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ABSTRACT 
 
Laser cutting is one of the most important non-conventional manufacturing 
processes due to its unique properties and advantages. It is a multi-parameter 
technology. This fact has resulted in some gaps in available information, and a few 
of contradictory reports about the exact effect of each process parameter on the 
surfaces produced, and makes quick parameters selection for obtaining a desired 
cut quality problematic, especially for new laser types. Fiber lasers have only very 
recently come into prominence, and the literature is still very sparsely populated with 
data on their performance. This paper outlines the use of a scoring model of 
Projection to Latent Structure (PLS) technique and applies it to study the effects of 
fiber laser cutting process parameters and their interactions on the quality achieved 
during cutting mild steel sheets. The effects of the interaction of the main process 
parameters on the quality output variables such as top kerf width, surface roughness 
and the striation depth are studied. Scoring models are proposed to relate the quality 
and the laser cutting parameters. 
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INTRODUCTION 
 
Laser cutting is one of the most common and best established industrial laser 
applications. The process is characterized by number parameters affecting the 
process individually or in combination. These parameters can be divided to three 
categories: the laser beam parameters, viz. laser power, spot size, focal position, 
depth of focus, and laser scanning speed (cutting speed); the material parameters, 
viz. material type, material thickness and its optical and thermal properties; and 
finally the assist gas properties, viz. gas type, pressure, nozzle exit diameter and 
distance between nozzle and workpiece (stand-off distance) [1]. 
 
Depending on the application the quality characteristics of the cut surface can be 
one or more of the following: surface roughness; surface perpendicularity 
(angularity); kerf width; dross adhesion; the dimensions of the heat affected zone; 
and the striation characteristics (wavelength, frequency, and depth). 
 
Various studies of these parameters and quality characteristics have been reported. 
Early work by Gonsalves and Duley in 1970s investigated the interdependence of 
the laser parameters. They showed that the kerf width decreases with increasing 
cutting speed and workpiece thickness, while it increases with the increase of laser 
power. They also showed the increase of maximum cutting speed with the laser 
power, and a decrease with the workpiece thickness [2]. In a subsequent paper they 
showed that using oxygen as an assist gas increases the maximum (critical) cutting 
speed due to the exothermic chemical reaction in the cutting zone. Also the cutting 
speed increases with an increase in oxygen flow rate and again at a very high 
oxygen flow rate decreases because of the cooling of the cutting zone due to the 
heat transfer to the impinging gas, [3]. These were supported by others [4, 5], while 
the results of Karatas et al. [6] and Sobih et al. [7] contradict the Gonsalves and 
Duley [2] findings concerning the effect of workpiece thickness upon the kerf width. 
They showed that the kerf width increases as the workpiece thickness increases. 
 
The effect of focal plane position upon the kerf width and the effect of the workpiece 
thickness upon the striation width and depth have been investigated by Karatas et al. 
[6]. It was found that the minimum kerf width can be achieved when using a focused 
beam, especially for thin workpieces, while for thick workpieces the focal plane 
should be moved into the work piece to minimize the kerf width. The striation width 
and depth were found to increase as the workpiece thickness increases. 
 
Continuous wave (CW) CO2 laser cutting of mild and stainless steels (both 
exothermic and fusion) were investigated by Hamoudi [4]. He demonstrated that the 
cut quality improves and the heat affected zone (HAZ) decreases as the cutting 
speed increases and the assist gas pressure decreases. He also found exothermic 
laser cutting of stainless steel to be better than fusion laser cutting. 
 
All the foregoing studies followed a one-factor-at-a time as strategy for studying 
and analyzing the laser cutting process. Contradictions are therefore to be expected. 
More comprehensive studies include that of Tam et al., [8], who studied the laser 
cutting of low carbon steel with respect to a figure-of-merit function using a modified 
L8 orthogonal array. They concluded that the use of Taguchi’s parameter design and 
ANOVA enables the drawing of qualitative and objective conclusions. Rajaram et al. 
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[9] developed a regression model to predict the effect of laser power and cutting 
speed on the kerf width, surface roughness and heat affected zone when cutting 
4130 steel using a CO2 laser. Wee et al. [10] introduced a statistical model based on 
the multivariate regression to determine the parameters affecting the cut quality 
when cutting ceramic with laser. They found that interaction time has a major effect 
on both striation angle and wavelength, while irradiance is significant factor in 
striation wavelength. 
 
Multivariate statistical process control (MSPC) takes a different approach as 
compared to the other methods mentioned previously [11]. The most fundamental 
difference with this approach is that the model is based on non-causal empirical 
correlations extracted from normal plant operating data when only common cause 
variation exists [12]. The simplicity of this approach is that there is no need for a 
fundamental model of the system and only data from normal production needs to be 
used, which is generally available in some form at most factories. Two of the 
approaches used in multivariate analysis are: a projection method called principal 
component analysis (PCA) [13, 14] and projection to latent structure (PLS) [15]. 
Many applications of these two techniques have been successfully applied in other 
fields of process monitoring ranging from batch to continuous processes [16-18]. 
 
CW CO2 has been the most commonly used laser for metal cutting over the last two 
decades and more. A recent a newcomer to the industry is the fiber laser. The 
advantages of fiber laser over the CO2 laser include: a small physical size; high 
stability of power output; high brightness; good beam quality; a narrow focus; 
significantly higher cutting speeds; smaller kerf widths; and higher beam absorption 
in metals due to its shorter wavelength [19, 20]. A number of studies have been 
reported during the last few years either to investigate fiber laser cutting or to 
compare between it and other types of lasers [21, 22]. 
 
This paper is an experimental study into the effect of the cutting parameters on the 
quality characteristics obtained when cutting mild steel using a single mode fiber 
laser. Seven factors were considered at different levels. The quality parameters 
taken include: top kerf width; surface roughness (Ra); and striation depth. A 
statistical study was carried out to find the most effective cutting parameters and 
their interactions. The scoring models correlate between the quality parameters and 
the significant input parameters. The work is part of a broader study that has 
indicated the possibility of optimizing surface roughness to the extent of obtaining 
essentially striation-free cut surfaces [23-25]. 
 
 
EXPERIMENTAL 
 
The experiments were performed on as-received 1, 1.5 and 2 mm thickness sheets 
of EN43 annealed mild steel and were conducted using a CW IPG YLR-1000-SM 
ytterbium-doped single-mode fiber laser with the following specifications: 1 kW 
maximum output power; 1.07 µm wavelength; 14 µm output fiber core diameter; M2 = 
1.1; and mode TEM00. This machine is equipped with Precitec HP1.5″(Z)/FL cutting 
head with capacitive distance control. The laser beam was focused using a 5 inch 
(127 mm) focal length lens. Oxygen was used as assist gas. 
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Preliminary experiments were carried out to select appropriate and achievable levels 
of the factors under study. These experiments showed that when the laser beam 
was focused on or below the work piece surface significant dross formation was 
observed. A focal plane set to be above the workpiece achieved superior results. 
The laser output power, workpiece thickness, oxygen gas pressure, stand off 
distance, cutting speed, nozzle diameter and laser beam spot size were the 
parameters investigated. They were varied during the experiments within the limits 
indicated in Table 1. Top kerf width was examined using optical microscopy, while 
surface roughness and striation depth were inspected using a laser surface profile 
scanning system which was developed in-house.  

 
 

EXPERIMENTAL DESIGN AND SCORING MODELS 
 
Experimental Design 
 
Studying the dependent factors following the one-factor-at-a-time approach results in 
large number of experiments, and fails to consider possible interactions between 
these factors. A statistical design of experiments (using the software package 
Design-Expert) was thus preferred, based on the parameters discussed above. The 
design is a subset of all possible combinations of the factors and aims to minimize 
the error associated with the model coefficients. This design contains 114 
experimental points for estimating the model using the Design of Experiments, 
instead of 4374 total number of possible points if one-factor-at-a time approached 
is used. 
 
The method used for obtaining the experimental design was the D-Optimal 
Algorithm. A D-optimal design minimizes the determinant of the (X'X)-1 matrix. This 
minimizes the volume of the confidence ellipsoid for the coefficients. Equivalently D-
optimality maximizes the determinant (X'X), called the "information" matrix. The key 
is that these designs are built algorithmically to provide the most accurate estimates 
of the model coefficients, [26]. 
 
The CONVERT algorithm was used to find vertices. It is believed that this algorithm 
finds all vertices of the simplex, but in higher dimensions with complex constraints, it 
is possible that an extra point or two may be in the vertex list, [26-28]. 
 
The algorithm used to find an approximately D-optimal design is as follows: selection 
of a non-singular initial design of p points; selection of the remaining model points; 
performing exchange steps. If the candidate list is large and/or the degree of the 
design is large, D-optimal point selection can be a lengthy process. 
 
Multivariate PLS Basic Theory 
 
PLS is defined as a generalized multiple regression method based on relating two 
blocks of data made up of input and output variables. This method is particularly 
effective at modeling and analyzing variables that are correlated; which is the case 
for many process data. 
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In this case, the co-linearity within variables were tested by checking the loading plot, 
a scatter plot between the model weights in the first 2 principal components as 
shown in Figure 1. It shows that a positive correlation exists between factors 1, 7, 6, 
3 and 2 in the direction of the first principal components (x-axis). Also, it shows a 
negative correlation between the mentioned factors 5 and 4. An overview about the 
method and its applications can be found in [29].This commonly occurring co-
linearity between variables means that the data will have some dominant type of 
variability that carries most of the information. To visualize these hidden dominant 
directions, variables are projected onto a new subspace. This implies the reduction 
of a large data set from many variables to a few factor scores (t,u) and loadings 
(w,p,q). The point behind using 2 loadings (w,p) to describe x-variables, is that in 
PLS algorithm, the y’s is allowed to intervene directly during the input variables 
decomposition which decreases the variance explanation of the input variables 
towards the maximum predictability of the response variable. In this case we use two 
loadings to describe the input variables, the w’s to calculate principal components 
and the p’s when calculating the residuals for each component because it better 
describes input variables. Scores can be described as new generalized variables 
while loadings build the connection between the original space and the new 
subspace. The approach works by selecting factors of input variables in a sequence 
which successively maximizes the explained covariance between the input and 
output variables. Given a matrix of input data X, and output data, Y, a factor of the 
input data, t1, and output data, u1, is evaluated such that: 
 

EptX
k

T

kk +×=∑
=1 ,         (1) 

and 

 

∑
=

+×=

1k

T

kk FquY           (2) 

These equations are referred to as the outer relationships where the “t” vectors are 
mutually orthogonal. These vectors together with the uk terms are selected so as to 
maximize the covariance between each pair, (tk, uk). Linear regression is performed 
between the tk and the uk terms to produce the inner relationship, such 

that kkkk tbu ε+×= , where bk is a regression coefficient, and εk refers to the 

prediction error.  The PLS method provides the potential for a regularized model 
through selecting an appropriate number of latent variables, uk in the model. The 
major benefit of this approach is that it builds a model between the inputs as well as 
the outputs and finds the maximum correlation between them in the direction of 
maximum prediction of the output response. Furthermore, it is often found that a 
relatively small number of low-index latent variables can explain the greater part of 
the variation in both the input and output variables. Table 1 illustrates the 
configuration of the X-Y matrices in the models used in this paper. Where Pow is the 
laser power, Thick is the sheet thickness, GPre is the gas pressure, stDis is the 
stand off distance, speed is the cutting speed, NDia is the nozzle diameter, SpS is 
the laser spot size, TKW is the top kerf width, Ra is the surface roughness and 
StrHei is the striation height. 
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Scoring Models and Data Analysis  
 
Before starting the discussion we need to know some aspects of the approach. First, 
all data were mean centered and scaled to unit variance. Second, control limits in the 
latent space were established using F-distribution based on reference distribution 
provided by the dataset, [29]. Also, t1 and t2 are the first two principal components 
that capture most of the variance-covariance between the X-Y relationships. The 
multivariate PLS model is a linear model given in matrix form by: Y = X B + E.  
 
To build the model using process variables, let X include process variables (Pow, 
Thick, GPre, stDis, speed, NDia, SpS), these variables were believed to have a 
direct correlation with the response variables (TKW, Ra, StrHei). Then let Y consist 
of the machining response variables which are the surface roughness Ra, TKW, and 
StrHei values of the machined parts. Finally, the PLS regression is made between X 
and Y based on an algorithm which is superficially "similar" to NIPALS (Nonlinear 
Iterative Partial Least Squares) algorithm [13]. All the models were built using 
Matlab-7 and SIMCA-P code developed by Umetrics. To examine the relationship 
between the inputs and the output in the latent space, Figure 2 shows a scatter plot 
between the experimental and predicted variables. It illustrates a linear trend 
between them which imply the possibility to use the approach for further analysis. 
 
An exploring model was built based on PLS to examine the relationship between the 
controlled factors (Pow, Thick, GPre, stDis, speed, NDia, SpS) and the three 
response variables (TKW, Ra, StrHei) using two principal components with the 
following percentage explanation: R2X (cum): 0.46, R2Y (cum): 0.51, Q2 (cum): 0.4. 
 
Figure 3 and Figure 4 illustrate the loading and score plots of the model. The score 
plot illustrates the effect of using D-optimal in designing the experiments with the 
good data spread inside the control limits. The loading plot shows how all the 
variables are related to each other. As mentioned above, one can notice the high 
influence of Sps and Pow on tkw. Also, the effect of Speed, NDia , GPre and thick on 
Ra and StrHei. In addition, the plot shows the poor effect of stDis on all the three 
responses. 
 
Detailed models are set to examine the effect of process variables on each response 
parameters. A first model was built based on PLS to examine the relationship 
between the controlled factors (Pow, Thick, GPre, stDis, speed, NDia, SpS) and the 
response variable TKW using two principal components with the following 
percentage explanation: R2X (cum): 0.4, R2Y (cum): 0.665, Q2 (cum): 0.53. 
 
Figure 5 illustrates the loading plot of the model. The loading plot shows how all the 
variables are related to each other. In this analysis, one can observe the positive 
correlation of Sps and Pow on tkw with the poor negative effect of the Speed.  
 
Figure 6 and Figure 7 summarize these effects showing variable importance and 
positive and negative effects on the response variable “TKW”. 
 
The PLS deduced model of TKW with x-parameters: 

 

Sps 0.6181  Spd 0.2367 -Thick  0.1658 - Pow 0.4959  (TKW) Y +=     (3) 
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A Second model was built based on PLS to examine the relationship between the 
controlled factors and the response variable surface roughness (Ra) using two 
principal components with the following percentage explanation: R2X (cum): 0.31, 
R2Y (cum): 0.35, Q2 (cum): 0.18. 
 
Figure 8 illustrates the loading plot of the model. In this analysis, one can observe 
the positive correlation of GPre and Thick on Ra with the good negative effect of the 
Speed. 
  
Figure 9 summarizes these effects showing variable importance effects on the 
response variable Ra. The PLS deduced model of Ra with x-parameters: 
 

NDia 0.1578  Spd 0.4573 - StDis 0.1282 -

 GPre 0.3083 Thick  0.1024  Pow 0.2042  Y(Ra)

+

++=

  (4) 

 
A third model was built based on PLS to examine the relationship between the 
controlled factors (Pow, Thick, GPre, stDis, speed, NDia, SpS) and the response 
variable StrHei using two principal components with the following percentage 
explanation: R2X (cum): 0.312, R2Y (cum): 0.535, Q2 (cum): 0.41. 
 
Figure 10 illustrates the loading plot of the model. In this analysis, one can notice 
the positive correlation of GPre and Thick on StrHei with the good negative effect of 
the Speed.  
 
Figure 11 summarizes these effects showing variable importance and effects on the 
response variable StrHei. The PLS deduced model of StrHei with x-parameters: 
 

NDia 0.1840  Spd 0.57 - StDis 0.2549-

 GPre 0.3194 Thick  0.1144  Pow 0.0346  Y(StrHei)

+

++=

     (5) 

 
 
CONCLUSIONS 
 
The results of the d-optimal statistical analysis presented here demonstrate that a 
reduced number of tests are useful for indicating the significant process parameters 
for the laser cutting process. Using this method, seven parameters relating to the 
fiber laser cutting of mild steel process were studied and the following conclusions 
were drawn: first, the top kerf width is directly related to the laser output power and 
laser beam spot size and inversely related to cutting speed and sheet thickness 
while the gas pressure, stand of distance and nozzle diameter have a minor effect; 
secondly, the cut surface quality is directly related to laser power, sheet thickness, 
gas pressure and nozzle diameter and inversely related to both the cutting speed 
and stand of distance while the beam spot size is not significant. 
 
Three equations were deduced from the experimental results using scoring models 
of PLS technique. These equations relate top kerf width, surface roughness (Ra) and 
striation height to their significant parameters. The empirical equations can be used 
to predict the top kerf width and the surface roughness of the cut produced in mild 
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steel using fiber laser knowing the cutting conditions. This could be helpful in building 
up a data base for the mild steel cutting using fiber laser. 
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Table 1: Cutting parameters and their levels. 

 

 Level 1 Level 2 Level 3 

x1 : Laser power (W) 200 500 800 
x2 : Material thickness (mm) 1 1.5 2 
x3 : Gas pressure (bar) 2 6 10 
x4 : Stand of distance (mm) 1 1.5 2 
x5 : Cutting speed (mm/s) 20 60 100 
x6 : Nozzle diameter (mm) 1 1.5 2 
x7 : Laser beam diameter 
(µm) 

0.169 0.336  

 
 

Table 2: Table 1; X-Y matrix. 

 

              X-matrix                         PLS-model                                            Y-matrix 

Pow Thick GPre stDis speed NDia SpS TKW Ra StrHei 
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Figure 1: PLS-model loading plot. 
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Figure 2: PLS  t-u Score plot. 
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Figure 3: PLS Score plot. 
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Figure 4: PLS loading plot. 
 

 

 
 

Figure 5: PLS  loading plot. 
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Figure 6: PLS VIP plot. 
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Figure 7: PLS coefficient plot. 
 

 

 

 

 
 

Figure 8: PLS  loading plot. 
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Figure 9: PLS  VIP plot. 
 
 
 



70 PT  Proceedings of the 15th Int. AMME Conference, 29-31 May, 2012 

  

 
 

 
 

Figure 10: PLS loading plot. 
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Figure 11: PLS VIP plot. 
 


