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ABSTRACT 
 
To compete on a global level, manufacturers must strive to find new solutions to 
ensure high product quality while maximizing productivity. One way to address many 
of the challenges this creates is to turn increasingly to mechatronic design approach 
and automation. To successfully realize automation, a mechatronic system for on-
line process monitoring is required to take the place of an expert’s judgment. This 
paper outlines the use of a statistical multivariate technique called Projection to 
Latent Structure (PLS), and applies it to the monitoring of a machining process as an 
application.  This approach is used to integrate machine tool sensory data from a 
milling machine. Experiments were conducted on a milling machine under three 
conditions, sharp, worn and chatter tools. The score models were tested under 
different conditions with the results showing that the proposed technique can be 
used for tool wear monitoring and can successfully differentiate between new 
process conditions. 
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INTRODUCTION  
 

Many manufacturing companies are equipped with unmanned or partially manned 
production lines made up of multiple machines working together in cells. Thus 
industrial machines need to be assessed to get more insight about their performance 
with minimal human supervision. To emulate a human’s monitoring action it is highly 
desirable to implement a mechatronic system for on-line process monitoring which 
will allow the supervision of the performance of industrial processes. Also it is 
valuable to provide immediate contribution information identifying common failure 
mechanisms that can be assigned to the machine tool responsible for the process 
shift.  
 
Most monitoring techniques presently available focus on one or a limited number of 
failure mechanisms like tool wear, breakage or chatter using a heuristic approach 
which gives limited information about product quality [1]. In other words, the used 
signals depend on a special problem as well as on the type of machine. A review of 
different technologies in process fault detection and monitoring applications can be 
found in [2-10].  
 
They identify three characteristics that are commonly considered for future industrial 
researches and applications of tool monitoring systems. They are the use of multiple 
sensors [11], the integration of control signals from the machine controller into the 
monitoring system [12] and finally the use of wireless and telecommunication based 
systems to facilitate dissemination of information [13-14]. Among these techniques, 
artificial neural network ANNs and its combination with other methods have been the 
most predominant to date [15-18]. ANNs techniques are characterized as black box 
approaches which model the relation between different variables to a desired 
response without giving any information about what happens inside the process. 
Also some of these approaches are susceptible to missing data due to sensor 
reliability issues, and some applications use many charts to monitor individual 
process.  In addition, issues associated with collinearity and dimensionality needs to 
still be specifically addressed in these techniques. Looking for a generic approach to 
solve many of these limitations can be addressed through the use of multivariate 
statistical analysis. 
 
Multivariate statistical process control (MSPC) [20], takes a different approach as 
compared to the other methods mentioned previously. The most fundamental 
difference with this approach is that the model is based on non-causal empirical 
correlations extracted from normal plant operating data when only common cause 
variation exists [21]. The simplicity of this approach is that there is no need for a 
fundamental model of the system and only data from normal production needs to be 
used, which is generally available in some form at most factories. Two of the 
approaches used in multivariate analysis are: a projection method called principal 
component analysis (PCA) [22-23] and projection to latent structure (PLS) [24]. Many 
applications of these two techniques have been successfully applied in other fields of 
process monitoring [20, 27, 29] ranging from batch to continuous processes. 
 
This paper outlines the use of the multivariate score models to develop a 
mechatronic system to monitor an industrial process. By integrating different sensory 
data such as force, spindle and table vibration signals from a milling machine under 
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different conditions, models based on PLS and its extension PLS-DA [19] can be 
developed into a single user interface. From this interface surface roughness and 
tool wear, for example, can be monitored using the score space of these models. 
 

 

MULTIVARIATE PLS BASIC THEROY 
 

PLS is defined as a generalized multiple regression method based on relating two 
blocks of data made up of input and output variables. This method is particularly 
effective at modelling and analyzing variables that are correlated; which is the case 
for many process data. 
 
In our case, we test the collinearity within variables by checking the loading plot, a 
scatter plot between the model weights in the first 2 principal components as shown 
in Fig.1. It shows that a positive correlation exists between feed/tooth, rpm, vibration,  
current and the forces in (y, z)-directions in the direction of the first principal 
components (x-axis). Also, it shows a negative correlation between the mentioned 
factors with the acoustic emission and the feed force. An overview about the method 
and its applications can be found in [31]. This commonly occurring collinearity 
between variables means that the data will have some dominant type of variability 
that carries most of the information. To visualize these hidden dominant directions, 
variables are projected onto a new subspace. This implies the reduction of a large 
data set from many variables to a few factor scores (t,u) and loadings (w,p,q). The 
point behind using 2 loadings (w,p) to describe x-variables, is that in PLS algorithm, 
the y’s is allowed to intervene directly during the input variables decomposition which 
decreases the variance explanation of the input variables towards the maximum 
predictability of the response variable. In this case we use two loadings to describe 
the input variables, the w’s to calculate principal components and the p’s when 
calculating the residuals for each component because it better describes input 
variables. Scores can be described as new generalized variables while loadings 
build the connection between the original space and the new subspace. The 
approach works by selecting factors of input variables in a sequence which 
successively maximizes the explained covariance between the input and output 
variables. Given a matrix of input data X, and output data, Y, a factor of the input 
data, t1, and output data, u1, is evaluated such that:     
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These equations are referred to as the outer relationships where the “t” vectors are 
mutually orthogonal. These vectors together with the uk terms are selected so as to 
maximize the covariance between each pair, (tk, uk). Linear regression is performed 
between the tk and the uk terms to produce the inner relationship, such that 

kkkk tbu ε+•=
, where bk is a regression coefficient, and εk refers to the prediction 

error. The PLS method provides the potential for a regularized model through 
selecting an appropriate number of latent variables, uk in the model. The major 
benefit of this approach is that it builds a model between the inputs as well as the 
outputs and finds the maximum correlation between them in the direction of 
maximum prediction of the output response. The benefit of this approach is twofold. 
First, it has the advantage of examining any change that could happen in the new 
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input variables, that is the sensors, before using the model for prediction.  It does this 
by monitoring the input variables using a multivariate chart called the DModX 
(distance to the X-model). Second, it helps to isolate any shifts that could happen by 
providing variables that are responsible for these shifts through details available in 
contribution plots. Furthermore, it is often found that a relatively small number of low-
index latent variables can explain the greater part of the variation in both the input 
and output variables. The algorithm used to calculate the PLS is superficially 
"similar" to the NIPALS (Nonlinear Iterative Partial Least Squares) algorithm [22]. 
Sometimes factors are introduced that describe the data from different groups 
(machines). So, we must assign some distinct levels to these factors to help 
discriminate between different machines. We call these factors qualitative or dummy 
variables. PLS-DA uses dummy variables [32] in the output variable list to separate 
between several groups of data. Mathematically this can be illustrated by adding new 
variables “G” to the model with some regression coefficients say “c”, and set G = 1 
for data from one machine and G = 0 for data from another machine in the following 

way: GcfY •+=

∧∧

. Suppose that 

∧

f  represents the fitted model, so when G = 0, the 

data from the first machine is highlighted:

∧∧

= fY  and by putting G = 1, the data from 

the second machine is highlighted: cfY +=

∧∧

 where c estimates the difference in 
levels between the responses of two groups of machine data. So, data from different 
machines will be clustered depending on their regression coefficient values. 
 

 
EXPERIMENTAL SET-UP 

 

The experimental validation was performed on a CNC milling machine (FADAL 
vmc15). It involved the side end-milling process for X axis feed of 6065-Aluminum 

parts (65×23×3 mm) using a 6 mm, 2-flute high speed steel (HSS) tool.  
 
Two tools were used, one was as supplied (sharp) and the other was worn, prepared 
manually with flank wear of VB=0.2 mm as measured using a toolmaker’s 
microscope. The system used to collect the data has a total of three sensory signals.  

 
 

Table 1. Sample data. 
 

# F/t DOC rpm Ra (µm) 

Sharp tool 0.05 0.45 5000 0.58 

Sharp tool 0.075 0.65 7000 0.57 

Sharp tool 0.05 0.65 7000 0.43 

Worn tool (one tooth) 0.05 0.45 5000 1.84 

Worn tool (one tooth) 0.075 0.65 6500 1.06 

Worn tool (one tooth) 0.05 0.65 5000 1.44 

Worn tool (two teeth) 0.05 0.45 4500 2.42 

Worn tool (two teeth) 0.075 0.65 7500 2.84 

Worn tool (two teeth) 0.05 0.65 6500 2.05 
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One accelerometer (B&K) is used to monitor the vibration of the spindle it is 
connected to an amplifier (B&K). Other accelerometer (B&K) is used to monitor the 
vibration of the table it is connected to an amplifier (B&K), The force signals are 
monitored using a 3-component dynamometer (Kistler 2825A). These signals are 
sampled at 20 kS/s on a PC with a National Instruments data acquisition card (PCI-
6033E) running LabView software. The experimental set-up is shown in Fig. 2. 
 
The test plan involved dry machining with different combinations of depth of cut 
(0.45-0.65mm) and feed/tooth (0.05-0.075mm) for a range of spindle speeds based 
on the capability of the machine. Test runs started from 3,000 RPM and ending at 
7,500 RPM for the machine (40 sharp and 60 worn). The number of experiments is 
arbitrary chosen to cover the combination of feed and depth of cut for different rpm 
and to test the capability of the approach to deal with the machine with all 
observations. Surface roughness Ra values were measured as the relevant quality 

indicator of the machined parts for this study. It was measured in an area of (0.7×8 
mm) along the feed direction using a Mitutoyo sj-201 stylus. A sample of Ra data is 
shown in Table 1. 

 
 

MODEL BUILDING AND CONFIGURATION 
 

The multivariate PLS model is a linear model given in matrix form by: Y = X B + E. 
However, there exists non-linear PLS versions even by augmenting the original 
matrix with the non-linear factors or by building a non-linear relation between score 
factors [33]. To build the model using process and machine variables, let X include 
variables containing the information in the sensory data (forces, base vibration and 
spindle vibration), and the cutting data (feed/tooth, cutting speed and depth of cut). 
These sensors were believed to have a direct correlation with the machined surface 
roughness and in the same time cover many sources of variations that could happen 
during the machining process. Each signal from used sensors was averaged every 
60 msec by taking the mean of the readings to form one observation for each set of 
cutting conditions. Then let Y consist of the machining response which is the surface 
roughness Ra values of the machined parts in this case. Finally, the PLS regression 
is made between X and Y based on an algorithm which is superficially "similar" to 
NIPALS. All the models were built using SIMCA-P code developed by Umetrics. To 
examine the relationship between the inputs and the output in the latent space figure 
3 shows a scatter plot between the t-u scores in the direction of the first principal 
component. It illustrates a dispersed linear trend between them which imply the 
possibility to use the approach for further analysis. 

 

There are different approaches to deal with the available data depending on their 
type. First, we can use only normal data based on common cause variation and build 
the model, then use the model to detect any shift or fault that will violate the 
correlation structure established between the variables during the process. Then by 
examining the contribution plots we can isolate the variables known as X-predictors 
that are most responsible for this shift. This approach is applied using PCA when 
one type of data only (X-variables) is available, or in our case, using PLS when two 
blocks of data, that is both predictors and responses, are available. The second 
approach is based on using data from both good and bad parts. In this case PCA 
can be applied for data clustering and prediction on new incoming data, but in our 
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case, we use PLS-DA, which is generally known to provide better data separation 
than PCA, by assigning different groups of data to the response dummy variables.  
Then the model is used to discriminate between them and to predict the nature of 
new incoming data.   
 
The first model was built using PLS-DA on three groups of existing data (sharp, worn 
and chatter conditions) from the machine with three principal components and the 
following percentage of explanation: X-variables model explanation R2X (cum): 0.64, 
Y-variable model explanation R2Y (cum): 0.80, Y-variable model predictability Q2 
(cum): 0.65. PLS-DA uses three “y” variables in this case as dummy variables to 
separate between sharp (y1), worn (y2) and chatter (y3) data at the training stage. 
Table 2 illustrates the configuration of the X-matrix in the 2 models used in this 
paper. 

 
Table 2.  X-Y matrix. 

 

            X-matrix                  PLS-DA                                                 Y-matrix 

 fx fy fz BVib SVib F/t DOC rpm  Y1 Y2 Y3 

          sharp worn chatter 

          1 0 0 

          0 1 0 

          0 0 1 

 * Sharp, wear and chatter data were used in this model and then learned 
with different conditions. Sharp data were normal data that gave 
accepted surface roughness. 

PLS 

 fx fy fz BVib SVib F/t DOC rpm Y=Ra 

         

         

         

         

 

 

*  Only sharp data were used that gave accepted Ra, then latent control 
charts (Score and DModX ) plots were used to detect abnormalities 
during the process like wear.  

 
 
 
 RESULTS AND ANALYSIS  
 

Before starting the discussion we need to know some aspects of the approach. First, 
all data were mean centered and scaled to unit variance. Second, control limits in the 
latent space were established using F-distribution based on reference distribution 
provided by the dataset [34]. Also, t1 and t2 are the first two principal components 
that capture most of the variance-covariance between the X-Y relationships. Figure 4 
illustrates how the score plot is built for a simple case 3-variables and 2-scores. After 
determining the direction of maximum variation by iterative steps and get the second 
orthogonal direction by the same way after subtracting the first component, we rotate 
the new plane determined by the new score variables t1 and t2 and then monitor the 
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movement of the process variables in the reduced dimensional space during 
machining.   

 

Figure 5 shows the PLS-DA latent space score plot of the data from the milling 
machine (sharp, worn and chatter conditions). It shows the capability of the approach 
to simultaneously monitor industrial process subject to different faulty mechanisms 
tool wear and chatter. It also shows the directions of the wear and chatter 
occurrence machine where the different clusters can be separated by straight lines. 
The normal data group came from conditions that produced an acceptable surface 
roughness. Figure 6 shows the results of testing the model under different conditions 
(normal, excess feed, chatter and wear with excessive feed). It is clear that the 
model successfully separates between different conditions based on their violation of 
the existing correlation pattern between the variables. 
 
As a result, the model can be used to monitor different failure mechanisms. More 
investigation can be carried out using contribution plots to quickly assess which 
factors affect these different shifts and assigning them to the machine responsible for 
this quality issue. Fig.7 shows a contribution plot (They are the loading weights 
multiplied by the change in X-variables between two observations) for an observation 
with chatter; we can notice that vibration provided the largest contributing factor in 
this case. Also, we can see that this fault occurred in machine one (LX1) from the 
positive value of dummy variable X1. 

 

A second model was built based on PLS to relate surface roughness Ra with sensor 
outputs and the main cutting parameters (feed/tooth, rpm, D.O.C.) using two 
principal components with the following percentage explanation: R2X (cum): 0.55, 
R2Y (cum): 0.59, Q2 (cum): 0.488. The model was built using only normal data from 
the machine that gave acceptable quality as indicated by the measured Ra value. 
The model was tested with wear and chatter conditions and monitored in the latent 
space by Hotelling’s T2 and DModX Shewart charts as shown in Fig.8. Hotelling’s T2 
combines all significant scores together in one chart and detects major changes that 
could happen inside the model. DModX considers model residuals which can identify 
variable correlation changes or the occurrence of a new event that is not modeled. 
We can clearly notice that T2 detected the wear and chatter conditions while DModX 
detected also the tool wear and chatter events.  

 

Furthermore, in addition to monitoring the latent space, we can use the original 
space to monitor the real values of the surface roughness Ra in a time series 
sequence. Data from the milling machine using sharp tool (common cause variation) 
under different cutting conditions are shown in Fig.9. The model gives a good 
approximation of actual Ra values with model prediction ability Q2 = 59% and with 
accuracy 83 %. 

 

 

CONCULOSION AND FUTURE WORK 
 

A new mechatronic system to monitor industrial machine tool based on multivariate 
scoring models was developed. The approach uses experimental data for model 
building and testing. The superiority of this method over other existing approaches is 
the modeling of the X-space which facilitates the detection of process change due to 
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wear and other conditions where in the same time monitoring Ra with an acceptable 
accuracy. Results can be summarized as follows: 

• A new scoring charts based on PLS-DA is introduced to deal with multiple 
faults on machine tools. The model was tested under different conditions 
including: normal, worn tool, as well as chatter and was able to successfully 
differentiate between them. 

• A new approach based on PLS is illustrated for surface roughness prediction 
using data from milling machine tools.   

• System dimensions were reduced from 8 to 3 which can be handled by two 
charts (score and contribution plots).  This greatly simplifies the monitoring of 
machines and can help for process planning and machine rescheduling. 

This approach doesn’t build a causality direction between variables rather than a 
correlation direction inside a bounded region except if the model was based on 
designed experiments. Further analysis is needed to include tool chipping and some 
machine faults (spindle bearing, parts wear). Also, there is a need for more 
investigation to include more features like factor variances, frequency components 
and nonlinear terms into the X-matrix for better fault separation and to improve 
model predictability. Finally, including different machining processes, testing new 
material and tools is highly recommended. 
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Fig.1. PLS-model loading plot. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Experimental setup. 
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Figure 3. PLS  t-u Score plot. 
 
 
 
 

  
 

Figure 4. Establishing score plot for three variables. 
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Figure 5. PLS-DA score plot. 
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Figure 6. PLS-DA including training and testing-sets score plot. 
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Figure 7. PLS-DA contribution plot (Observation with Chatter). 
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Figure 8. PLS Shewart control chart. 
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Figure 9. Time series of actual and predicted Ra for three machines. 
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