. 
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 NOMENCLATURE 
 

Symbol Description Unit 

g Gravitational acceleration m/s
2
 

H Height of the cavity m 

 Average Nusselt number  

Nu Local Nusselt number  

P Dimensionless pressure  

p Pressure N/m
2

 

Pr Prandtl number  

Ra Rayleigh number  

T Temperature °C 

U Dimensionless velocity component in x-direction  

u Velocity component in x-direction m/s 

V Dimensionless velocity component in y-direction  

v Velocity component in y-direction m/s 

W Width of the cavity m 

X Dimensionless Coordinate in horizontal direction  

x  Cartesian coordinate in horizontal direction m 

Y Dimensionless Coordinate in vertical direction  

y Cartesian coordinate in vertical direction m 

GREEK SYMBOLS 

α Thermal diffusivity m
2
/s 

β Coefficient of thermal expansion K
-1

 

θ Dimensionless temperature  

ν Kinematic viscosity of the fluid m
2
/s 

ρ Density of the fluid kg/m
3

 

SUBSCRIPTS  

B Bottom  

c Cold  

h Hot  

L Left  

  

INTRODUCTION   
 
In various thermal applications, the problems of control and measurement of heat 
transfer by buoyancy-driven flow (sometimes, called natural convection) is very 
important process. This type of flow is generated by density gradients, which in most 
cases arise from some imposed external heat source. In most cases, the theoretical 
approach is impossible; therefore experimentation (numerical or standard 
experimentation) is used to simulate buoyancy-driven flow problems. The heat 
transfer by natural convection motion was used as an important model for many 



148 MP  Proceedings of the 15th Int. AMME Conference, 29-31 May, 2012 

 

engineering purposes. For example, circulation of fluid in electronic or computer 
equipments, in the study of the structure of stars and planets, thermal energy 
storage systems, cooling of nuclear reactors and so on. Therefore, for this reason 
the natural convection heat transfer in cavities has received considerable attention 
for several years [1].Square and rectangular cavities heated and cooled on the sides 
continue to be the geometry of most interest. Several numerical simulations have 
been reported for various aspect ratios and boundary conditions. The square cavity 
has been registed in the literature as the most suitable case for the validation of 
numerical codes for thermal analysis and for physical understanding of buoyancy-
driven flow in cavities. The most usual working fluids analyzed in the literature have 
been mainly air and water. 
 
  
LITERATURE REVIEW 
 
Experimental and numerical investigations on natural convection heat transfer in 
cavities and enclosures have carried out by numerous researchers. Imberger [2] 
studied experimentally the steady motion of water in an enclosed rectangular cavity 
with differentially heated vertical end walls. The Rayleigh number was allowed to 
vary sufficiently to enable a study to be made of the transition from a flow driven by 
the vertical wall boundary layers to one sustained by a longitudinal temperature 
gradient in the central sections of the cavity.  
 
Hasnaoui et al. [3] investigated by using a finite difference procedure the natural 
convection in an enclosed cavity with localized heating from below. The upper 
surface was considered cooled at a constant temperature and a portion of the 
bottom surface was isothermally heated while the rest of the bottom surface and the 
vertical walls were considered adiabatic. The effects of the thermophysical and 
geometrical parameters on the fluid flow and temperature fields were studied also. 
Moreover, the existence of multiple steady-state solutions and the oscillatory 
behavior for a given set of the governing parameters were demonstrated.  
 
Braunsfurth et al. [4] presented numerical and experimental temperature profiles 
corresponding to laminar natural convection of liquid gallium in a rectangular cavity 
heated through the side walls. They concluded that at higher Grashof numbers, the 
two-dimensional numerical solution and the experimental data diverged from each 
other suggesting that three-dimensional effects became more important. Aydin and 
Yang [5] investigated numerically natural convection of air in a two-dimensional, 
rectangular enclosure with localized heating from below and symmetrical cooling 
from the sides. Local results are presented in the form of streamline and isotherm 
plots as well as the variation of local Nusselt number on the heated wall.  
 
Kalita et al.[6] computed using an accurate higher-order compact scheme, the flow in 
a thermally driven square cavity with adiabatic top and bottom walls and differentially 
heated vertical walls for a wide range of Rayleigh numbers (103<Ra<107).They 
concluded that, the location of the maximum local Nusselt number at the hot wall 
progressively moved down as Rayleigh number increased. Also, they noticed that 
the boundary layer thickness was seen to progressively decrease as Rayleigh 
number increased.  
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Basak et al. [7] performed a numerical study by using a finite element method to 
investigate the steady laminar natural convection flow in a square cavity with 
uniformly and non-uniformly heated bottom wall, and adiabatic top wall maintaining 
constant temperature of cold vertical walls. The results indicated that the non-
uniform heating of the bottom wall produced greater heat transfer rates at the center 
of the bottom wall than the uniform heating case for all Rayleigh numbers while the 
average Nusselt numbers results showed lower heat transfer rates for the non-
uniform heating case.  
 
Xin and Quere [8] simulated two-dimensional natural convection in an air-filled 
differentially heated cavities of aspect ratios ranging from 1 to 7 with adiabatic 
horizontal walls using sophisticated algorithms of stability analysis. They concluded 
that, when aspect ratio was increased, not only detached flow was observed at 
higher Rayleigh number, but also regular evolution from flows without detached flow 
to those with detached flow was no longer possible.  
 
Mariani and Belo [9] studied numerically the thermal and fluid dynamics behavior of 
laminar natural air convection in a bi-dimensional square cavity. The square cavity 
had two walls heated with different temperatures and two isolated walls. The 
Boussinesq approximation was used with a constant Prandtl number and the 
numerical simulation was made up of several Rayleigh numbers. They concluded 
that with the growth of the Rayleigh number, there was a growth of circulation inside 
the cavity. Also, a clear compression of isotherms near cavity boundaries was 
observed.  
 
Basak et al.[10] studied numerically by using the finite-element method the influence 
of uniform and non-uniform heating of wall(s) on natural-convection flow in a square 
cavity filled with a porous medium. In their investigation, the left vertical wall and the 
bottom wall were uniformly and non-uniformly heated, while the right vertical wall 
was maintained at constant cold temperature and the top wall was considered 
insulated. They concluded that , non-uniform heating of the bottom wall produced 
greater heat transfer rate at the center of the bottom wall than the uniform heating 
case for all Rayleigh numbers, but average Nusselt number showed overall lower 
heat transfer rate for the non-uniform heating case.  
 
Gustavsen and Thue [11] studied the effect of the horizontal aspect ratio on heat 
flow through cavities with a high vertical aspect ratio. The cavities studied had two 
opposite isothermal vertical walls separated by four adiabatic walls. The vertical 
aspect ratios were 20, 40 and 80 while the horizontal aspect ratios range from 0.2 to 
5. The results showed that three-dimensional cavities with a horizontal aspect ratio 
larger than five can be considered as being two-dimensional cavities to within 4% 
when considering heat transfer rates.  
 
Mahdi et al. [12] analyzed numerically steady two - dimensional natural convection 
heat transfer of Newtonian and non-Newtonian fluids inside a square enclosure for a 
wide range of the modified Rayleigh number of (103 ≤ Ra ≤ 105) and a modified 
Prandtl number in the range ( 1,10 and 100).Two types of boundary conditions have 
been considered; First when the side walls are heated at different uniform 
temperatures and the horizontal walls are insulated, whereas the second when the 
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bottom wall was heated by applying a uniform heat flux while the other walls are at a 
constant cold temperature. The results were presented in terms of isotherms and 
streamlines to show the behavior of the fluid flow and temperature fields. However, 
from the above literature review, there were little published researches related with   
natural convection flow in the cavity filled with water when one of the cavity sidewalls 
was linearly heated. Most previous studies looked at the influence of Rayleigh 
number on the flow and thermal fields in closed cavities with constant aspect ratio.  
 
The object of the current study is to solve the steady natural convection flow in a 
water- filled cavity with various aspect ratios when the bottom wall is maintained at 
constant hot temperature, the left side wall is linearly heated, the right side wall is 
considered cold while the top wall is considered adiabatic. The present study is 
based on the configuration of Sathiyamoorthy et al. [13] where the natural convection 
flow in a square cavity with linearly heated side wall(s) is studied numerically. 
Sathiyamoorthy et al. [13] did not investigate the effect of changing the aspect ratio 
of the cavity on the flow and heat transfer processes. For this reason, it is considered 
in detail for the first time in the present work. 
 
 
PROBLEM DESCRIPTION AND THE MATHEMATICAL ANALYSIS 
 
A problem of two-dimensional, Newtonian, steady, laminar buoyancy-driven flow 
past a cavity which is filled with water (Pr = 6.0) is formulated mathematically in this 
section where the Boussinesq approximation is used. This means that all variable-
property effects are neglected, except for density in the momentum equation. The 
configuration is depicted in Fig.1.Cavity aspect ratio (W/H) is varied as 0.5, 1.0 and 
2.0 respectively. The aspect ratio is a ratio between the width and the height of the 
cavity. The left vertical side wall is linearly heated while the right vertical side wall is 
considered cold. The bottom wall is maintained at constant hot temperature while the 
top wall is considered adiabatic. The Rayleigh number is varied from 103  to 106 .The 
governing equations for steady buoyancy-driven flow using conservation of mass, 
momentum and energy can be written in a dimensionless form as [13]: 
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These dimensionless governing equations have been obtained by employing the 

following non-dimensional variables as listed below:  
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 The non-dimensional boundary conditions are given by: 

1- No-slip conditions are applied at all cavity walls, i.e., U = V = 0. 
2- The bottom wall of the cavity is maintained at constant hot temperature, i.e., 

1)0,( =Xθ . 

3- The top wall of the cavity is considered adiabatic, i.e., 0)1,( =
∂

∂
X

Y

θ
. 

4- The left vertical sidewall of the cavity is linearly heated ,i.e.,
 

YY −= 1),0(θ  

5- The right vertical sidewall of the cavity is maintained at constant cold 
temperature, i.e. 0),1( =Yθ . 

    

where X and Y are the dimensionless coordinates measured along the horizontal 

and vertical axes, respectively, u and v being the dimensional velocity components 

along x and y  axes .Also, θ  is the dimensionless temperature, P is the 

dimensionless pressure, Pr  is the Prandtl number, Ra  is the Rayleigh number, β  is 

the volumetric coefficient of thermal expansion, ρ  is the density,υ  is the kinematic 

viscosity, α  is the thermal diffusivity and  g  is the gravitational acceleration. The 

local Nusselt number at the bottom and left sidewalls can be written as [13]: 

 
 

while the average Nusselt number at the bottom and left sidewalls are computed as:  

 
 

 

SOLUTION PROCEDURE AND VERIFICATION 
 
The present computational approach is based on finite volume method to discretize 
the dimensionless governing equations related to the pressure, temperature and 
velocities as explained in Colella and Puckett [14]. The computational process of 
non-uniform grids needs the cell face velocities to be calculated. In the present 
numerical procedure, the flow inside the cavity is solved with special attention to the 
corners of the cavity where more girds are clustered in these regions to capture the 
flow and thermal fields accurately. This is achieved by employing more nodes at the 
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cavity edges where sharp gradients of velocity and temperature are expected. Figure 
2 shows the grid system of the present work.  
 
A FORTRAN program is constructed to compute the pressures, velocities and 
temperatures. The program runs after introduce the given required data such as 
Rayleigh number, Prandtl number  and an external subroutine is constructed also 
and linked with the main program to compute the required cavity mesh. After this, the 
main program begins to discretize the partial differential equations on uniform grids, 
in which the unknown variable is a dependent function on several variables of space, 
and to know the evolution of the unknown factor (temperature or velocity) in a finite 
and homogeneous field starting from known initial values. The obtained tri-diagonal 
linear systems are solved by the Thomas algorithm approach [15]. The iterative 
method is used to produce the final results and the iteration process continues until 
the maximum difference between iterations becomes lower than 10-7. When, the 
convergence criterion is satisfied, the output data file is printed. Otherwise, the 
iteration process still continues to guarantee a satisfactory convergence of the 
numerical simulation. 
 
 In order to verify the present numerical results, a comparison between the results of 
the present work and the previous results of Sathiyamoorthy et al. [13] is performed 
for a natural convection simulation in a square cavity (W/H=1) filled with air ( Pr = 
0.7) when the left vertical side wall is linearly heated while the right vertical one is 
maintained at constant cold temperature. This comparison is made for Rayleigh 
number (Ra = 103 , 104  and 105 ) respectively as shown in Fig. 3.Excellant 
agreement is achieved between the present work and the work of  Sathiyamoorthy et 
al. [13] for both stream functions and temperatures as shown in Fig. 3 which 
validates the present computations process. 
 
 
RESULTS AND DISCUSSION  
 
The characteristics of the temperature and flow fields in a differentially heated cavity 
filled with water and have various aspect ratios is examined and discussed in this 
section. Computations have been carried out for the following ranges of the 
dimensionless parameters: Prandtl number (Pr) = 6.0, the Rayleigh number is varied 
from 103 to 106, the cavity aspect ratio (W/H) is varied as 0.5, 1 and 2 respectively. 
The cavity has been analyzed with uniformly heated bottom and non-uniformly 
heated left sidewalls respectively. While, the right sidewall and the top wall are 
considered cold and thermally insulated, respectively. 
  
For Square Cavity 
   
The effect of Rayleigh number variation on natural convection characteristics which 
is  induced by linearly heated left vertical wall in a square cavity (W/H=1) filled with 
water ( Pr = 6) is displayed in Fig.4 by using streamlines (on the left) and isotherms 
(on the right) contour for Rayleigh number varying from 103 to 106. The buoyancy-
driven flow induced due to the temperature difference between isothermal hot and 
cold vertical sidewalls which makes the fluid to rotate and transfers the thermal 
energy from hot left sidewall to cold right sidewall through natural convection 
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mechanism. The fluid begins to move along the hot bottom wall due to uniform 
heating effect and then turns smoothly up along the left vertical sidewall due to linear 
heating effect and then impacts with the adiabatic top wall which causes to turn the 
flow direction towards the right cold vertical sidewall and turns back horizontally to 
the central region after hitting the hot bottom wall. As expected due to this repeated 
fluid movement, re-circulating vortices begin to grow. The circulations are greater 
near the cavity core and least at the boundaries, due to the no-slip boundary 
conditions. When the Rayleigh numbers are small ( i.e., Ra = 103 and 104 ) , the 
buoyancy force effect is slight, so for this case the heat is transferred due to 
conduction mechanism. The convection role in this case is small because the 
generated buoyancy force is not high enough to begin fluid convection.  
 
In Figure 4, it is found that when the Rayleigh number is very small ( i.e., Ra = 103 ), 
the flow field inside the square cavity can be represented by a large singular circular 
vortex which covers all the cavity size. When the Rayleigh number is slightly 
increased ( i.e., Ra = 104 ) , the flow field can be represented by a small minor vortex 
which is located at the left upper corner of the cavity and a large major  vortex which 
occupies the other remaining cavity regions. Furthermore, when the Rayleigh 
numbers are become large (i.e., Ra = 105 and 106), the minor vortex size increases 
and the major vortex size decreases, while the shape of the vortices are converted 
from singular circular shape to non-singular elliptical shape. Furthermore, with the 
growth of the Rayleigh number, there is a clear growth in the intensity of circulation, 
since the buoyancy force effect becomes high.  
 
With respect to isotherms, it is found that when the Rayleigh numbers are small (i.e., 
Ra = 103 and 104), the isotherms are approximately linear and they are symmetrical 
near the top edges of the cavity sidewalls indicating that the heat is transferred by 
the conduction. No clear thermal boundary layer can be noticed when the Rayleigh 
number is small. As the Rayleigh numbers increase (i.e., Ra = 105 and 106), the 
isotherms are begin to accumulate adjacent to the cavity boundaries indicating that 
the convection is the dominant mechanism for heat transfer in the cavity. These 
isotherms refer that a large temperature gradient can be observed there. In this case 
a thermal boundary layer can be found adjacent to the hot left sidewall and the hot 
bottom wall of the cavity.  
 
For Rectangular or Slender Cavity 
 
The streamline and isotherm contours in a rectangular cavity (W/H=0.5) filled with 
water (Pr = 6) for linearly heated left vertical sidewall and cold right vertical sidewall 
with various values of Rayleigh numbers are illustrated in Fig. 5. It is useful to say 
that, when the aspect ratio is smaller than one (W/H <1), the cavity is called a 
slender cavity. It is found from this figure, that when the aspect ratio decreases from 
(W/H=1) in Fig. 4 to (W/H=0.5) in Fig. 5, the convection effect becomes stronger and 
the circulation strength increases. This is due to the reduction in the cavity width 
which makes the hot left vertical sidewall closer to the cold right vertical sidewall and 
as a result causes to increase the convection effect. Also, it can be seen that the re-
circulating vortices inside the cavity begin to enlarge in the vertical direction and its 
shape becomes ellipsoidal. Furthermore, again it can be seen that when the 
Rayleigh number is very small (i.e., Ra = 103), the flow field can be described by a 
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large singular vortices which cover all the cavity regions. When the Rayleigh number 
increases an extra vortices can be observed at the left top zone of the cavity and its 
size increases as the Rayleigh number increases. With respect to isotherms, when 
the aspect ratio decreases, the isotherm patterns change significantly especially 
inside the cavity, indicating that convection is the dominant mechanism for heat 
transfer in the cavity. The instabilities and disturbance of the isotherm patterns 
increase with increasing of the Rayleigh number. The isotherms are crowded and 
pressurized towards the hot bottom wall and left hot sidewall and form a thermal 
boundary layer.  
 
From this observation it can be concluded that the heat is transferred due to 
convection when the aspect ratio decreases. However, it can be seen also in the 
vicinity of the hot bottom wall, hot left and cold right sidewalls that the isotherm 
patterns are somewhat still linear and parallel. This refers that the conduction is still 
has a role in the heat transfer mechanism. Moreover, the temperature gradients near 
both the bottom and left vertical walls play an important role in developing the 
thermal boundary layer. The linear heating provides a smooth temperature 
distribution on the cavity boundaries.  
 
For Shallow Cavity 
 
The flow and temperature fields in terms of computed streamlines and isotherms in a 

shallow cavity (W/H = 2) filled with water (Pr = 6) for linearly heated left vertical 

sidewall and cold right vertical sidewall with various values of Rayleigh numbers are 

explained in Fig. 6. It is useful to mention that, when the aspect ratio is greater than 

one (W/H >1), the cavity is called a shallow cavity. It can be seen in Fig. 6, that the 

flow field can be represented by two major vortices which are distributed to cover all 

the cavity regions. As the Rayleigh number increases, one of major vortices begins 

to enlarge while the other vortex begins to diminish. Also, small minor vortices can 

be noticed near the cavity boundaries. This is can be return to the reduction in the 

cavity height and increasing in the cavity width which cause the hot left vertical 

sidewall more far from the cold right vertical sidewall and as a result causes to 

decrease the convection effect. Also, it can be seen that the re-circulating vortices 

inside the cavity begin to enlarge in the horizontal direction and its shape becomes 

irregular. With respect to isotherms, when the aspect ratio increases, the isotherms 

become in general parallel in shape and approximately linear. Therefore, it can be 

concluded that the heat is transferred due to conduction when the aspect ratio 

increases.  

Local Nusselt Number 

Figure 7 demonstrates the variation of local Nusselt number with distance along a 
hot bottom wall (left) and linearly heated left sidewall (right) for various Rayleigh 
number and different aspect ratio (W/H= 0.5, 1, 2).For both walls, the local Nusselt 
number increases when the Rayleigh number increases. For linearly heated left 
sidewall, the local Nusselt number at this wall (NuL) is very high especially at the 
right edge of this wall. This is due to the strong circulations in this region which 
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causes to increase the temperature gradient and as a result the local Nusselt 
number increases. Also, It can be seen a strong fluctuations in local Nusselt number 
behavior with distance along the left sidewall due to non-uniform heating effect at 
this wall which causes the isotherm contours to be compressed towards the 
boundary of the cavity and cause this fluctuations. Furthermore, it can be seen that 
the aspect ratio does not have a significant effect of the local Nusselt number. From 
the other hand, for hot bottom wall, the local Nusselt number at this wall (Nub) is 
again maximum at the right edge of this wall. The physical reason of this behavior is 
due to the high increase in the temperature gradient and strong circulation which 
lead to increase the local Nusselt number at this wall. The local Nusselt number 
decreases at this wall when the aspect ratio increases.  
 
Average Nusselt Number 
 
Figure 8 shows variation of average Nusselt number with Rayleigh number along a 
hot bottom wall (left) and  linearly heated left sidewall (right) at different aspect ratio 
(W/H= 0.5, 1, 2).It can be seen from this figure that for hot bottom wall, when the 
aspect ratio increases, the average Nusselt number decreases. This is because 
when the aspect ratio increases, its increasing causes to decrease the cavity height 
and leads to decrease the Rayleigh number, since this number depends on the 
cavity height and consequently average Nusselt number decreases. From the other 
hand, due to non-uniform or linear heating of the left vertical sidewall, the heating 
rate near this wall is generally high, which induces a high buoyancy effect, resulting 
in a high thermal gradient and as a result the average Nusselt number increases 
.Furthermore, it can be seen that as the Rayleigh number increases, the average 
Nusselt number for both bottom wall and left sidewall increase. This is due to the 
increase in the convection currents intensity and circulation strength which cause a 
dramatic increase in the average Nusselt number especially for high Rayleigh 
number. 
 
 
6. CONCLUSIONS  
 
The following conclusions can be drawn from the results of the present work: 

1. When the Rayleigh number is very low ( i.e., Ra = 103 ), the circulation strength 

is weak and a large singular circular vortex can be observed inside the cavity. At, 

Ra = 104, the flow field can be represented by a small minor and a large major 

vortices. 

2.  With the increasing of Rayleigh number ( i.e., Ra = 105 and 106 ), the major 

vortex size decreases while the minor vortex size increases and the shape of 

these vortices become ellipsoidal. Also, a strong circulation can be noticed in the 

cavity. 

3. When the Rayleigh number is low ( i.e., Ra = 103 and 104), the isotherms are in 

general parallel straight lines adjacent to the left and right cavity sidewalls. 
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4. Sharp thermal boundary layers are found near to the hot left side wall and the 

hot bottom wall of the cavity and their thickness increase when a Rayleigh 

number increases.  

5. For square cavity, when the aspect ratio equals one (W/H = 1), a singular 

circular vortex is formed. While for slender cavity (W/H <1), the convection effect 

becomes stronger and the circulation strength increases and the re-circulating  

vortices inside the cavity begin to enlarge in the vertical direction and its shape 

becomes ellipsoidal. 

6. For shallow cavity (W/H >1), the flow field can be represented by two major 

vortices which are distributed to cover all the cavity regions. As the Rayleigh 

number increases, one of major vortices begins to enlarge while the other vortex 

begins to diminish. Also, small minor vortices can be noticed near the cavity 

boundaries.  

7. For shallow cavity, the isotherms are usually parallel in shape and approximately 

linear indicating that the conduction model is dominant. While for slender cavity, 

the isotherms are non-uniformly and more confusion occurs in it indicating that 

the convection model is dominant. 

8. For both hot bottom and left walls, the local Nusselt number increases when the 

Rayleigh number increases. 

9. Strong fluctuations occur in local Nusselt number behavior with distance along 

the left sidewall due to non-uniform heating effect at this wall. 

10. For linearly heated left sidewall, the aspect ratio does not have a significant 

effect of the local Nusselt number, while for hot bottom wall the local Nusselt 

number decreases when the aspect ratio increases. 

11. For hot bottom wall, the average Nusselt number decreases when the aspect 

ratio increases. 

12. For hot left vertical sidewall, the average Nusselt number increases when the 

aspect ratio increases due to non-uniform or linear heating at this wall. 

13. For both left side and bottom walls the average Nusselt number increase with 
the Rayleigh number. 
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Fig. 2.  A typical 2D - grid distribution (88 x 88) 
with non-uniform and orthogonal 
distributions for the square cavity 

(W/H=1). 

Fig.1. Schematic diagram of the square cavity 
(W/H=1) filled with water at coordinate 
system   along with boundary conditions. 
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Fig.3. Comparison of the streamline and isotherm contours between the present work and that of 

Sathiyamoorthy et al. [13] in a square cavity (W/H=1) filled with air (Pr = 0.7) for linearly 

heated left sidewall and cold right sidewall with various values of Rayleigh numbers. 

Present  Results Sathiyamoorthy et al. Results [13] 
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Fig.4. Streamline and isotherm contours in a square cavity (W/H=1) filled with water (Pr = 6) for linearly 

heated left sidewall and cold right sidewall with various values of Rayleigh numbers.   
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Fig.5. Streamline and isotherm contours in a slender cavity (W/H= 0.5) filled with water (Pr = 6) for 

linearly heated left sidewall and cold right sidewall with various values of Rayleigh numbers.   
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Fig.6. Streamline and isotherm contours in a shallow cavity (W/H= 2) filled with water (Pr = 6) for 

linearly heated left sidewall and cold right sidewall with various values of Rayleigh numbers. 
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Fig.7.Variation of local Nusselt number with distance along a hot bottom wall (on the left) and linearly heated left 

sidewall (on the right) for various Rayleigh number and different aspect ratios (W/H= 0.5, 1, 2). 
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Fig.8. Variation of average Nusselt number with Rayleigh number along a hot bottom wall (on the 

left) and  linearly heated left sidewall (on the right) at different aspect ratios (W/H = 0.5, 1, 

2). 
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