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Abstract  
Water treatment is essential in guaranteeing the accessibility of uncontaminated and secure water for diverse 

societal requirements. This paper examines the importance of sustainable wastewater treatment, providing a 

detailed analysis of various methods and strategies to tackle the urgent issues related to wastewater management. 

This study seeks to examine various treatment methods and technologies to gain valuable insights into their 

feasibility, efficiency, and environmental impact. The study also explores in depth the pressing environmental 

concerns presented by textile dyeing wastewater, which contains dangerous dyes and compounds that are not 

easily treated using conventional procedures. In addition to that, the textile industry's carbon dioxide (CO2) 

emissions contribute to global climate change. One proposed solution is to utilize microalgae-based systems for 

wastewater treatment in a sustainable manner, with a specific focus on properly treating textile dye effluent and 

simultaneously capturing CO2 emissions. The integration of wastewater bioremediation and carbon sequestration 

offers an eco-technological solution that addresses both the issues of wastewater treatment and carbon reduction 

in a synergistic manner. The outcomes of this study are anticipated to aid in the advancement of an eco-friendly 

and sustainable method for treating wastewater and minimizing carbon emissions in the textile sector. This will 

promote the industry's overall sustainability and decrease its negative impact on the environment. 
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I. INTRODUCTION 

he last century has seen tremendous amount of textile production which obviously stimulates water 

pollution and furthermore has a devastating impact on the aquatic ecosystems [1]. The textile industry is a 

major contributor to water pollution, as a significant portion of the wastewater it produces is released into 

neighboring rivers, lakes, and other natural water bodies [2]. The dye is an indispensable component in 

textile and fabric production, but it is also a major contributor to the hazardous wastewater generated by the 

textile industry, posing significant harm to the ecology [2]. Even the World Bank has estimated that as much as 

17–20% of the industrial water pollution problem originates from the dyeing and fabric finishing treatment 

process [3]. The annual global discharge of textile effluents as waste are approximately 280,000 tons of textile 

dyes [4]. The mainly synthetic dyes are azo dyes, which are a group of synthetic dyes having one or more nitro 

groups (N=N-) [5]. These dyes are known for their ability to dissolve, and they are economical, stable, and color 

as well, which makes them desired and applied in different applications [6], [7]. Approximately 10% - 15% of 

dye substances that are discharged into water bodies become dissolved in the aquatic ecosystem, resulting in a 

hazardous exposure of marine organisms to poisonous concentrations[5]. Various azo dyes and their degradation 

by-products have been proven to be carcinogenic, mutagenic, and have other undesirable effects on living 

organisms. These dyes cause allergic reactions, reproductive difficulties, skin dermatomes, also impact the lungs, 

liver, vascular-intestinal, immunological, and reproductive systems in animals and humans [5].  

T
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An improvement in the living conditions of the global population leads to a rise in worldwide energy 

consumption. The utilization of fossil fuels for energy production leads to an upsurge in the emission of carbon 

dioxide (CO2) [8], [9]. The global scientific community is concerned about the increasing concentration of CO2 

in the atmosphere due to its status as the most prevalent greenhouse gas, which contributes to global warming  

[10], [11]. There is a loss of atmospheric oxygen due to the activities of the industries that release CO2.The 

intergovernmental Panel on Climate Change’s (IPCC) Sixth Assessment Report (AR6) assesses that there is 

more than half a chance that temperature ’ll exceed the 1.5°C between 2021 and 2040 in most assessed scenarios 

[12].  

The current implementation of renewable energy technologies, such as wind, solar, and hydropower, is 

anticipated to be insufficient to supply existing power requirements and transition away from fossil fuels [13]. 

Consequently, biomass may get more and more popular as green fuel in the global effort to burden the 

environment with minimum environmental impact [14]. While biomass holds considerable untapped potential, 

the current CO2 sequestration in plants through photosynthesis is insufficient to fully address the atmospheric 

CO2 problem. This is primarily due to various factors, including limited land availability for tree planting [9]. 

Microalgae exhibit a unique method of producing useful products and sequestering CO2  [15]. As efficient as 

carbon dioxide fixation and the manufacturing of multi-purpose products. Microalgae have significantly faster 

development rates compared to typical forest, agricultural crop, and other aquatic plants [15]. Microalgal culture 

has the potential to recycle CO2 by storing it in biomass through photosynthesis, which can then be converted 

into fuels using other methods  [16]. Microalgae possess other advantages beyond biofuel generation, including 

their potential applications in human and animal food production, pharmaceutical and personal care sectors, 

cosmetics industry, and wastewater remediation [14].  

Microorganisms have been utilized for bioremediation since 1980. They are a promising option due to their 

ability to rapidly and efficiently grow, especially in challenging environments with limited nutrient resources, 

industrial effluents, and other types of wastewater [17], [18]. They are a single cell organism that can up take 

CO2 and encage the sun rays to synthesize their own food during photosynthesis. By these ways their cellular 

structure resembles that of higher plants. usually, they have 80,000-100,000 mg/L of chemical oxygen demand 

(COD) and 40,000–50,000 mg/L of  biological oxygen demand (BOD)  [19]. Also, they can adsorb and absorb 

toxic heavy metals (Cd, AR, Hg and Cu) and toxic chemical compounds from industrial effluents for the growth 

[20].  It is one of the main sources to produce valuable economical products, for example biofuels, biodiesel, 

biohydrogen, bioplastics, and other products [21]. Microalgae-derived biofuel offers numerous advantages 

[22],including low water consumption, cost-effectiveness, minimal land usage, the capacity to absorb 

atmospheric CO2, utilization of inexpensive nitrogen sources, reduced nitrogen oxide emissions during 

combustion, and rapid growth potential [17], [23], [24],. The cultivation of microalgal biomass that is convenient 

generally needs inorganic nutrients such as carbon, nitrogen and phosphorous along with external growth factors, 

such as climatic factors and biological factors [25], [26]. Microalgae can be harvested in various methods 

including sedimentation, flocculation, flotation, filtration, and centrifugation  [27], [28]. 

Microalgal lipids can be extracted using many methods, including solvent extraction, ultrasonic and microwave 

extraction, hydrothermal agitation, osmotic shock, enzymatic disruption, oxidative stress, and electricity [27], 

[29]. Microalgae may be effectively grown and used to treat various types of wastewater, including those from 

dairy and food production, industrial waste, and municipal waste [30]. On the contrary, certain types of 

microalgae strains thrive based on the specific physical-chemical properties of the wastewater, such as the 

composition of nutrients, the lack of trace elements, and the presence of inhibitory or poisonous substances  [31], 

[32]. Utilizing algae for the rehabilitation of industrial effluents presents numerous obstacles, particularly when 

accounting for external environmental conditions. Typically, this process requires three primary components: 

water, CO2, and high levels of light intensity. Conversely, the presence of disease-causing microorganisms in the 

culture hinders the growth of microalgae, while several environmental elements such as climate change, light 

intensity, cultivation area, pH, insects, and other microorganisms operate as barriers in the process of 

phytoremediation [33]. 

Industries that specialize in synthetic materials are a significant contributor to environmental pollution. They 

dispose of large quantities of wastewater that contain dangerous and harmful dyes, which directly contributes to 
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the release of greenhouse gases through the wasteful use of fossil fuel-based energy. Conventional wastewater 

treatment methods typically prove ineffective in removing persistent colored molecules, while utilizing modern 

carbon capture systems is prohibitively expensive and energy intensive. Hence, it is imperative to address the 

need for a cost-effective and efficient approach to tackle wastewater treatment and carbon dioxide (CO2) 

reduction in the textile sector. This study introduces a pragmatic and effective solution: a collaborative eco-

technological method that combines the treatment of textile dye waste and the capture of CO2 using microalgae. 

Wastewater treatment is an essential procedure for safeguarding public health and the environment, but it can 

also entail substantial financial expenditure for municipalities and companies. The economic variables to 

consider while assessing the viability of establishing a large-scale wastewater treatment system include: 

Capital Costs refer to the initial expenditure needed to build the wastewater treatment facility, encompassing 

expenses such as site acquisition, equipment procurement, and infrastructure development. Variables such as the 

magnitude of the establishment, the intricacy of the treatment procedures, and the geographical position can have 

a substantial effect on capital expenses. 

Furthermore, Operating and Maintenance Costs refer to the continuous expenditures involved in operating the 

wastewater treatment plant, including energy use, chemical usage, labor, and routine maintenance. The costs can 

fluctuate based on the treatment methods utilized, the size of the operation, and the prevailing labor and utility 

rates in the area. 

In addition to that Wastewater treatment facilities are obligated to adhere to stringent regulatory criteria 

regarding the quality of their effluent. This sometimes necessitates making further investments in advanced 

treatment technologies. Adhering to environmental rules can influence both the initial investment and ongoing 

expenses [34]–[36]. 

Potential Cost Savings should be considered, efficiently designed and managed wastewater treatment systems 

can save costs by extracting and reutilizing valuable resources, such as water, energy, and nutrients, from the 

waste stream. The potential income generated from the sale of these reclaimed materials can counterbalance the 

total expenses of the treatment system. 

Economies of scale refer to the cost advantages that larger wastewater treatment facilities experience as their 

capacity increases. In these facilities, the per-unit cost of treatment lowers as the facility's size grows. This can 

enhance the economic feasibility of large-scale adoption in contrast to smaller, decentralized treatment systems. 

Possibilities for obtaining funds and financial resources could help, the presence of government subsidies, low-

interest loans, or public-private partnerships can have a substantial impact on the financial viability of large-scale 

wastewater treatment projects. Investigating these financial options can assist in mitigating the substantial initial 

investment expenses. Through meticulous examination of these economic elements, decision-makers can more 

effectively assess the overall cost-efficiency and enduring viability of implementing extensive wastewater 

treatment solutions. Conducting a thorough economic evaluation is essential to ensure the practicality and 

effective execution of these vital infrastructure initiatives [37], [38] 

II. ENVIRONMENTAL IMPACT OF INDUSTRIAL WASTEWATER 

The contamination and discharge of water is the most critical concern we face today due to the activities related 

to industry and urbanization  [39]. Industries depend on fresh water as their main raw resource to conduct their 

operations and procedures. Consequently, the availability of freshwater resources on Earth is restricted. A 

significant proportion of environmental water contamination is attributed to the discharge of industrial effluent. 

Throughout the past century, a substantial quantity of waste from industrial operations was released into water 

bodies, including rivers, lakes, and coastal regions. Consequently, this resulted in significant pollution issues in 

the aquatic environment, which subsequently had adverse impacts on the ecology and human well-being [40]. 

Each sector produces a unique combination of pollutants due to variations in wastewater composition resulting 

from specific industrial processes and the presence of different toxins. Appropriate adaptation of wastewater 

treatment for industrial processes is necessary to account for the specific properties of the effluent it includes 

[41]. Furthermore, as industrial technologies continue to advance, the amount of wastewater will progressively 

diminish [42]. The volume of wastewater is contingent upon the level of technical innovation exhibited by each 
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industry sector. Researchers and engineers are discovering new techniques of recycling and treating this 

industrial wastewater since the untreated contaminated wastewater discharge into environment brings diseases 

such as cancer, mutagenic changes, nervous system response, etc.  [43]. 

III. CHARACTERISTICS OF INDUSTRIAL WASTEWATER 

The composition or the amount of wastewater varies depending on the type of enterprise and the toxins present. 

Every sector generates a unique blend of contaminants. Industrial wastewaters are categorized based on their 

physical properties (such as Total solid, Suspended solid, Dissolved Solid, odor, color and pH), chemical 

properties (both organic & inorganic), and biological properties deliberated on (Table 3-1).  [42], [44].  

Table 3-1  Characteristics of industrial WW. 
 

Chemical 

characteristics:  

Physical 

characteristics:  

Biological 

characteristics  

Organic constituents:  Color Animals  

Carbohydrates Odor  Plants  

Fats, and oils Turbidity  Eubacteria 

VOC Temperature  Archaebacteria 

Priority pollutants  Solids  

Proteins pH  

Surfactants   

Phenols   

Pesticides   

Inorganic components:    

Gases   

HMs    

P   

N   

S   

O2   

CH4   

H2S   

Chlorides   

Alkalinity   

Industrial effluent contains a range of impurities, with organic pollutants being the most significant component. 

Industrial wastewater contains a wide range of organic substances, including aliphatic and heterocyclic 

compounds, PAHs, PCBs, pesticides, herbicides, and phenols [44]. Industrial wastewater contains a variety of 

inorganic chemicals such as phosphates, nitrates, and sulphates, as well as heavy metals like Cd, Cr, Ni, and Pb. 

The presence of a significant quantity of contaminants in water bodies leads to an elevation in BOD, COD, total 

suspended solids (TSS) and total dissolved solids (TDS). BOD and COD denote the total quantities of organic 

material and its components contained in wastewater (Figure 1) [44]. The contaminants emitted from the 

effluents are directly correlated with the characteristics of the industry [44]. As an example, the wastewater 

discharged from the textile sector contains elevated levels of BOD ,COD, and color, while the wastewater 

released from the tannery industry has a high concentration of metals such as Cd, Cr  [44].  
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. Each treatment technique has its unique merits, but some of these benefits can, unfortunately, also be 

longer processing time, less output, and 

. Therefore, it is 
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A. Physical Methods 

Mass transfer strategy provides the physical pollutant removal methods with the basis [50]. It would be used 

more due to its simplicity, flexibility, high efficiency, and pollutant recyclability [48], [51]. It is another benefit, 

too, that chemical requirements are few in this approach. Physical treatment is more reliable than the other kinds 

because it does not depend on living organisms [50]. Among the physical methods, adsorption is a method that 

has been adopted in the recent period due to its high capacity and lower cost [51]. 

i. Adsorption 

Adsorption is typically considered as an economical and reliable approach which is used for wastewater 

treatment [52]. Adsorption can be called the phenomenon of mass transfer which means that the solute substance 

is removed from a fluid phase and stays adsorbed on the solid adsorbent surface. Physicochemical interactions 

are occurring during adsorption that leads to binding off the gaseous species to a solid surface [53].  The 

adsorption efficiency can span up to 99.9%, by removing the contaminants. USEPA (The United States 

Environmental Protection Agency) rated the adsorption technique as the most advanced and the best method in 

the field of wastewater treatment, as compared to other treatments [54].The adsorption technique is thought to be 

a well-established process for the removal of dyes from the wastewater due to its simplicity and more cost-

effective than the other approaches. In this process, generally, adsorbate migration occurs in three sequential 

steps: (1) adsorption of adsorbate at the interface, (2) diffusion inside the pores, and (3), adsorption and 

desorption of solute [55]. Adsorbate, Adsorbent, and Matrix properties control the rate of all these steps. To find 

out the adsorption capacity, isotherms of adsorption are employed. Adsorption isotherms are constructed based 

on the adsorbed molecules vs the interface area and the equilibrium pressure of the gas or the concentration of 

the solution of the liquid. Isotherms of Langmuir and Freundlich are the most common models being use for 

pollutant adsorption evaluation [48]. 

ii.  Membrane Filtration 

Membrane filtration technology has developed into a significant separation technique during the past 20 years, 

emerging as a prominent method for wastewater treatment. The water industry has been actively seeking 

innovative solutions in response to evolving regulatory standards and aesthetic preferences for ensuring the 

quality of consumer water [55]. Membrane technology exemplifies an innovative technological advancement. 

Membranes are utilized as filters in separation procedures throughout a wide range of applications in this field of 

technology [55]. Adsorption, ion exchangers and sand filters are among the technologies that can be substituted. 

Water filtration, including purification and desalination of wastewater and groundwater are significant 

applications of this technology. Additionally, sectors such as biotechnology and food & beverage also utilize this 

technology. including microfiltration, ultrafiltration, nanofiltration, and reverse osmosis [55]. Table (4-1) shows 

the ranges of separation pore sizes for various membrane technologies. The mechanism of membrane filtration is 

shown in Figure (4) [44].   

Table 4-1. Membrane technology ranges 

Process Forces  Size range  Examples  
Microfiltration  Hydraulic pressure 0.1 to 10 μm Bacteria and microorganisms 

Yeast cells 
Denatured proteins 
Algae 

Ultrafiltration  Hydraulic pressure 1 nm to 0.1 μm Viruses 
Protein molecules 
Large molecules like sugars 
Dyes and colorants 
Colloids 

Nanofiltration Hydraulic pressure 0.0001 to 0.001 μm (1-100 nm) Multivalent ions 
Organic contaminants  

Reverse osmosis  Hydraulic pressure Below 2 nm Monovalent ions  
Dissolved salts  
Micro solutes 
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products are utilized during yarn dying process, however this EAOPs do not contain any added chemicals and 

they can curb the formation of dye sludge. Hence, the EAOPs can be considered as environment friendly as they 

have the inherently clean electrons with no extra steps required for sludge [55]. It also includes high efficiency in 

removing pollutants, easy operation, and ease in handling. The major and the primary difficulty that hinders 

energy-assisted applications is the increased energy expenses with the corresponding lower oxidation 

effectiveness [55]. Recently, the stability of electrode materials and catalytic activity improvement has been 

getting consideration by manufacturing various metal oxides into electrodes and doping. Electrooxidation using 

pulse current supply can be as efficient as traditional methods to meet the world's energy needs [55]. 

C. Biological Methods 

Treatment methods involve the elimination of pollutants by biological processes that take place throughout 

aerobic and anaerobic conditions [42]. The biological methods for total degradation of textile wastewater have 

their benefits (a) eco-friendly, (b) cost competitive, (c) lesser sludge production, (d) bio treatment giving 

nonhazardous metabolites or complete mineralization, and (e) water reuse (higher concentration or less dilution 

requirement) in comparison with the physical/oxidation method of treatment [55]. The degradation efficiency of 

biological processes crucially relies on the ability of selected microbes to adapt, and on the activity of their 

enzymes. Hence, countless microorganisms and enzymes are isolated and evaluated for the destruction of 

various dyes [55]. The microorganisms with degradation power when isolated and used, is an interesting 

biological aspect of textile wastewater treatment. There exist various microorganisms like bacteria, fungi, and 

algae that can spin-off different dyes present in the textile wastewater [63]. 

i. Aerobic Treatment 

Facultative bacteria  and Aerobic decompose or breakdown  the biodegradable organic matter through aerobic 

respiration in the presence of freely available oxygen or air in dissolved form within wastewater [64], [65]. The 

process is limited by factors such as temperature, retention duration, available of O2, and the activity of the 

bacteria. Moreover, the inclusion of chemicals that are crucial for bacterial growth may enhance the speed at 

which organic contaminants are physiologically converted into oxides. This method can eliminate COD, BOD, 

phosphates, nitrates, VOC, dissolved and suspended organic matter, and other contaminants [65]. It is feasible to 

decrease the quantity of biodegradable organic substances in the environment by as much as 90%. An inherent 

drawback of the approach is the generation of a substantial quantity of bio-solids, thereby requiring further 

expensive measures for treatment and handling. Activated sludge  and aeration lagoons technologies are 

employed to facilitate the aerobic process [64]. Equation (1) provides a concise representation of aerobic 

breakdown. 

Equation 1. Depiction of aerobic decomposition. 

Organic matter + Bacteria +O2 → Bacteria + By	Product + H2O + CO2  

ii. Activated Sludge Process 

Activated sludge technology operates by maintaining a significant bacterial population in wastewater through a 

process of suspension, while ensuring the presence of oxygen. Unlimited nutrition and oxygen can lead to 

increased bacterial growth and metabolism, causing the breakdown of organic molecules into oxidized 

byproducts or the production of new microorganisms  [65]. The active sludge system consists of 5 interrelated 

components: activated sludge bioreactor, mixing and aeration system, returned sludge and sedimentation tank. 

The activated sludge process is a commonly used biological mechanism for treating wastewater, known for its 

cost-effectiveness [42], [45].  

iii. Anaerobic Treatment 

Anaerobic waste treatment is a biological process where microorganisms break down organic contaminants in 

the absence of oxygen. In the absence of free dissolved oxygen in the wastewater, anaerobic decomposition or 

putrefaction occurs, during which facultative bacteria and anaerobic breakdown complex organic compounds 

into S, C, and N2. This biochemical process described results in the production of biogas, specifically CH4, H2S, 
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N2, and ammonia. This technique reduces the bacterial population in wastewater [66]–[68]. Anaerobic treatment 

is typically employed as a preliminary step to aerobic treatment in cases when streams have elevated levels of 

organic matter, as indicated by high measurements of BOD, TSS, or COD. Anaerobic treatment is an established 

and energy-efficient method for treating the wastewater of industry. The equation (2) provided below depicts the 

anaerobic process. 

Equation 2 Anaerobic process. 

Organic matter + Bacteria → Bacteria + ByProduct + CH4 + CO2  

The anaerobic digestion (AD) method is attractive due to its ability to cleanse wastewater, provide renewable 

energy, and generate byproducts that may be used as fertilizers on farms, making it an environmentally friendly 

process [69]. The AD method has the following advantages in comparison to the aerobic wastewater treatment 

procedure: Reduced nutrient need and the production of minimal biological sludge, which can be easily treated 

by drying [70]. Additionally, it requires a low reactor capacity and absence of oxygen, which decreases the 

energy required for oxygen delivery in the aerobic method. Moreover, the organic loading on the system is not 

limited to an oxygen source [65]. Therefore, in AD, it is possible to employ a greater loading rate, which enables 

a quicker reaction to the introduction of substrate after extended periods of no feeding, as well as semi-feed 

strategies over several months[69]. This enhances the functionality of the process, rendering AD a feasible 

choice for treating  wastewater and eliminating OFF-GAS emissions that contribute to air pollution [70]. Some 

examples of anaerobic treatment systems are the anaerobic filter reactors, anaerobic lagoons, UASB, EGSB, and 

ABR. 

iv. Bioremediation 

It is a biological treatment strategy that transforms environmental contaminants into less dangerous forms by 

using biological resources for instance, the natural capacity of bacteria, fungi, plants, algae, and microorganisms 

to endure, and flourish in incredibly harsh environments had been used to treat the contaminated soils and water 

bodies [71]. Bioremediation is preferable because it doesn't require solvents or a lot of energy, just like any other 

biological treatment method. It is possible to use this technology both in-situ and ex-situ. Environments that are 

either aerobic or anaerobic can support bioremediation [65]. In aerobic environments, ambient oxygen is 

necessary for living organisms to flourish. In anaerobic environments, there is no oxygen. To obtain the 

necessary energy in this scenario, microbes break down chemical molecules or ions such as sulfates in the 

wastewater [71]. 

 
V. LIMITATIONS OF CONVENTIONAL TEXTILE WASTEWATER TREATMENT 

Traditional biological techniques such as activated sludge are not effective in removing stubborn colors, heavy 

metals, surfactants, and other synthetic compounds often present in textile effluents. These contaminants can 

traverse without undergoing any changes [72], [73].  

The generation of substantial quantities of dangerous sludge that necessitate specialized disposal, contributing to 

the overall environmental impact.  The lack of ability to retrieve nutrients such as nitrogen and phosphorus for 

reuse, resulting in a linear waste disposal paradigm. Physic-chemical treatment procedures such as coagulation, 

adsorption, or advanced oxidation have high operational costs and require a significant amount of energy. 

Conventional treatment technologies in the textile industry do not effectively reduce greenhouse gas emissions, 

resulting in a large carbon footprint. 

VI. TEXTILE DYEING WASTEWATER 

A suggested approach is to employ microalgae-based systems for sustainable wastewater treatment, specifically 

targeting the effective treatment of textile dye effluent while concurrently absorbing CO2 emissions. The 

combination of wastewater bioremediation and carbon sequestration provides an eco-technological approach that 

effectively tackles the problems of wastewater treatment and carbon reduction in a mutually beneficial way. The 

depletion of non-renewable resources is occurring due to their heightened utilization in response to the growing 
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energy demand. The objective of biological wastewater treatment is to provide a system that allows for the 

collection and proper disposal of decomposition products [74]. The combination of wastewater treatment and 

microalgal cultivation can effectively decrease and fulfil the needs for nutrients and water. In order to enhance 

the production of value-added products utilizing microalgae, it is necessary to enhance and optimize the 

combination of wastewater treatment and microalgal biomass production  [74].  

Agricultural, municipal, and industrial wastewaters are among the many wastewater types that contain algae, 

which are photosynthetic organisms that evolve oxygen  [75]. By absorbing organic nutrients and converting 

them into biomass, microalgae thrive in nutrient-rich wastewater. Because microalgae may simultaneously use 

nitrogen, organic and inorganic carbon, and phosphorus while building biomass and decreasing COD, they are 

used in wastewater treatment [74]. Since they need a lot of nitrogen and phosphorus in addition to carbon 

dioxide and sunlight as a carbon source for the biosynthesis of proteins, phospholipids, and carbohydrates, 

microalgae are well known for their ability to grow and utilize nutrients from wastewaters [74]. Microalgae need 

nutrients like phosphates and urea, as well as metals like arsenic, cadmium, lead, and zinc, to grow. As a result, 

the BOD has decreased [74]. These qualities of microalgae allow for the benefits of a green and circular 

economy in wastewater treatment processes based on microalgae [76]. 

VII. REMEDIATION MECHANISMS AND INFLUENCING FACTORS 

Microalgae employ bio-adsorption, bioaccumulation, and biodegradation mechanisms to eliminate textile 

effluents as deliberated in figure(6) [43] . 

A. Bio Adsorption 

Precipitation, absorption, absorption, ion exchange, surface complexation, and electrostatic interaction are some 

of the mechanisms supporting the physical, chemical, and metabolically independent processes that make up 

biosorption [77]. This phenomenon's mechanisms necessitate the dissolution or dispersion of a target sorbate in 

water together with a biosorbent. The biomaterial in question may consist of living or deceased microorganisms, 

or even individual parts of them [43]. Until the concentration of the substance that the biosorbent has adsorbed 

and the remaining concentration in the liquid reaches equilibrium, the process is repeated. Furthermore, the 

distribution of a particular sorbate between the liquid and solid phases is dictated by the degree of biosorbent 

affinity for that sorbate [78]. 

Microalgae's cell wall is directly in charge of biosorption, and the mechanism by which this phenomenon takes 

place is determined by its chemical makeup, which also plays a critical role during the process as shown in 

Figure (6). Furthermore, the surfaces of microalgae have pores, and the surface charge promotes biosorption 

[43]. A variety of chemical groups, including (―OH), COOH, and S, are present in the microalgae's cell walls 

and serve as binding sites as well as efficient ion exchangers that support organic material adsorption from 

contaminated water and metal ion complexation [79]. Although they are primarily found in the plasma  and 

cytoplasm membrane, other molecules like lipids, proteins, and nucleic acids may also be deposited on the 

surface of cells [43]. These molecules could attach to metal cations through a variety of functional groups, 

including aminic, COOH, Thiol, imidazole, thioester, N, and oxygen in peptide bonds [80]. Microalgae's cell 

wall structure is generally composed of a fibril matrix that offers high mechanical strength, while the amorphous 

fraction is responsible for its flexibility. Both fractions, as well as the intercellular spaces on the cell wall, may 

facilitate the biosorption process [81]. 

B. Bioaccumulation 

It is challenging to quantify pollutants that have been bio-sorbed and accumulated because the processes of 

bioaccumulation and biosorption are fundamentally different, but they also interact dynamically. In addition to 

accumulating nutrients and microelements, microalgae also gather various pollutants [82]. Because microalgae 

can adapt to their surroundings, they can withstand pollutants even at low concentrations. Moreover, microalgae 

exhibit remarkable resilience against an extensive range of pollutants originating from industrial, agricultural, 

and residential domains, thereby augmenting their capacity for bioremediation [83], [84].  
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viability of these technologies. Future research should prioritize completing thorough cost-benefit assessments 

and comprehensive economic feasibility studies to evaluate the practical possibility more accurately for 

implementing new practices in the textile sector [97], [98]. 

Assessing the overall economic feasibility is essential for the general acceptance and expansion of microalgae-

based wastewater treatment systems. Conducting a thorough cost-benefit analysis can assist in quantifying the 

possible operating cost reductions, income generated from resource recovery, and environmental advantages, 

thereby presenting a comprehensive economic justification. Performing comprehensive economic feasibility 

studies can determine the primary factors influencing costs, the points at which revenue equals expenses, and the 

return on investment to evaluate the commercial appeal of these systems in comparison to traditional wastewater 

treatment technologies. 

Future research in this field should prioritize conducting a comprehensive evaluation of the financial expenses 

involved in establishing and operating a microalgae-based wastewater treatment system. This would entail 

examining the original capital outlays as well as the continuous operational expenses, encompassing energy, 

labor, maintenance, and disposal. By comparing these expenses to those of other wastewater treatment methods, 

we can illustrate the possible economic benefits of using the microalgae-based approach. 

Furthermore, it is imperative for researchers to accurately measure the monetary value that may be obtained from 

the retrieval and utilization of resources such as biofuels, animal feed, and biofertilizers that are derived from the 

grown microalgal biomass. Examining the market demand and pricing of these items derived from microalgae 

might assist in determining the potential extra sources of income that can be generated to counterbalance the 

expenses of treatment [99]. 

Moreover, it is essential to do a thorough life cycle cost-benefit analysis to evaluate the environmental, social, 

and economic consequences across the whole lifespan of the microalgae-based system. This would entail 

converting the advantages, such as decreased usage of freshwater, reduction of greenhouse gas emissions, and 

minimization of waste, into monetary value. Then, the overall costs and benefits of the entire life cycle would be 

compared to conventional solutions for wastewater treatment. 

Ultimately, creating techno-economic models that can accurately simulate the performance and costs of large-

scale microalgae-based systems, along with conducting sensitivity analyses to determine the most crucial cost 

factors, can assist in optimizing the design and operation of the system to achieve the most advantageous cost-

benefit ratio. This information can offer useful insights to direct the practical application of these technologies in 

the textile sector [100]. 

X. CONCLUSION 

In conclusion, this study provides an overview of the current state of textile wastewater treatment, focusing on a 

novel technique using microalgal systems that might be considered as an environmentally benign solution. The 

textile production process produces hazardous wastewater that is contaminated with chemically dyed substances, 

which pose challenges for conventional treatment procedures. The textile industry is a big emitter of greenhouse 

gases (GHG) and generates substantial quantities of hazardous waste. This study demonstrated the potential to 

achieve both water cleanup and CO2 reduction by cultivating microalgae. Microalgae possess a notable capacity 

for biosorption, bioaccumulation, and biodegradation, making them suitable for the purification of textile 

effluents containing diverse pollutants. The cell wall possesses many functional groups that enable the binding of 

pollutants, contributing to its structural properties. Moreover, these microalgae thrive in streams abundant with 

textile waste, utilizing nitrogen, phosphorous, and carbon as a readily available source of fuel for their rapid 

growth and reproduction. Through the process of photosynthesis, plants efficiently reduce parameters such as 

COD, BOD, and other water quality indicators. Combining wastewater treatment with algae growth gives a 

circular economy notion of several opportunities. It serves as a nutrient source for the organisms that feed on the 

algae and cleanses the water. Furthermore, microalgae capture CO2 through photosynthesis, hence options like 

carbon credit or offsets are provided. This carbon is being stored in the collected algae biomass because of this 

process. Value chains expansion through the manufacture of non-food products like biofuels, chemicals and 

nutraceuticals is also possible from the biomass. 
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