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ABSTRACT

In this paper, we will construct a control that forces position and orientation of the
underactuated autonomous ship moves according to a reference feasible trajectory.
To achieve this objective, we use as a design tool of puts the Backtepping
methodology and Lyapunov function. Experimental results are given to show the
tracking performance. We will illustrate trajectories with time varying velocity
(sinusoidal path). Then, we will test the tracking robustness in presence of drag
forces disturbances.
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INTRODUCTION

The past few decades, control of robotic marine vehicles for autonomous navigation
has become an intense research area. The interest in the field is widely motivated by
the emerging applications such as defense and patrolling of coastal perimeters,
naval system applications, harbor operations, marine biology,..etc.

Besides their various missions, marine vessels raise some challenges in control
systems theory, because their dynamics often fall in the class of underactuated
systems (i.e. Systems where the control vector has lower dimension than the
configuration vector). This configuration is by far most common among the ships.

Several control approaches have been presented in the literature to solve the
trajectory tracking control problems that require the design of control laws that force
the vehicle to track a time parameterized reference (trajectory). Do and Pan [1]
addressed the tracking problem of ships that are not actuated in the sway direction
and the mass and damping matrices are not assumed to be diagonal and they used
the Backstepping technique to design a controller that forces ships to globally track a
reference trajectory. Repoulias and Papadopoulos [2], and Santhakumar and
Aoskan [3] presented a tracking control algorithm for underactuated autonomous
underwater vehicles (AUVs) moving on the horizontal plane (constant depth motion).
But in (Repoulias and Papadopoulos [2]), the mass and damping matrices of the
AUVs were assumed to be diagonal. However Santhakumar and Aoskan [3] studied
the AUVs with non-zero off diagonal terms in the system matrices. In (Lefeber et. al.
[4], Pettersen and Egeland [5] Pettersen and Nijmeijer [6], Pettersen and Nijmeijer
[7]), the yaw velocity was required to be nonzero. This restrictive assumption implies
that a straight line cannot be tracked. Moreover, Do et. al. [8] succeed to remove the
requirement that yaw velocity be nonzero.

Motivated by the variety approaches that have been proposed to solve the trajectory
tracking control problem for underactuated autonomous vehicles, we propose in this
paper the combined problem of trajectory planning and designing a controller to track
a reference trajectory of a ship Repoulias and Papadopoulos [2]. The Backstepping
technique of Krsti¢ et. al. [9], that is recursive design methodology for non linear
feedback control in order to develop control algorithm, is used. The present paper is
composed of 5 sections: In section 2 the equations that describe the ship motion are
recalled. Then, in section 3 the tracking control law is developed after planning the
reference trajectories. The experimental results are presented in section 4 and in
section 5, conclusion is drawn.

THE SHIP MODEL

Figure 1 presents the two coordinate frames which we consider in our study, where
x,y,z, the Ship-fixed reference and the origin O, is the center of gravity. xyz is the
Earth-fixed reference frame. We consider an underactuated ship, that has two
controls which provide surge force and yaw moment. The motion matrix model of the
ship is described as Pettersen and Egeland [5]:
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{MV+CV+DV=T
n=Jmr

where:

- 7 =[x, y,z] is the configuration vector that denotes position and orientation in earth-
fixed coordinates,

- v =[u,v,r[ is the velocity vector, where u and v are the linear velocities respectively
in surge and sway, and r is the angular velocity in yaw,

- J(n) is the matrix that describes the ship rotations in the (x,0y,) plan around (0z,)
axe and it has full rank where its expression is presented by:

¢, —S, 0
Im=|s, ¢, 0 (2)
0 0 0
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Fig.1. Ship-fixed frame and earth-fixed frame.

Then, the equations describing dynamic characteristics of the ship were derived
from Newtonian dynamics laws, with

m, 0 O 0 0 —m,,V d, 0 0
M=0 m, 0 ,C=0 0 mu D=0 d, 0 (3)
0 0 my m,V —mu 0 0 0 dj

where M is the inertia matrix, D is the damping matrix, C represents centrifugal
and Coriolis effects. The matrices M and D are constant and positive definite.

- r=[r,.0,7.], 7, is control force in surge and z,is control moment in yaw.

Therefore, the developed complete mathematical model of the ship is expressed as:
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x=ucy, —VSV/

y=us, +vc,

y=r

u =L[m22vr —du+ Tu]

m,, (4)

V= _—1[d22v + m“ur]
Ny,

) 1
7= —[(m11 — My, VU —dyr + Z'r]
My

The next section is composed of two parts. In the first part, we will focus on planning
the reference trajectory Repoulias and Papadopoulos [2] and in the second part we
will use the recursive Backstepping controller design that allows us to guide the ship
on the course.

Reterence path

Fig. 2. Ship moving on a planar path.
PATH PLANNING

In this section, the planning of reference trajectories are analyzed. Since the ship
system is underactuated, it is not expected to force the ship to track an arbitrary
path. So the only restriction on this trajectory is that it must be sufficiently "smooth"
Repoulias and Papadopoulos [2].

Path Kinematics

Consider Fig. 2, Note that the point P(x,,y,) is an arbitrary point of the reference
trajectory, where x,and y, are the inertial coordinates. So, In order to make the ship
follow the reference trajectory we have to make the gravity center coincide with the
pointP. v, is the magnitude of the velocity vector v, of the reference point P at time

t. The expression of v, is given by:
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v, = HVPH =i+ (5)

The speed v, is tangential to the reference path on P by making an angle £ with the

inertial axis (Ox). Where:

B = arctan(&) (6)
'xr
The first and second derivatives of the angle fand the velocity v are given
respectively by:

» _xrj}r_).}rx‘r
X+ y! (7)

o XX +yy,

1%
e ©

Ship’s Dynamics on the Path

After presenting the inertial reference trajectory variables, we will exhibit the
algebraic and differential equations that relate the inertial trajectory variables to the
local frame velocities, accelerations and orientation. Since the ship tracks the
reference trajectory, let assume that v, is the magnitude of the total linear velocity

vector of the gravity G in the ship-fixed frame, which its expression has the following

form:
Vs, :HVS, H = V”rz +v; (9)

where u, and v, are the local reference velocity when the ship follows the reference
trajectory, see Fig. 2.

The vehicle’s total linear velocity v, is tangential to the reference trajectory,
consequently the angle y, does not coincide with angle £, but it differs by angle y,
where:

Y= arctan(h) (10)

r

Having the description of the reference path and as the ship tracks the path, we can
have the two following geometric conditions:

1" Condition: Equality between the magnitude of the vehicle’s total velocity v, and
that of reference path velocity v, . As a consequence, we obtain:
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NS G I (11)

2" Condition: Extraction of the reference angle y. from the angles B andy,
observing Fig. 2, we can deduce:

v, =B-7r (12)
Replacing S andy, respectively, by their expressions in (6) and in (10), yields:

. =arctan(22) —arctan(-2) (13)
X,

¥ r

Without loss of generality we can assume that the ship moves forward the reference
path (x, >0). Then the sign of the angle ¥ depends on the sign of the reference
sway velocity v,, which in turn depends on the curvature of the trajectory, i.e. a

negative value corresponds to a counterclockwise (CCW) rotation and a positive
value to a clockwise (CW) one Repoulias and Papadopoulos [2].

From the equations (5) and (13), v, has the following expression:

T L S N (14)

where * indicates the dependence of the sign of v, according to the curvature of the
reference trajectory. Differentiating equation (14) yields:

VYV o —uu
=L T 1
W 19)
Remark1: From the equation (14), u, it must verify:
—v <u <v (16)

where the equality holds in the case of straight line tracking or when a change in the
sign of the curvature occurs (then v, =u, =0).

In order to determine the reference angular velocity and acceleration, differentiating
¥, given in equation (13), respectively, once and twice, yields:

A

Vp\Vp U (17)

= r, :‘fr(ﬁ’ﬁ,ur’ur’I;ir’vp"}p’vp)

SN S}

~

Now, we will focus on computing the surge velocity «,. So we distinguish two cases:

1" case (CW-type reference path curvature): Using the fact that v, >0, and
substituting the appropriate expressions in equation (14),(15) and (17) in the fifth
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equation of the system (4), the following differential equation which solution yields
u, is obtained :

u, = [(m“ _mzz } [_ (mzzv V +dy (Vf; _”3 ))

+m“ur(ur\'/pvp —vwlvp —u (%5, - %9, ))]

2" case (CCW-type reference path curvature): Repeating the same approach
used in the first case consideringv, <0, we obtain:

u, = [(mll _mzz r pT l » m22vpv +d,, _urz))_mllur(urvpv TV, V; _ur2 (jcrj}r _jér)')r))J (1 9)

Remark 2: When the curvature of the reference path changes with time, we switch
between the above differential equations. What remains now is the computation of
the open-loop control efforts. From the forth and the sixth equations of the system (4)
the controls’ expressions are given by:

(18)

Tur = mllur + dllur - m22vrrr
(rmyy —myy )
— .o 11 22
7’.rr =mast, ru, + d33rr
M3

(20)

In the next section, we will focus on concepting control rules of auto-pilot ship which
are derived for nonlinear controllers designed with the aid of the Backstepping
method Krsti¢ et. al. [9].

CONTROL DESIGN

This section is divided in two subsections. In the first one we will write the error
dynamic model, and in the second subsection we will use the Backstepping method
Krsti¢ et. al. [9] that provides a non linear control law that relies on the tracking
control objective.

This Backstepping technique overcome the difficulty of Lyapunov function
construction, it allows us to build iteratively the adapted Lyapunov function to the
system and allows us to deduct the command(order) which returns the derivative of
the Lyapunov function defined negative.

Error System

In this section, configuration error and velocity error will define as:

X, =X—X, U, =u—u,
Y=Y, v, =V—v, (21)
v.=y-v, ro=r-r,

The error kinematics is obtained by differentiating the system that present the
configuration error in (21):
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X, =RU,+A
, (22)
Y.=T1.
where R is a square matrix, that has the following form:
C )
R — |: 14 l//i| (23)
SV/ CV/

U,=u,,v,] is the linear velocity error vector, X, =[x,,y,[ is the position error

vectorand A=R,, U, where
¢, —¢, —S,ts, } (24)

R [
22 _ _
Sy TSy, Gy TGy,

and U, =[u,,v.| is the reference linear velocity vector.

Differentiating the second system of (21), we obtain the error dynamics:

e
. my, d, . 11 2
V€ = __(uei.e +u€rr +ur"£’)__ve _vr - rrr Vr (25)
my, my, my, my,
T, =1,
where the expressions of 7, and 7, are:
m . m
=20, +vr+vr)-—Lu —i +—2yr ——y + 7

my, my, my, my, my, (26)

m,—m d . \m,—m d 1

( 11 22)(veue+veur+vrue)_ 33 r:e_rr+( 11 22)V;~”r 33 r,+ T,

ms; ms; ms;

T3 =
My

My

According to systems (22) and (25), the complete error model of the ship is:

X,=RU,+1
V,.=r,
u, =t
e 1
(27)

. _11(r+ P r)_ 2 v nmy, r 2
Ve - uee ue r ure Ve r ur r Vr

my, my, m,, My,
r, =1

Consequently, the control problem is then transformed into a stabilization problem of

the error dynamics (27).
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Error System Stabilization
The error system define in the following section is now used to design the
backstepping algorithm which guaranteed the reference trajectory tracking objective.

The control design is described step by step as follows:
step 1: In the first step, we focus on stabilizing the state variables(x,, y, ). Introducing

the following Lyapunov function candidate:
Vi==X!X (28)
then, the time derivative is expressed as:

Vi=X/(RU, +4) (29)

We can treat U, as an auxiliary control. We will choose a virtual control [«,.e,[
instead of U, as:

la,.a,] =-R"[K + K, ]x, (30)

with K and K, are positive definite square matrices. Substituting (29) into (30), we
get:

2 2 2
Vl=XZ[—(K+K1)X6+/1]=—XZKXe—kl(xe—iJ —kl(ye—ﬁj +M (31)
2k, 2k ) 4k,

where 1=[1,4] (The quantity A is a bounded function). When we increase the

2
gain K, the quantity %diminishes.

1

step 2: The components of the vector U, are not a true control, we need to
introduce new error variables z,and z, that we would derive to zero

Zu = ue - a'/u 32
ZV = ve - a'/v ( )

Then, (31) gives:
V,=X'[-(K+K,)X,+RZ, + 1] (33)

where Z, =[z,.z,[ .

The task now is to derive z, to zero, so we consider the following Lyapunov function
candidate
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1
V=Vt (34)

Using (33) and (34), the derivative of V, can be derived as follows:

2 2 2
: A A ) L A
= XTKX, k| x — 20| —k |y ~Z2| AL -
VZ e e ](‘xe 2k1] ](ye 2k1] + 4k1 +Zv(yé’c'// ‘xé’s'/’) (35)

+2, [z', +(k+k u, +(k+k, )(ﬂch +/12s,/,)+ X, + y‘,sw]
According to (35), the control law 7, is designed as follows:
7’.l = _Clzu _(k +k1)ue _(k +kl)(ﬂlcl// +2‘2SV/)_'xeCy/ - yesl// + fu (36)

where ¢, is a positive constant and f, is a design variable for subsequent use.
Substituting equation (36) into (35) the following equation can be obtained:

2 2 2
o xkx kx| iy oA ) AL s )
VZ - Xe KXe kl('xe Zklj kl(ye 2k1] + 4k1 +Zv(yecy/ xesl//) g, +Zufu (37)

So far, the controlled subsystem of the linear kinematics and the error z, is
transformed to:

X, =—(K+K,)X,+RZ,+ 1
(38)

Zu :_clzu _xecy/ _yesz// +fu

step 3: In this step we consider the stabilization of the subsystem that is controlled
by the assumed auxiliary control r, (the rotational kinematics and the sway dynamic

error z, ). Before starting, we make some manipulations onz,, in order to show the
virtual control r, andz,. The dynamic z, is written as:
m m m d )

v e u'r u'r r

My, My, My, My, My, My, (39)

~(k+k)As, = Arc, )

which gives:
Z.v = _mu’; _ﬂ Zurr + 5v (40)
my, 2
where
my, my, m,, m,,

Assuming u # 0 is a natural condition for tracking, it means, ifu =0 we can not act on
our system with r, as a control. We note a virtual control law ¢, forr,. To designe, ,

add terms concerning ¥, and z, to V, to form the following Lyapunov Function:
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V=Vor (2 +p2) 42)

The time derivative of V; is:

2 LA
V3:—XZKX€—ICI(X€—;: J _kl(ye ﬂz ] + +Zv(yecy/_'xesl//+§v)_clzlf
1

2k ) 4k,
(43)
+ Zu(‘fu _mzvrlj-l- ar(‘/’e _ﬂuzvj
My, My,
A simpler virtual control law ¢, is chosen:

— _ _ my,
a, = Cr(l//e uzvj (44)

My,

where ¢, >0 is a design constant. Taking into account (44), the time derivative of V,
becomes:

V,=-X,KX, kl(xe 2k1j k{ye 2’%} +4k1+zv(y€cy, xes,/,+5v) €z,

2
m m
11 11
+ Zu (‘f‘u - ZV r‘r J - Cr (We - uZVJ
m,, m,,

step 4: As we know that r, is not a true control, we will introduce the final error
variable z, =r, —«, instead of &, and we use 7, to stabilize the subsystem.

. m m
g, =——ulz, +a,)-—Lz,r, +6,
m,, my,
y,=z+q, (46)
Z.r = T3 - a,r
With
2 2
) m m m
@, =—c, |1+ (Juj (z,+a,)+c,—Lud, —c, (Aj uz,r, (47)
my, my, my,

Then, after the set of transformation, the controlled dynamic system so far is:
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X,=—(K+K,)X,+RZ, +A

Zu = _Clzu _xecl// - yesl// + fu
2
m m m m
. 11 11 11 11
Zv ___uzr+cr_ul//e_cr(_uj Zv__Zurr-i_é‘v (48)
my, my, m,, 2

) =z —cy, +c AL
We =z, rl//e r uz,
My,

=7,—C,

r

Again, to stabilize the error variable z, , we consider the following Lyapunov function
candidate:

1
V.=V, +§Zf (49)

and computing its time derivative, we obtain:

2 2 2
: 7l
V. =—XTKX —k _i _ _i ”_ — — 2

4 e e l(xe 2li kl(ye 2]{1) + 4kl +Zv(yecl// xesl//+é’v) clzu

2 2
my, my, 1 my, my,
+ Zu fu - Zvrr - Cr ‘//e - qu + Zr T3 + Cr + u Zr - Cr‘//e + Cr uzv (50)
m,, m,, m,, m,,

2
m m m
11 11 11
—c,—tuo, +c,( j uz,r, +y, — uzv}

m,, m,, m,,

Choosing
2 2
m m m m
T,=—c, 1+(JuJ r,+c,—Lud, —c{Jj uz,r, —y¥, +—tuz, —cz, (51)
my, m,, m,, my,
and
m
fu = szrr _C4ZMZ3 (52)
My,

with ¢ and ¢, are positive constants. Substituting equations (51) and (52) in (50) we

obtain:
2 2 2
V4 =—X6TKX€—kl(xe—2/?;€j —kl[ye ﬂzJ +M+zv(yecw—xesw+§v)
1

2%k, ) 4k
2
2 2 2 2.2 my; my, (53)
- Clzu - CZV - Crl//e - C4Zu Zy + 2cr 7”21}//8 - Cr — qu
My, My

In the above expression we remark that the last three terms have uncertain signs, so
we will examine them by considering all of them are positive. For the analysis we will
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use the inequality of Young (Ghommam [10]), with the quantitiese;, i=1....6 are
positive constants.

2
X

e

2

1 2 2 1
z,\y.c, —x,8,)<—1y,| +&lz,| +—
(y 172 1//) 481 y 1 481

2
m 1({m
ZC,(—“ u]zvl//e S—(—” uj
my, &, \ My,

Now, we will expand the expression of z d,, we obtain the following expression:

vy

2 2
+&:¢, |z

v, (55)

v

m d d,,
2,0, =Ly (k+k )(xec -,8 )zv+[(k+k )—iJvezv—[v +—ur +—v Jz
l ! g l My, (56)

My, my, My,

- (k + kl )(Vrcy/g —Uu.S, =V, )Zv

Then, we will bound the four terms of (56) one by one as follows:

2
1
mrr(k+kl)( —y,5 V,) <. —(k+k )| [|x [ +€(m“J o[
m,, & my, (57)
2
+L(k+kl)2 |y +€3[ﬂJ 2|
& My,
d 1 d, Y
[(k+kl)—ijvezv <L (k+kl)—ij (59)
my, 4e, My,
—[\},+ﬂurrr+&v,jzv <ef v+ 0y + 52 iy ,J L z| (59)
my, my, mzz my, 4e;
1 2
—(k+k, )( —u,s, =V, )zv <eg(k+k) (v,c% —u,s, —v,l 4e, (60)

Taking into account the results from (54) to (60), the derivative of V, in (53), will be
increased by:

v4s{k—i__(k +k, ) m} {k_L_L(k A ,ﬁ} k[x —AJZ

4e, 4e 4e, de 2k

22 2 "ﬂ, ' 2 , m 2 1 m 2 ) ,
_kl ye A7 + - _Clzu _Cr H umaxZ\f - Cr - - umax l//e _Crzr
2](1 4](1 m,, &\ m,, (61 )

2 2
- C4 —2¢ - 82 —2¢, i _gA_L_L Zf"'L (k+kl)_@ V:max+gi|§l|2
m,y, de;  4dgg de, m,, )

ek +k V1G]
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A

max >

where r

max

Vool and v are the maximum values for the time varying

max ?> "' r max emax

2
" . . 1
quantities. In the inequality (61) the term c4zj—281—gch—28{ﬂj —eri——

m,,

2
must be positive, for that we set 281+52cf+253(ﬂJ +€4+L+L_ So, it must
m,, de, 4dg,

g

that c¢,z; >¢ =z, >.|2 which is verified for a large and positive ¢, and small
Cy

¢ consequently we have:

2 2
v, s—wlx:—wly:—kl[xe—i] —kl[ye—i] N ST SR

2k, 2k, (62)
_@-215 +u
where
1 1 2 2
@, = k—————(k+k ) rn,
d4e, A4e,
2
w-Z = cr(ﬂum‘ixj
My,
1 2
w-3 = Cr - (ﬂumaxJ
&\ My,
2 2
A
w= )= 2 e ek Pl + e
4e, - 4k,
which are all positive. So, from the inequality (62), we can deduce that:
V,$-0,x; ~@,y; —c,z; ~ 0,2, ~ @Y, —¢,z] + U
(63)
vV, +u
where v = min{@,,c,.@,.@,,c,} .
By employing the comparison lemma (Khallil [11]), we can yield:
V,(t) <V, (0)e ™" +2ﬁ,t >0 (64)
1%

Which implies that the states of error (x,,v,.v.,z,.2z,,z,) remain in a bounded set
about the origin.
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ANALATYCAL RESULTS

In this section, we carry out some computer simulations that illustrate the
performance that can be achieved with the motion control algorithms mentioned
before. The simulations are implemented on Mat lab. We assume the underactuated
ship vehicle model with the following parameters of kinematics and the dynamics
that are the same as those in Dong and Guo [12]:

m,, =200Kg,m,, = 250Kg,m,, =80Kg,d,, =70Kg/s,d,, =100Kg /s and d,; =50Kg/s

Here, we will track a sinusoidal path (time varying trajectory). Responses were
obtained for two cases: in the first case we will show simulation results of the
tracking without disturbances and in the second case we will present simulation
results in the disturbed condition, in this case we assume that the disturbances are
the sea drag forces which are taken equal to 0.05« and 0.05v acting in the surge
and sway respectively. We choose a desired trajectory which its parametric system
describing by:

(65)

x, =0.03t
y, =10sin(0.03¢)

For simulation uses, we pick the following initial condition for the real system:
[x(0), y(0),1(0). (0),v(0), 7(0)] = [0.12,2.5,0,0,0,0]
and the initial desired conditions are:

[x.(0), y,(0),%,(0),u,(0).v.(0)..(0)] = [0,0,1.3175,0.3,0.03,0.2]

The control parameters used in the Backstepping control are set to
k, =0.01,k =0.03,¢, =10,¢, =3,c =10 and ¢, =1 to satisfy convergence conditions.

Sinusoidal Tracking with No Disturbances

Figure 3 shows the desired trajectory and the actual trajectory of the ship in X -Y
plane. We see that the ship converged to the desired trajectory. For each figure of
Figs. (4-7), we have figures on the left side and on the right side. The figures on the
left regard simulation time of 450s needed for two full period for the sinus function,
while the figures on the right regard the first 70s in order to observe the transient
responses.

The simulations results, depicted in Figs. (4-5), are for response of positions (x,y)
and linear velocities(u,v), we observe that after a transition period of 65sall

presented variables converge to the desired variables. Figure 6 shows the
convergence of ¥ and yaw velocity r to y, andr., respectively after around2s. In

Figure 7, we see the behavior of the control surge force z, and the control yaw
torque 7, needed for tracking and they also converge to the open-loop control efforts
z, and 7, respectively after around 2s.
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Sinusoidal Tracking Path with Disturbances

In the disturbed condition, we present some numerical results concerning the
robustness of the designed control law. Figs. (8-12) are simulation results with
disturbance in which we assume that there are added drag forces of the
order(0.054,0.05v). As in the preceding section, we present in each figure the
response after two full periods on the left side and on the right the first65s. We
remark that the proposed control law is robust for the chosen disturbances.
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CONCLUSION

In this paper, we presented an autonomous navigation control technique for an
under-actuated ship. A Backstepping methodology combined with Lyapunov function
for determining explicit stabilizing feedbacks, for the completed error system that
assure the motion of the ship to track realisable trajectories, have been given.
Simulation results show a very good tracking performance and effective robustness
against considered disturbances.
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