Influence of Bleaching Materials on Mechanical and Morphological Properties for Paper Conservation

A. M. Rushdy¹, W. N. Wahba², A. M. Youssef^{3*} and S. Kamel⁴

¹Conservation Department, Museum of Islamic Art, Cairo, Egypt ²Faculty of Archaeology, Cairo University, Egypt ³Packaging and Packing Materials Department, National Research Centre, El Behooth St., Dokki - Giza- Egypt and ⁴Cellulose and Paper Department, National Research Centre, El Behooth St., Dokki - Giza- Egypt.

O LD historical papers always are suffering from yellowing and darkness specifically after natural aging, so this study aim to evaluated some traditional bleaching materials that used in treatments of documents and books like hydrogen peroxide and sodium borohydride. Physical and chemical changes in paper sheets (cotton linter paper and book) before and after aging were studied such as color change, pH measurements, tensile strength, burst strength, FT-IR spectrum and scanning electron microscopy (SEM). The result pointed out that $H_2O_2\&$ NaBH₄ lead to no significant improvement in mechanical properties of the historical paper. The effect of H_2O_2 and NaBH₄ concentration, bleaching time and pH on paper sheet bleaching process were examined. Whiteness and yellowness results of the historical paper were evaluated for both bleaching methods. From this work it is clear that, it is not desirable to utilize bleaching agents for the treatment and conservation of ancient archaeological papers, but only in the essential cases they may be used in slight concentrations to treat yellowing, staining or stains.

Keywords: Historical papers, Bleaching, Hydrogen peroxide, Sodium borohydride, Thermal Aging.

Introduction

In general paper consists of bonded cellulose fibers that are linear polymers of glucose (B-Dglucopyranose) monomers liked by B-1, 4-glycosidic bonds, hemicellulose, lignin and certain amount of additives e.g. fillers, pigments, metal ions, sizing and bleaching substances [1]. There are diverse mechanisms that cause the deterioration of paper. Storage under normal conditions, degradation processes are very slow but eventually generate vellowing and loss of the paper mechanical strength [2]. The paper degrades naturally throughout three main reactions: acid-catalyzed hydrolysis of cellulose molecules, oxidative degradation induced from atmospheric oxygen and light, and thermal degradation that leads to chemical bond breakage as the temperature is increased. Artificial paper aging tests have demonstrated that these reactions become more intense when temperature is incremented [3]. Yellowing caused by aging, foxing that can appear due to iron oxidation or because of the presence of microorganisms [4, 5].

Bleaching process is used to clean the historical paper and it is classified under wet treatments. Since the bleaching agent is usually applied as a solution, the main purpose of bleaching is cosmetic, that is the removal of the overall discoloration or of disfiguring stains. But bleaching process destroys chromophore groups by either oxidation or reduction, depending on the kind of the bleaching reagent [6]. Bleaching can convert a conjugated double bond to carboncarbon single bond which removes discoloration from paper [7]. Many paper conservators use hydrogen peroxide [8] in widely to bleach discolored or stained paper.It is generally considered more environmentally friendly than other bleaching agents and it can be minimized by using low concentration of alkaline solutions [9]. Also sodium borohydride can be used [10-13] compared between the effect of thermal aging on physical and chemical properties of historical paper. Paper aging and conservation are substances of anxiety to those accountable for

64

archives and library collections [14].

Consequently, paper is a multi-component fabric, and owing to its difficult and diverse nature, investigate result in paper chemistry could be hard to understand. Therefore, the source of the cellulosic matter, and pulping as well as papermaking methods, additives, and storage situation play a vital role [15-18]. Also, the chemical changes happening in the paper accordingly engage multi-parameter developments.

Accordingly, the key purpose of this study has been assessed the effect of bleaching materials such as hydrogen peroxide and sodium borohydride on the mechanical, thermal and morphological properties of paper documents and books before and after treatments via thermal aging.

Materials and Methods

Materials

Cotton linter, delivered by Abo Zaable Chemicals Company (Abo Zaable, Egypt) and PARIS Book paper (dating back to 1887 A.D.) Book paper has natural aging about 220 years addition to thermal aging 25 years was used in this work. Hydrogen Peroxide and Sodium Borohydride (H_2O_2 & NaBH₄) of analytical grade were used.

Methods

Paper manufacture from cotton linter pulp

It has been done in the Egyptian National Library and Archives (Dar al Kutub) Corniche El Nile, Sabttiya according to the following method; pulp was beaten to 40 °SR in a Jokro mill beater according to the Swedish Standard Method (SCA). Sheets of basis weight 80 g/m^2 were formed using leaf cast instrument. The paper sheets were prepared according to the S.C.A standard, using the model S.C.A sheet former (AB Worentzen and Wettre). In the apparatus a sheet of 165 mm. diameter and 214 cm² surface area was formed. The weight of oven dry pulp used for every sheet was about 1.43 g. paper sheets were dipped in 1% solution of carboxy methyl cellulose. After dipping, the paper sheets were pressed between two filter paper sheets to remove the excess polymer. After sheet formation, the sheet was pressed for 4 min using a hydraulic press. Drying of the test sheets was made with the help of a rotating cylinder or drum dryer at 60 °C + 5 for 2 h) to produce sheet dimension of 62 X 42

Egypt.J.Chem. 60, No. 5 (2017)

cm, then dried using dryer under pressure. Yellow spots have been made by rummage of iron metal powder on the surface of the paper sheets.

Bleaching

Paper treatment by bleaching in immersion of hydrogen peroxide or sodium borohydride (0.5 and 1%) of each solution

Thermal aging of paper using $(H_2O_2\&NaBH_4)$: According to TAPPI standard T453 ts-63 untreated and treated sample were hung in a drying oven (Heraeus type 5042) Kotter manual hansen w- Germany set at 100[±]5°C for 3 days (\approx 72h), this period was selected to be equivalent to 25 years of natural aging [19, 20]. The book paper has natural aging about 220 years addition to thermal aging 25 years.

Characterization

pH measurements

The pH of papers is considered as the most important factor determining its stability towards natural and accelerated ageing. Cold extraction measurements conformed to TAPPI standard T509 om-11 was used [21, 22].

Tensile strength

The tensile properties of the paper are tested with a testing machine, as specified in the TAPPI standard T 494 om-01; The untreated and treated paper samples were kept in the conditioned room for 24 h, and the testing of tensile strength in a standard atmosphere (at temperature of $23 \pm$ 1°C and relative humidity(RH) $50 \pm 0.2\%$ [23]. Tensile testing was carried out on 15 mm wide strips between jaws set 100 mm apart, using a universal testing machine, model 4201 from *Instorn* Corporation equipped with a tension cell of 500N at a stretching speed of 5mm/min.

Breaking Length (m) = Tensile strength (mm) X 6, 67 X 10,000 / Grammage (g)

Grammage, i.e. weight of 1 m^2 , from it the retained amount (g/m²) of materials or its derivatives on paper sheets were calculated [24].

Burst strength

Burst strength was measured according to TAPPI standard T403 om-02(TAPPI 1997). This test is designed to measure the maximum bursting strength of the paper between 50 kPa and 1200 kPa with maximum thickness of 0.6 mm. The standard size of samples is 10×10 cm, they

are clamped between two concentric annuli on the rubber diaphragm. The pressure causes the sample to expand into the upper annular clamp until it bursts [25].

Color change

Color changes caused by the effect of accelerated aging cycles were measured using CIE *Lab system commonly used to compare the colors of two samples. The L-scale measures lightness, and varies from 0(black) to 100 (perfect white). The a-scale measures red-green; (+a) means more red, (-a) measures green; the b-scale measures yellow-blue; (+b) meaning more yellow, (-b) deep blue [26]. The total color difference (ΔE) is calculated according to the following equation:

$\Delta E = \sqrt{(\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2}$

The measurement was made using Ultra Scan

TABLE 1. pH values o	f cotton linter	and book paper.
----------------------	-----------------	-----------------

PRO Hunter Lab D65, 10 A.

Infrared spectroscopy (FTIR) analysis

Infrared spectroscopy using Fourier transform infrared (FTIR) investigation was achieved with a JASCO FTIR-6100E spectrometer, Japan.

Scanning Electron Microscopy (SEM)

Samples for SEM were taken using FEI Netherlands Model Quanta 200 environmental scanning electron microscope with EDX unit. Elemental micro-probe was used for analyzing the elemental constitution of solid samples, to observe the surface morphology [27].

Results and Discussion

pH measurements

Bleaching action increases with increasing pH as does rate of degradation [28]. A correct deacidification process is keeping the pH around 8-9. Table 1 demonstrated that the pH values on

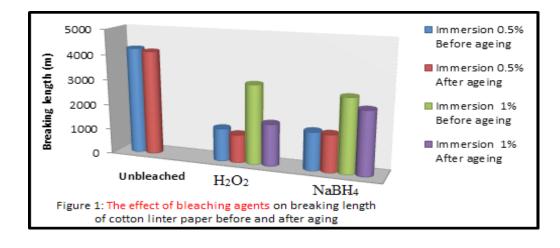
	Cotton linter paper			Book paper					
Bleaching materials	Before aging	After aging	Before aging	After aging					
Unbleached	6.61	6.57	6.75	6.51					
	0.5% Bleaching Agent								
H ₂ O ₂	8.34	7.82	7.50	7.45					
NaBH ₄	9.49	9.45	9.65	9.45					
1% Bleaching Agent									
H ₂ O ₂	8.23	7.96	7.35	7.05					
NaBH ₄	9.49	9.37	9.46	9.35					

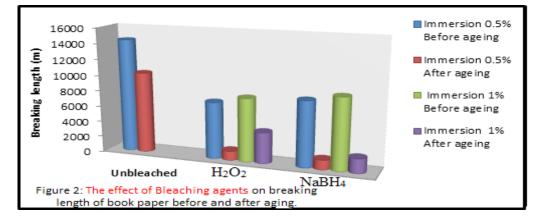
the surface of untreated and treated samples of cotton linter and book paper from the Table, all samples showed increasing in pH after bleaching either by H_2O_2 or NaBH₄. Aging reduced the pH paper that bleached by H_2O_2 although the pH remains constant by bleaching using NaBH₄ with different concentrations. In general, the pH of the bleached paper using NaBH₄ solutions is higher than that bleached by (H_2O_2) solutions.

Breaking length

The bleaching of pulp improved the apparent density, From Fig. 1 the breaking length of bleaching materials (H_2O_2 and $NaBH_4$) after bleaching in case of cotton linter paper, the breaking length decreased with increasing the

concentration of bleaching materials and decreased compare with the blank, while the breaking length of bleaching materials (H_2O_2 and $NaBH_4$) before bleaching in case of cotton linter paper increased compare with blank and no significant change in the two bleaching materials used.


From Fig. 2 the breaking length of bleaching materials (H_2O_2 and $NaBH_4$) after bleaching materials in case of book paper increased with rising the dose amounts of (H_2O_2 and $NaBH_4$) and also decreased compare with the blank, while the breaking length of bleaching materials (H_2O_2) before bleaching in case of book paper increased in case of using NaBH₄ and decreased when using H_2O_2 contrast with blank. All in all, The Tensile


strength, burst index and brightness of the paper decreased, due to the removal of lignin during the bleaching process probably increased the bonding strength [29].

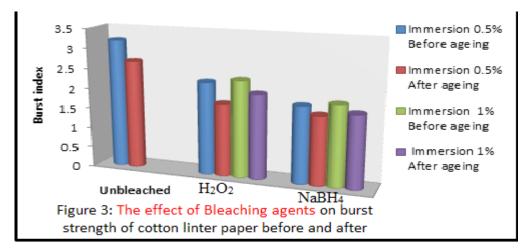

Burst strength

Figure 3 displayed that the burst strength of

bleached papers on cotton linter paper before and after aging, which decreased by increasing the bleaching agents and increased compare to the blank (cotton linter paper). The same phenomenon was observed in case of using book. Although the burst strength increase with rising the concentration of the bleaching materials

Egypt.J.Chem. **60**, No. 5 (2017)

Measurement of color change

The effect of color changes on cotton linter paper and book paper with bleaching using $(H_2O_2$ and NaBH₄) before and after aging was shown in Table 2(a and b). The change in color increased with rising the concentrations of the bleaching agents $(H_2O_2 \text{ and NaBH}_4)$ after and before aging, the change in color was more significant when using high concentration of bleaching agents (1%) of both $(H_2O_2 \text{ and NaBH}_4)$ particularly when utilizing cotton linter paper after aging. Furthermore, the influence of aging was more significant when using 1% NaBH₄ as bleaching agent rather than the using of 1% H_2O_2 in both cotton linter paper and book paper after aging.

Infrared spectroscopy

The FT-IR spectral results for all papers which untreated and treated with bleaching agents were quite similar. As shown in Fig. 4a, 4b, 4c and 4d, the FT-IR spectra revealed that all paper types had a peak around 3300 cm⁻¹ hydroxyl groups (-OH), and also had a peak around 2900 cm⁻¹hydrocarbon groups (-CH), 1550:1610cm⁻¹ H-O-H absorbed for water, 1300:1420 cm⁻¹ carboxylate (carboxylic acid salt) [30]. There is a considerable difference in the band at1028 cm⁻¹, which corresponds to C-O ether bonds, suggesting a dissociation of bonds as a result of supplementary photochemical degradation [31]. In the samples of book paper had a peak 1661cm⁻¹ which signified the attendance of carbonyl groups (C=O) which are a product of the degradation of cellulose [32], 1725 cm⁻¹an oxidation of paper, that be able to follow the degradation of cellulose aged under a variety of conditions [33]. The all spectra at different conditions almost matching as revealed in Figs. 4a, 4b, 4c and 4d.

TABLE 2a. effect of bleachin	g materials on color	changes of cotton linte	r paper before and	after aging

	Before a	ging			After ag	jing		
	L	А	b	ΔE	L	а	b	ΔΕ
Unbleached	87.74	23	5.20	0.0	84.42	0.22	9.68	0.0
Immersion 0.5%								
H ₂ O ₂	84.93	0.1	5.02	2.80	82.46	2.02	14.99	5.95
NaBH ₄	86.54	0.44	5.63	1.28	82.89	1.97	13.45	4.44
Immersion 1%								
H ₂ O ₂	85.12	0.71	8.13	3.95	83.57	2.98	17.47	8.30
$NaBH_4$	84.82	1.01	8.82	4.72	80.24	5.26	20.40	12.57

TABLE 2b, effect of bleaching materials on color changes of book paper before and after aging.

	Before aging			After aging				
	L	А	b	ΔΕ	L	а	b	ΔΕ
Unbleached	89.28	0.67	9.30	0.0	84.36	2.19	15.00	0.0
Immersion 0.5%								
H ₂ O ₂	90.42	0.55	7.70	1.97	89.61	0.94	10.20	7.22
NaBH ₄	90.71	0.52	8.37	1.72	87.92	1.45	11.72	4.86
Immersion 1%								
H ₂ O ₂	87.31	1.56	10.42	2.43	88.93	1.19	10.54	6.43
NaBH_4	88.66	1.56	13.23	4.08	88.99	0.83	10.09	7.14

Egypt.J.Chem. 60, No. 5 (2017)

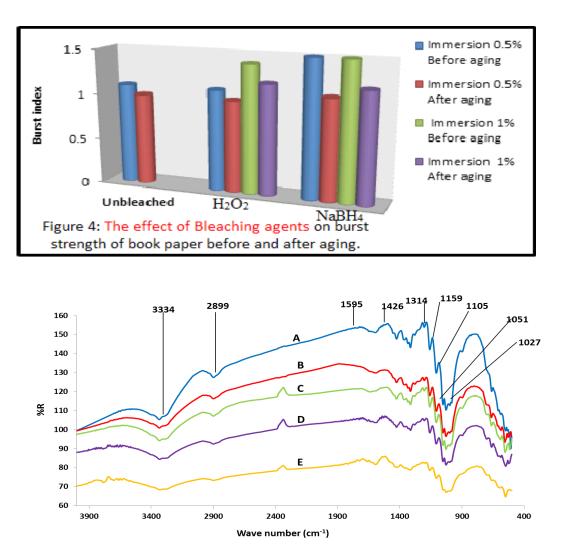


Fig. 4a. FT-IR spectroscopy of cotton linter paper before aging: (A) unbleached, (B) 0.5 % H₂O₂, (C) 1% H₂O₂, (D) 0.5 % NaBH₄, and (E) 1% NaBH₄.

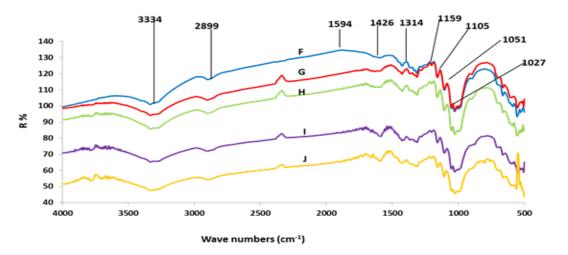


Fig. 4b. FT-IR spectroscopy of cotton linter paper after aging: (F) unbleached, (G) 0.5 % H₂O₂, (H) 1% H₂O₂,(I) 0.5 % NaBH₄, and (J) 1% NaBH₄.

Egypt.J.Chem. 60, No. 5 (2017)

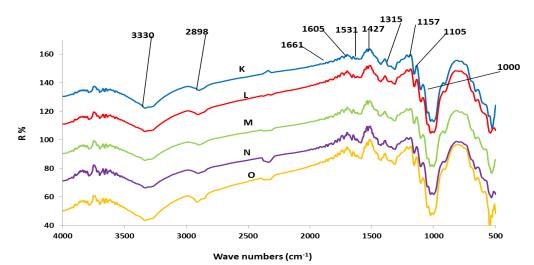


Fig. 4c. FT-IR spectroscopy of book paper before aging: (K) unbleached, (L) 0.5 % H₂O₂, (M) 1% H₂O₂, (N) 0.5 % NaBH₄ and (O) 1% NaBH₄.

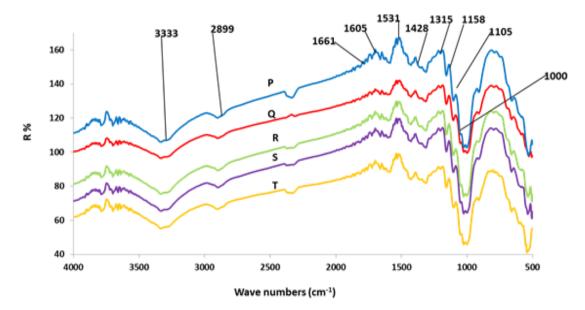


Fig. 4d. FT-IR spectroscopy of book paper after aging: (P) unbleached, (Q) 0.5 % H₂O₂, (R) 1% H₂O₂, (S) 0.5 % NaBH₄ and (T) 1% NaBH₄.

(H2O2 and NaBH4) before aging.

There was no noticeable change in the cotton paper; while in the book paper the functional groups showed the oxidation and damage of cellulose. This may be due to the length of the aging period of the paper compared to the cotton paper. These results are confirmed when investigation paper fibers with a scanning electron microscope.

Morphological Investigation via Scanning Electron Microscopy (SEM)

The morphological properties of the cotton linter before and after aging were revealed in Fig. 5. It has been indicated that the blank of cotton linter before aging (Fig. 5a and k) is very good fibril structure and the fiber was clear and smooth while after using the two bleaching materials (H_2O_2 andNaBH₄) the fiber of paper start to degrade. Whereas, the

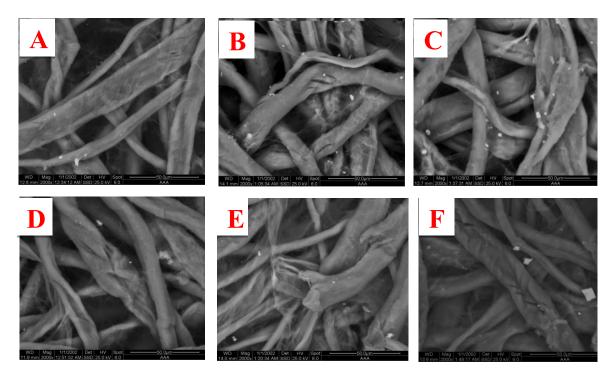


Fig. 5. SEM of non aged cotton linter paper ((A) unbleached, (B) bleached by H₂O₂, (C) bleached by NaBH₄); aged cotton linter paper ((E) bleached by H₂O₂, (F) bleached by NaBH₄)

high concentrations of $({\rm H_2O_2} \text{ and } {\rm NaBH_4})$ is completely decomposed due to the effect of aging.

The morphology of the book paper before and after aging was revealed in Fig. 6. It has been indicated that the blank of book paper before aging as shown in Fig. 6 (a & k) is very good

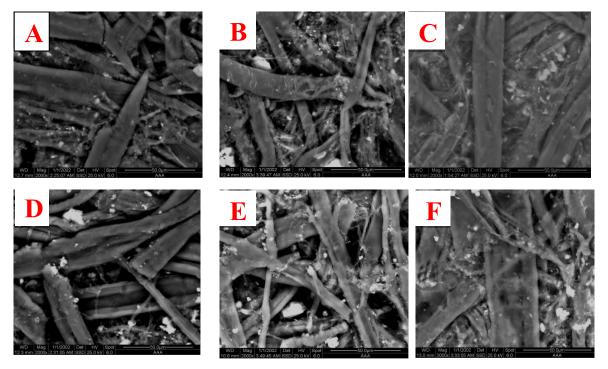


Fig. 6. SEM of non aged book paper ((A) unbleached, (B) bleached by H₂O₂, (C) bleached by NaBH₄); aged book paper ((E) bleached by H₂O₂, (F) bleached by NaBH₄).
Egypt.J.Chem. 60, No. 5 (2017)

fibril structure and the fiber was clear and smooth while after using the two bleaching agents (H_2O_2 and $NaBH_4$) the fiber of paper start to degrade. Whereas, the using of high concentrations of H_2O_2 and $NaBH_4$ (1%) was completely decomposed attributable to the effect of aging.

Conclusion

There was an improvement in the mechanical properties of the paper, especially with a concentration of bleaching chemicals less 0.5%. But in the chemical properties of pulp fibers, there was no noticeable change in the cotton paper, while in the book paper the functional groups showed the oxidation and damage of cellulosic fibers. As in the color changes of the paper did not notice any change by visual observation, but the results of measurements resulted in the existence of changes in the best and specific values of whiteness and yellowing.

From the current study it is clear that, it is not desirable to use bleaching agents for the treatment and conservation of ancient archaeological papers, but only in the necessary cases they can be used in small concentrations to treat yellowing, staining or stains. In spite of the numerous of current obtainable works aware of accelerating paper aging, an obvious association between artificial and natural aging is still missing. This point is a wonderful significance to scientists who dealing with paper conservation.

References

- Librando, V., Minniti, Z., and Lorusso, S., Ancient and modern paper characterization by FT-IR and spectroscopy, *Conservation Science in Cultural Heritage*, 249-268. (2009).
- Giorgi, R., Dei, L., Ceccato, M., Schettino, C. and Baglioni, P., Nanotechnologies for conservation of cultural heritage: paper and canvas deacidification, *Langmuir*, 18 (21), 8198-8203 (2002).
- Daniels, V. D., The chemistry of paper conservation. *Chemical Society Reviews.* 25, 179-186 (1996).
- Ardelean, E., &Melniciue-Puica, N., Conservation of paper documents damaged by foxing, *European Journal of Science and Theology*, 9 (2), 117-124 (2013).
- Choi, S., Foxing on paper: A literature review, *Journal* Of The American Institute For Conservation, 46 (2), 137-152 (2007).

- Zervos, S., Alexopoulou, I., Paper conservation methods: A literature review, *Cellulose*, 22(5), 2859-2897 (2015).
- Zheng, X, J., Foxing on 18th Century Paper: A lithograph print, PrincetonUniversity, 1-20 (2006).
- Clement, D., The Blistering of paper during Hydrogen peroxide bleaching, *Journal of the American Institute for Conservation*, 23 (1), 47-62 (1983).
- Carr,D., Niven,B. and Campbell, L., Effects of selected aqueous treatments on the properties of two papers, *Studies in Conservation*, **51**(3), 189-198(2006).
- Ouchi, A., Obata, T., Sakai, H. and Sakuragi, M., Laser bleaching of cellulosic fabrics by sodium borohydride aqueous solution; a total chlorine free process, *Green Chem.*, **3**, 221-223 (2001).
- Duygu, Y. and Mehmet, K., Bleaching of wool with sodium borohydride, *Journal of Engineered Fibers* and Fabrics, 4(3), 45-50 (2009).
- Erhardt, D. and Charless, S.T., Chemical degradation of cellulose in paper over 500 year, *Restaurator*, 26, 151-158 (2005).
- Area, M.C. and Cheradame, H., Paper aging and degradation: Recent findings and research methods, *Bio Reasources*, 6 (4), 5307-5337 (2011).
- David, J. H., Conservation treatment of the mi'kmaq prayer book, *Journal de l'Association* canadienne pour la conservation et la restauration (J.ACCR) 25, 21-29 (2000).
- Ahmed. M. Youssef, Elsamahy, M. A., El-Sakhawy, M., Kamel S. Structural and electrical properties of paper-polyaniline composite. *Carbohydrate Polymers* 90, 1003–1007 (2012).
- Ahmed. M. Youssef, Kamel,S., El-Samahy. M.A. Morphological and antibacterial properties of modified paper by PS nanocomposites for packaging applications, *Carbohydrate Polymers* 98, 1166–1172 (2013).
- Ola, A. Mohamed; Ahmed. M. Youssef, Magda A. Elsamahy and Jean F. Bloch, Fire retardant cartoon by adding modified leather waste, *Egypt. J. Chem*, 59, 553-268 (2016).
- Ahmed. M. Youssef, Mohamed, S. A., Abdel-Aziz, M. S. Abdel-Aziz, M. E. Turky, G. and Kamel, S. Biological studies and electrical conductivity of paper sheet based on PANI/PS/Ag-NPs nanocomposite, *Carbohydrate Polymers* 147, 333–

Egypt.J.Chem. 60, No. 5 (2017)

343 (2016).

- Williams, J.C., Chemistry of the Deacidification of paper, Bulletin of the American Group International Institute for Conservation of Historic and Artistic Works, 12 (1), 19 (1971).
- 20. Bansa, H., Accelerated ageing of paper, some ideas on its practical benefit, *Restaurator*, **23**, 106 (2002).
- 21. Joel, N., Indictor, N., Hanlan, J.F. and Baer, N.S., The Measurement and Significance of pH in Paper Conservation, *International Institute for Conservation of Historic and Artistic Works*, **12** (2) , 119-125 (1972).
- Strlic, M., Pihlar, B., Mauko, L., Kolar, J., Hocevar, S. and Ogorevc, B., A new electrode for microdetermination of paper ph, *Restaurator*, 26, 159-171 (2005).
- Junior, J.L.P., The development of micro-analytical methodologies for the characterization of the condition of paper, 9th International Congress of IADA, Copenhagen, 15 (21), 107-114 (1999).
- 24. Nada, A.M.A., El-Sakhawy, M., Kamel, S. and Adel, A.M., Mechanical and electrical properties of paper sheets treated with chitosan and its derivatives, *Carbohydrate Polymers*, 63, 113-121 (2006).
- 25. Suryawanshi, D.G., Like paper, Birch Bark and its mechanical properties, *Restaurator*, **25**, 75-80 (2004).
- Abdel-Maksoud, G. and Marcinkowska, E., Changes in some properties of aged and historical parchment, *Restaurator*, 21, 138-157 (2000).

- Abdel-Maksoud, G. and Al-saad, Z., Evaluation of cellulose acetate and chitosan used for the treatment of historical papers, *Mediterranean Archaeology* and Archaeometry, 9 (1), 69 – 87 (2009).
- Burgess, H.D., Reyden, D.V.D. and Keyes, K., Bleaching: paper conservation catalog, *Journal* of the American Institute for Conservation, 1-38 (1989).
- 29. Mohamed, S.I. and Rushdan, I., Effect of bleaching on coir fibre pulp and paper properties, *J. Trop. Agric. And Fd. Sc*, **42** (1), 51-61(2014).
- 30. Coates, J., Interpretation of infrared spectra, a practical approach, *Encyclopedia of Analytical Chemistry*, 10815-10837 (2000).
- Leal-Ayala, D.R., Allwood, J.M., Schmidt, M. and Alexeev, I., Toner-print removal from paper by long and ultrashort pulsed lasers, *Proceedings: Mathematical, Physical and Engineering Sciences*, 468 (2144), 2272-2293 (2012).
- Batterham, I. and Rai, R., A comparison of artificial ageing with 27 years of natural ageing, AICCM Book, *Paper And Photographic Materials Symposium*, 82-89 (2008).
- Lojewska, J., Miskowiec, P., Lojewski, T. and Proniewicz, L.M., Cellulose oxidative and hydrolytic degradation: In situ FTIR approach, *Polymer Degradation And Stability*, 88, 512-520 (2005).

(*Received* 3/7/2017; *accepted* 20/8/2017)

تأثير مواد التبيض على الخواص الفيزيائية والمور فولوجية للصيانة العلاجية للورق

أسماء محمد رشدى'، وفيقة نصحى وهبه'،أحمد يوسف "و سمير كامل' 'متحف الفن الإسلامي بالقاهرة، ` قسم الترميم- كلية الآثار - جامعة القاهرة، ' قسم مواد التعبئة والتغليف و'قسم السليلوزوالورق – المركز القومي للبحوث – الدقي- مصر .

نظر الأن الورق الآثرى يعانى دائما من الإصفرار والدكانة وخاصتا بعد التقادم الطبيعى له، كما يمكن أن تظهر عليه بعض البقع الصفرار أوالبنية نتيجة بقع الفوكسينج التي قد تحدث بسبب أكسدة شوائب الحديد أو بسب بوجود بعض الكائنات الحية الدقيقة. لذلك كان هدف هذه الدر اسة هو تقبيم بعض مواد التبيض التقليدية المستخدمة كصيانة علاجية للوثائق والأوراق التاريخية، وملاحظة مدى التغيرات الفيزيائية والكيميائية التى تحدث لخواص الورق بعد إستخدامها وذلك قبل وبعد إجراء التقادم الحرارى الصناعى. وتم إستخدام نوعين من الورق لهذه الدراسة وهما: ورق مصنوع حديثا من نسالة القطن تم تصنيعه بدار الكتب والوثائق القومية بكورنيش النيل، ونوع أخرى من ورق كتاب مصنوع قديما من ألياف نباتية يرجع تاريخه لعام ١٩٨٧م.

إستخدمت مادتى التبيض (فوق أكسيد الهيدروجين HYOY، وبورو هيدريت الصوديوم NaBH٤) بتركيزين ٠،٠ ٪، ١٪ بطريقة الغمر لمدة دقيقتين. وتم قياس الأس الهيدروجينىpH، الخواص الميكانيكية بحساب طول القطع وقوة الإنفجار، الخواص الكيميائية بدراسة المجموعات الوظيفية للورق بإستخدام الأشعة تحت الحمراء، التغير اللونى، والفحص بالميكر سكوب الإلكترونى الماسح. وقد أسفرت نتائج الفحوص والتحاليل عن أن كلا المادتين متقاربتين في النتائج، حيث إرتفاعة قيمpH(نسبة القلوية)

وقد اسفرت نتائج الفحوص والتحاليل عن ان كلا المادتين متقاربتين في النتائج، حيث إرتفاعة قيم p(نسبة القلوية) مع زيادة تركيز مواد التبيض، وكانت مادة فوق أكسيدالهيدر وجين أقل قلوية من مادة بورو هيدريت الصوديوم. وحدث ضعف بالخواص الميكانيكية مقارنتا بالعينة القياسية لنو عين الورق وذلك قبل وبعد التقادم الحرارى. وأعطت مادتى التبيض نتيجة أفضل مع التركيز الثاني عن التركيز الأول. أما عن الخواص الكيميائية فلم يحدث تغير قوى ملحوظ بورق القطن، بينما في ورق الكتاب ظهرت المجموعات الوظيفية الدالة على أكسدة وتلف سليلوز الورق. وقد تأكدة تلك النتائج عند فحص ألياف الورق بالميكرسكوب الإلكتروني الماسح. أما بالنسبة للتغير اللونية للورق فلم نلاحظ أى تغير بالعين المجردة ولكن نتائج القياسات أسفرت عن وجود تغيرات للأفضل وخاصتا بقيم البياض والإصفرار. ولذلك يتضح من هذه الدراسة بأنه لا يفضل إستخدام مواد التبيض لعلاج وصيانة الأوراق الآثرية القديمة، ولكن في الحالات الصرورية فقط يمكن أن تستخدم بالتركيز ات القليلة لعلاج حوالات الأوراق الأثرية القديمة، ولكن في الحالات الصرورية فقط يمكن أن تستخدم بالتركيز القالية لعلاج حالات الإصفر الوراق القعن، ولكن في يتم تطبيقها في أصنيق الدورات القدم المؤلمة على تلك الثوم القطيفية الدالة على أكثر مواد التريف القديمة، واكن في ولذلك يتضح من هذه الدراسة بأنه لا يفضل إستخدام مواد التبيض لعلاج وصيانة الأوراق الأثرية القديمة، ولكن في الحالات الضرورية فقط يمكن أن تستخدم بالتركيز ات القايلة لعلاج حالات الإصفر او والدكانة أو البقع، بشرط أن يتم تطبيقها في أضيق الحدود. وذلك حتى يمكن الحفاظ على تلك الثروة الهائلة من الوثائق والأوراق الأثرية للأجريل والشعوب القادمة دون حدوث أي تلف نتيجة التدخل بمواد قد تؤثر عليها فيما بعد.