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INTRODUCTION 

 
The past few decades, control of robotic marine vehicles for autonomous navigation 
has become an intense research area. The interest in the field is widely motivated by 
the emerging applications such as defense and patrolling of coastal perimeters, 
naval system applications, harbor operations, marine biology,..etc. 
 
Besides their various missions, marine vessels raise some challenges in control 
systems theory, because their dynamics often fall in the class of underactuated 
systems (i.e. Systems where the control vector has lower dimension than the 
configuration vector). This configuration is by far most common among the ships. 
 
Several control approaches have been presented in the literature to solve the 
trajectory tracking control problems that require the design of control laws that force 
the vehicle to track a time parameterized reference (trajectory). Do and Pan [1] 
addressed the tracking problem of ships that are not actuated in the sway direction 
and the mass and damping matrices are not assumed to be diagonal and they used 
the Backstepping technique to design a controller that forces ships to globally track a 
reference trajectory. Repoulias and Papadopoulos [2], and Santhakumar and 
Aoskan [3] presented a tracking control algorithm for underactuated autonomous 
underwater vehicles (AUVs) moving on the horizontal plane (constant depth motion). 
But in (Repoulias and Papadopoulos [2]), the mass and damping matrices of the 
AUVs were assumed to be diagonal. However Santhakumar and Aoskan [3] studied 
the AUVs with non-zero off diagonal terms in the system matrices. In (Lefeber et. al. 
[4], Pettersen and Egeland [5] Pettersen and Nijmeijer [6], Pettersen and Nijmeijer 
[7] ), the yaw velocity was required to be nonzero. This restrictive assumption implies 
that a straight line cannot be tracked. Moreover, Do et. al. [8] succeed to remove the 
requirement that yaw velocity be nonzero.  
 
Motivated by the variety approaches that have been proposed to solve the trajectory 
tracking control problem for underactuated autonomous vehicles, we propose in this 
paper the combined problem of trajectory planning and designing a controller to track 
a reference trajectory of a ship Repoulias and Papadopoulos [2]. The Backstepping 
technique of Krstić et. al. [9], that is recursive design methodology for non linear 
feedback control in order to develop control algorithm, is used. The present paper is 
composed of 5 sections: In section 2 the equations that describe the ship motion are 
recalled. Then, in section 3 the tracking control law is developed after planning the 
reference trajectories. The experimental results are presented in section 4 and in 
section 5, conclusion is drawn. 
 
 
THE SHIP MODEL 
 
Figure 1 presents the two coordinate frames which we consider in our study, where 

111 zyx the Ship-fixed reference and the origin 1O  is the center of gravity. xyz  is the 

Earth-fixed reference frame. We consider an underactuated ship, that has two 
controls which provide surge force and yaw moment. The motion matrix model of the 
ship is described as Pettersen and Egeland [5]: 
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where: 

- [ ]Tzyx ,,=η is the configuration vector that denotes position and orientation in earth-

fixed coordinates, 

- [ ]Trvuv ,,= is the velocity vector, where u and v are the linear velocities respectively 

in surge and sway, and r is the angular velocity in yaw, 

- ( )ηJ  is the matrix that describes the ship rotations in the ( )11Oyx  plan around ( )1Oz   

axe and it has full rank where its expression is presented by: 
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Fig.1. Ship-fixed frame and earth-fixed frame. 
 

Then, the equations describing dynamic characteristics of the ship were derived 
from Newtonian dynamics laws, with 
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where M  is the inertia matrix, D  is the damping matrix, C  represents centrifugal 
and Coriolis effects. The matrices M and D are constant and positive definite. 

- [ ]Tru τττ ,0,= , uτ  is control force in surge and rτ is control moment in yaw. 

 
Therefore, the developed complete mathematical model of the ship is expressed as: 
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The next section is composed of two parts. In the first part, we will focus on planning 
the reference trajectory Repoulias and Papadopoulos [2] and in the second part we 
will use the recursive Backstepping controller design that allows us to guide the ship 
on the course. 
 

 
 

Fig. 2. Ship moving on a planar path. 
 

PATH PLANNING  
 
In this section, the planning of reference trajectories are analyzed. Since the ship 
system is underactuated, it is not expected to force the ship to track an arbitrary 
path. So the only restriction on this trajectory is that it must be sufficiently "smooth" 
Repoulias and Papadopoulos [2]. 
 
Path Kinematics 
 

Consider Fig. 2, Note that the point ( )rr yxP ,  is an arbitrary point of the reference 

trajectory, where rx and ry are the inertial coordinates. So, In order to make the ship 

follow the reference trajectory we have to make the gravity center coincide with the 

point P . pv  is the magnitude of the velocity vector pv of the reference point P at time 

t . The expression of pv is given by: 
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The speed pv is tangential to the reference path on P by making an angle β  with the 

inertial axis ( )Ox . Where: 
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The first and second derivatives of the angle β and the velocity pv are given 

respectively by: 
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Ship’s Dynamics on the Path 
 
After presenting the inertial reference trajectory variables, we will exhibit the 
algebraic and differential equations that relate the inertial trajectory variables to the 
local frame velocities, accelerations and orientation. Since the ship tracks the 

reference trajectory, let assume that 
rSv is the magnitude of the total linear velocity 

vector of the gravity G in the ship-fixed frame, which its expression has the following 
form: 
 

22
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where ru  and rv  are the local reference velocity when the ship follows the reference 

trajectory, see Fig. 2. 
 

The vehicle’s total linear velocity 
rSv  is tangential to the reference trajectory, 

consequently the angle rψ  does not coincide with angle β , but it differs by angleγ , 

where: 
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r

r
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Having the description of the reference path and as the ship tracks the path, we can 
have the two following geometric conditions: 

st
1 Condition: Equality between the magnitude of the vehicle’s total velocity 

rSv  and 

that of reference path velocity pv . As a consequence, we obtain: 
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nd

2 Condition: Extraction of the reference angle rψ  from the angles β  andγ , 

observing Fig. 2, we can deduce: 
 

γβψ −=r  (12) 

 
Replacing β  andγ , respectively, by their expressions in (6) and in (10), yields: 
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Without loss of generality we can assume that the ship moves forward the reference 

path ( )0>ru . Then the sign of the angle γ  depends on the sign of the reference 

sway velocity rv , which in turn depends on the curvature of the trajectory, i.e. a 

negative value corresponds to a counterclockwise (CCW) rotation and a positive 
value to a clockwise (CW) one Repoulias and Papadopoulos [2]. 
 

From the equations (5) and (13), rv  has the following expression: 
  

22222
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where ±  indicates the dependence of the sign of rv  according to the curvature of the 

reference trajectory. Differentiating equation (14) yields: 
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Remark1: From the equation (14), ru  it must verify: 
 

prp vuv ≤≤−  (16) 
 

where the equality holds in the case of straight line tracking or when a change in the 

sign of the curvature occurs (then 0== rr uv ). 

 
In order to determine the reference angular velocity and acceleration, differentiating 

rψ  given in equation (13), respectively, once and twice, yields: 
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Now, we will focus on computing the surge velocity ru . So we distinguish two cases: 
st

1 case (CW-type reference path curvature): Using the fact that 0>rv , and 

substituting the appropriate expressions in equation (14),(15) and (17) in the fifth 
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equation of the system (4), the following differential equation which solution yields 

ru is obtained : 
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nd

2 case (CCW-type reference path curvature): Repeating the same approach 

used in the first case considering 0<rv , we obtain: 
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Remark 2: When the curvature of the reference path changes with time, we switch 
between the above differential equations. What remains now is the computation of 
the open-loop control efforts. From the forth and the sixth equations of the system (4) 
the controls’ expressions are given by: 
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In the next section, we will focus on concepting control rules of auto-pilot ship which 
are derived for nonlinear controllers designed with the aid of the Backstepping 
method Krstić et. al. [9]. 
 
 
CONTROL DESIGN 
 
This section is divided in two subsections. In the first one we will write the error 
dynamic model, and in the second subsection we will use the Backstepping method 
Krstić et. al. [9] that provides a non linear control law that relies on the tracking 
control objective. 
 
This Backstepping technique overcome the difficulty of Lyapunov function 
construction, it allows us to build iteratively the adapted Lyapunov function to the 
system and allows us to deduct the command(order) which returns the derivative of 
the Lyapunov function defined negative. 
 
Error System 
 
In this section, configuration error and velocity error will define as: 
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The error kinematics is obtained by differentiating the system that present the 
configuration error in (21): 
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where R  is a square matrix, that has the following form: 
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[ ]Teee vuU ,=  is the linear velocity error vector, [ ]Teee yxX ,=  is the position error 

vector and rUR
rψψλ ,=  where 
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and [ ]Trrr vuU ,=  is the reference linear velocity vector. 

 
Differentiating the second system of (21), we obtain the error dynamics: 
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where the expressions of 1τ  and 3τ  are: 
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According to systems (22) and (25), the complete error model of the ship is: 
 

( )

















=

−−−−++−=

=

=

+=

3

22

22

22

11

22

22

22

11

1

τ

τ

ψ

λ

e

rrrreerreeee

e

ee

ee

r

v
m

d
ru

m

m
vv

m

d
rururu

m

m
v

u

r

RUX

&

&&

&

&

&

 (27) 

 
Consequently, the control problem is then transformed into a stabilization problem of 
the error dynamics (27). 
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Error System Stabilization 
 
The error system define in the following section is now used to design the 
backstepping algorithm which guaranteed the reference trajectory tracking objective. 
The control design is described step by step as follows: 

step 1: In the first step, we focus on stabilizing the state variables ( )ee yx , . Introducing 

the following Lyapunov function candidate: 
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then, the time derivative is expressed as: 
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We can treat eU  as an auxiliary control. We will choose a virtual control [ ]Tvu αα ,  

instead of eU  as: 
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with K  and 1K  are positive definite square matrices. Substituting (29) into (30), we 

get: 
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where [ ]T21,λλλ = (The quantity λ  is a bounded function). When we increase the 

gain 1K  the quantity 
1

2

4k

λ
diminishes. 

 

step 2: The components of the vector eU  are not a true control, we need to 

introduce new error variables uz and vz  that we would derive to zero 
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Then, (31) gives: 
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where [ ]Tvuu zzZ ,= . 

 

The task now is to derive uz  to zero, so we consider the following Lyapunov function 

candidate 
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Using (33) and (34), the derivative of 2V  can be derived as follows: 
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According to (35), the control law 1τ  is designed as follows: 
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where 1c  is a positive constant and uf  is a design variable for subsequent use. 

Substituting equation (36) into (35) the following equation can be obtained: 
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So far, the controlled subsystem of the linear kinematics and the error uz  is 

transformed to: 
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step 3: In this step we consider the stabilization of the subsystem that is controlled 

by the assumed auxiliary control er  (the rotational kinematics and the sway dynamic 

error vz ). Before starting, we make some manipulations on vz , in order to show the 

virtual control er  and uz . The dynamic vz  is written as: 
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which gives: 
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Assuming 0≠u  is a natural condition for tracking, it means, if 0=u we can not act on 

our system with er  as a control. We note a virtual control law rα  for er . To design rα , 

add terms concerning eψ  and vz  to 2V  to form the following Lyapunov Function: 
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The time derivative of 3V  is: 
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A simpler virtual control law rα is chosen: 
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where 0>rc  is a design constant. Taking into account (44), the time derivative of 3V  

becomes: 
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step 4: As we know that er  is not a true control, we will introduce the final error 

variable rer rz α−=  instead of rα  and we use 3τ  to stabilize the subsystem. 
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Then, after the set of transformation, the controlled dynamic system so far is: 
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Again, to stabilize the error variable rz , we consider the following Lyapunov function 

candidate: 

2

34
2

1
rzVV +=  (49) 

 

and computing its time derivative, we obtain: 
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(50) 

 
Choosing 
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and 

2

4
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11
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m

m
f −=  (52) 

 

with c  and 4c  are positive constants. Substituting equations (51) and (52) in (50) we 

obtain: 
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(53) 

 
In the above expression we remark that the last three terms have uncertain signs, so 
we will examine them by considering all of them are positive. For the analysis we will  
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use the inequality of Young (Ghommam [10]), with the quantities iε ,  6.....1=i  are 

positive constants. 
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Now, we will expand the expression of vvz δ , we obtain the following expression: 
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Then, we will bound the four terms of (56) one by one as follows: 
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Taking into account the results from (54) to (60), the derivative of 4V  in (53), will be 

increased by: 
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where maxmaxmaxmax ,,, ruvr λ  and maxev  are the maximum values for the time varying 

quantities. In the inequality (61) the term 
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which are all positive. So, from the inequality (62), we can deduce that: 
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where { }43211 ,,,,min cc ϖϖϖν =  . 

 
By employing the comparison lemma (Khallil [11]), we can yield: 
 

0,
2

)0()(
2

44 ≥+≤ −
t

v
eVtV

vt µ
 (64) 

 

Which implies that the states of error ( )rvueee zzzyx ,,,,, ψ  remain in a bounded set 

about the origin. 
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ANALATYCAL RESULTS 
 
In this section, we carry out some computer simulations that illustrate the 
performance that can be achieved with the motion control algorithms mentioned 
before. The simulations are implemented on Mat lab. We assume the underactuated 
ship vehicle model with the following parameters of kinematics and the dynamics 
that are the same as those in Dong and Guo [12]:  
 

sKgdsKgdKgmKgmKgm /100,/70,80,250,200 2211332211 =====  and sKgd /5033 =  
 

Here, we will track a sinusoidal path (time varying trajectory). Responses were 
obtained for two cases: in the first case we will show simulation results of the 
tracking without disturbances and in the second case we will present simulation 
results in the disturbed condition, in this case we assume that the disturbances are 
the sea drag forces which are taken equal to u05.0  and v05.0  acting in the surge 
and sway respectively. We choose a desired trajectory which its parametric system 
describing by: 
 

( )



=

=

ty

tx

r

r

03.0sin10

03.0
 (65) 

 

For simulation uses, we pick the following initial condition for the real system: 
 

( ) ( ) ( ) ( ) ( ) ( )[ ] [ ]0,0,0,0,5.2,12.00,0,0,0,0,0 =rvuyx ψ  

 
and the initial desired conditions are: 
 

( ) ( ) ( ) ( ) ( ) ( )[ ] [ ]2.0,03.0,3.0,3175.1,0,00,0,0,0,0,0 =rrrrrr rvuyx ψ  
 

The control parameters used in the Backstepping control are set to 

10,3,10,03.0,01.0 11 ===== ccckk r  and 14 =c  to satisfy convergence conditions. 

 
Sinusoidal Tracking with No Disturbances 
 
Figure 3 shows the desired trajectory and the actual trajectory of the ship in YX −  
plane. We see that the ship converged to the desired trajectory. For each figure of 
Figs. (4-7), we have figures on the left side and on the right side. The figures on the 
left regard simulation time of s450 needed for two full period for the sinus function, 
while the figures on the right regard the first s70  in order to observe the transient 
responses. 
 

The simulations results, depicted in Figs. (4-5), are for response of positions ( )yx,   

and linear velocities ( )vu, , we observe that after a transition period of s65 all 

presented variables converge to the desired variables. Figure 6 shows the 

convergence of ψ  and yaw velocity r  to rψ  and rr , respectively after around s2 . In 

Figure 7, we see the behavior of the control surge force uτ  and the control yaw 

torque rτ  needed for tracking and they also converge to the open-loop control efforts  

urτ  and rrτ  respectively after around s2 .  
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Fig. 3. Ship reference and actual path. 
 
 

 
Fig. 5. (left side) Time responses of y  

and v  together with ry and rv  

Fig. 4. ( right side) Time responses 

of x  and u  together with rx and ru  

 
  

 
Sinusoidal Tracking Path with Disturbances 
 
In the disturbed condition, we present some numerical results concerning the 
robustness of the designed control law. Figs. (8-12) are simulation results with 
disturbance in which we assume that there are added drag forces of the 

order ( )vu 05.0,05.0 . As in the preceding section, we present in each figure the 

response after two full periods on the left side and on the right the first s65 . We 
remark that the proposed control law is robust for the chosen disturbances. 
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Fig. 7. (left side) Time responses of 

uτ  and rτ  together with 
ruτ and 

rr
τ  

Fig. 6. (right side) Time responses 

of ψ  and r  together with rψ and rr  

 
 
 
 
 
 

 
 

Fig. 8. The trajectory of the ship in the YX −  plane and the desired trajectory. 
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Fig. 10. (left side)Time responses of 

y  and v  together with ry and rv  

 
Fig. 9. (right side)Time responses 

of x  and u  together with rx and ru  

 

 
                    

Fig. 12. (left side)Responses of uτ  

and rτ  together with 
ruτ and 

rr
τ  

Fig. 11. (right side) Responses of 

ψ  and r  together with rψ and rr  
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CONCLUSION 
 
In this paper, we presented an autonomous navigation control technique for an 
under-actuated ship. A Backstepping methodology combined with Lyapunov function 
for determining explicit stabilizing feedbacks, for the completed error system that 
assure the motion of the ship to track realisable trajectories, have been given. 
Simulation results show a very good tracking performance and effective robustness 
against considered disturbances. 
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