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Abstract— The correct classification of the type of brain 

tumor is critical in the early detection of the tumor, which can 

mean the difference between life and death. Implementing 

automated computer-aided approaches can help improve 

tumor diagnosis. We proposed a method for brain tumor 

classification via EfficientNetB3, a pre-trained model based 

on the transfer learning strategy. First, preprocessing images 

utilizing various methods, followed by classification of the 

preprocessed images using the fine-tuned EfficientNetB3 

model. The suggested technique of fine-tuning pre-trained 

EfficientNetB3 is executed by first loading ImageNet weights 

to the EfficientNeB3 model, then adding several layers for the 

classification of brain tumor classes. A global average pooling 

(GAP) layer is used in our design to avoid over-fitting and 

Batch normalization layer to reduce losses. The proposed 

model was evaluated on 5712 images divided into four 

classes: glioma, meningioma, pituitary tumors, and normal 

which are shared publicly on Kaggle website. In addition, 

Multiple tests were run to assess the reliability of the proposed 

fine-tuned model in comparison to other traditional pre-trained 

models as well as other studies in the literature. The proposed 

framework achieved an accuracy of 97.7% with a minimum 

loss of 0.17. Also, the proposed method scored 95.6% for 

precision and F1-score respectively with only 20 epochs with 

Exponential Linear Unit (ELU) activation function at a 

threshold of 0.2 and Adam optimizer. We also evaluated the 

proposed model on two additional datasets to enhance 

generalizability. This model will certainly minimize detection 

complications and aid radiologists without requiring invasive 

procedures. 
Keywords—Magnetic Resonance Imaging (MRI), Convolutional 

Neural Network (CNN), Transfer Learning (TL), Artificial 

Intelligence (AI), Deep Learning (DL) 
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I. INTRODUCTION  

Brain tumors are the most common and deadly problem today. 

Every day, several individuals die as a consequence of a tumor 

late discovering and these lives could have been preserved if 

the tumor had been diagnosed previously. Brain tumors are 

frequently categorized as benign or low grade (grade I and II) 

or malignant (grade III and IV). Benign tumors are non-

progressive (non-cancerous) and therefore considered less 

aggressive; they originate in the brain and grow gradually; 

and they are unable to spread to other parts of the body. The 

American Cancer Society (ASC) forecasts that 24, 810 

humans will be diagnosed with malignant tumors by 2023, 

with 18, 990 dying as a consequence [1]. The most common 

procedure for classifying brain tumors is biopsy, but biopsy is 

carried out only after a surgery in which a small tissue sample 

is removed from the brain and examined under a microscope 

to determine whether or not it is a tumor. 

 Although a surgical nature with the biopsy method, as well as 

the risk of bleeding or even functional loss, constitute 

hazardous method for a diagnosis. Because of the variability 

and size of the lesion, diagnosing this disease is difficult [2]. 

Health care providers have begun to use medical imaging 

techniques more frequently in order to save time and give 

better results.  MRI (Magnetic Resonance Imaging) is 

preferred by physicians over the other two techniques, and 

researchers are heavily focused on it. Anomalies in brain 

tissue can be discovered using MRIs, and detailed information 

about the brain's structure can be obtained [3]. Because 

previous methods were trained on a single data set, the system 

could not identify brain tumors in a variety of environments 

using MRI scans [4]. (Computed Tomography) CT and MRI 

scans are more effective imaging technologies for brain 

tumors. Manual brain tumor definition is time-consuming for 

many MRI scans. Despite this, MRI scans are of greater value 

than CT images in terms of tumor texture and shape [5]. Due 

to a malignant condition generally grows to neighboring 

tissues, detecting and treating it early increases the chances of 

effective treatment and thus staying alive. As a result, accurate 

diagnosis and classification of brain tumors are critical for 

effective treatment [6]. Quick identification of tumors is 

critical, and experts use a variety of techniques to assess 

disease attributes.  Glioma and meningioma are both major 

tumors which may be fatal unless diagnosed early [7]. 

Gliomas are the most common type of brain tumors that begin 

in the brain's glial cells. Gliomas account for 30% of all brain 

tumors and 80% of all malignant brain tumors [8]. 

Meningioma is a benign tumor that grows on the membrane 

that covers the brain and spinal cord inside the human skull 
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[9]. Even so, pituitary tumors begin in the pituitary glands, 

which control hormones and regulate body functions. Pituitary 

tumors are primarily caused by adenohypophysis cells, which 

are members of the neuroendocrine epithelial cell family that 

secrete hormones [10]. Pituitary tumor issues can result in 

ongoing hormone absence and sight loss [11].  
In light of the details presented above, prompt 

identification and categorization of brain tumors have become 

critical tasks in case evaluation, aiding in the selection of the 

best treatment method to save the lives of patients. In addition, 

in some complicated cases, the classification stage may be a 

confusing and time-consuming task for physicians or 

radiologists. These cases require experts to work on them in 

order to localize the tumor, compare tumor tissues with 

adjacent regions, apply filters to the image if important to 

make it clearer for human vision, and finally determine 

whether it is a tumor, as well as its type and grade if on hand. 

This task takes time, which is why a Computer Aided 

Diagnosis (CAD) system is needed to recognize brain tumors 

in much less time without any human involvement.  

Many artificial intelligence strategies have been used 

in recent years to automate the process. Deep learning (DL) is 

a subdomain of machine learning (ML) which classifies 

images using the convolutional neural network (CNN) scheme 

[12]. CNN is a different well-known deep learning technique 

that performs well on both 2D and 3D medical images [13].  

One of the primary advantages of CNNs over common ML 

and vanilla neural networks are feature learning and limitless 

accuracy, that can be achieved through increasing the number 

of samples used for training, which produces a more robust 

and accurate model [14]. In a similar way the transfer learning 

(TL) technique is commonly used to save time when data and 

computational resources are scarce. It means that the model 

uses the pre-trained model's convent weights when training 

only the final dense layer [15]. This method applies 

knowledge gained from one task to solve related ones.   

To assist healthcare professionals in determining the 

effective course of action for treating and preventing 

premature deaths that result from brain tumors, it’s necessary 

to establish a powerful DL model that can reliably forecast 

brain tumors in a short amount of time. As a result, this study 

emphasizes on developing a useful as well as structured 

framework for classifying brain tumors into four harmful 

forms of brain tumor: normal, glioma, meningioma, and 

pituitary tumor. The model's implementation extracts number 

of features from MRI images using the EfficientNetB3 

pretrained model. We employ a variety of preprocessing 

procedures for preparing our dataset, adjust the TL 

architecture, alongside add additional layers. In this study, 

adjusting is the procedure of adding layers with the modified 

design which allows us to develop a new DL construction for 

identifying brain tumors successfully with high performance 

and minimal loss. Additionally, we assess the impact of our 

proposed DL model with a variety of performance metrics 

such as Accuracy, Precision, Recall, F1-score, and others. A 
comprehensive assessment of the suggested method is then 

performed. Results from this study show that our approach can 

classify brain tumors by achieving an outstanding accuracy 

rate of 97.7%. 

 

The main contributions to this work are outlined as follows: 

● Develop a framework for automated brain tumor 

classification which is based on finetuning 

EfficientNetB3 model. 

● The proposed framework is based on combining 

EfficientNetB3 model with GAP and BN layers and 

ELU activation function for reducing loss and 

providing overfitting.  

● The proposed framework achieved high performance 

with minimum loss despite the few training dataset. 

● The suggested fine-tuned EfficientNetB3 is 

computationally inexpensive, lightweight, and 

performs well on previously unseen samples. 

 

The other parts of this paper are arranged as follows. 

Section II provides related work also; section III gives 

complete description for material and method of the 

proposed work. Section IV displays performance metrics.  

Section V introduces results and discussion in addition, 

section VI presents conclusion and future work. 

II. RELATED WORK 

Several techniques to recognize brain tumors in MRI 

images were invented over the years. These approaches range 

from traditional image processing to neural network-based 

machine learning. Qinghua and Kabir [16] suggested a block-

wise fine-tuning method based on the TL and VGG19 pre-

trained model. The suggested approach was tested on 

Figshare's brain tumor dataset. The approach they employed 

was adaptable as it was free of a feature extractor, needed 

minimal preprocessing, and obtained an average accuracy of 

94.82% after five-fold cross validation tests. Afshar et al. [17] 

established the BayesCap, a Bayesian CapsNet structure that is 

capable of giving not only mean estimates but also entropy as 

an indicator of anticipating uncertainties, through leveraging 

capsule networks' ability to regulate small datasets and control 

uncertainty. They used Figshare brain tumor dataset to test 

their model and gained an accuracy rate of 78% for 

recognizing brain tumors. Five popular DL architectures were 

used by Sohaib and Zhao [18] to create a system for 

diagnosing brain tumors. They applied Xception, 

DenseNet201, DenseNet121, ResNet152V2, and 

InceptionResNetV2 models for multi-classification tasks. The 

findings indicated that the proposed model based on the 

Xception architecture was the best performance and scored an 

accuracy of 95.8% for the four classes classification.  
 To diagnose brain abnormalities, Lu et al. proposed a 

fine-tuned Alex-Net framework [19]. Only 291 images were 

used in this study. Sajjad et al. used a fine-tuned VGG19 

model for multiclass brain tumor detection on 121 images in a 

similar study [20]. They had a prediction accuracy of 87.4% 

overall. Chato and Latifi [21] developed a model for cancer 

diagnosis that achieves 90% accuracy through a combination 

of trial and error and adjustments made manually. The 

answers, however, did not achieve their optimal outcome and 

accuracy using conventional methods. Alanazi et al. [22] 

proposed a CNN for categorizing brain Magnetic Resonance 

Imaging (MRI) scans into two groups: tumor and non-tumor. 

This study used a dataset of 3000 images from the Kaggle 

platform, which included glioma, meningioma, pituitary 
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tumor, and no tumor classes. The proposed CNN model 

performed admirably, with an accuracy of 96.89% in 

determining and classifying these images. Irmak et al. [23] 

proposed two distinct CNN models with 13 and 25 layers to 

categorize brain images into two and five classes, as well. The 

proposed model's accuracy decreased to 92.66% as the number 

of classes increased. The approach used two different models 

for brain tumor detection and identification was also a flaw. 
 We collected a number of brain tumor MRI images 

for the purpose of research. We also considered various 

machine learning models to see how well our proposed CNN 

model worked. In our study, CNN performed better than the 

TL models. Other authors, on the other hand, have 

demonstrated good results when working on TL models, with 

results better than 90%. Unlike most other researchers, we 

used a large dataset of 5712 MRI images, which is 

significantly larger than what is typically used in many 

studies. Despite the limitations of other research studies, we 

worked to improve our method, shorten the training period, 

and improve performance. 

III. MATERIAL AND METHOD 

The computerized technique for recognizing and 

evaluating for brain tumors is being tested through collecting 

MRI images from Kaggle website1,2. The used dataset 

contained 5712 MRI scans for training and 1311 MRI scans 

for testing. This dataset also includes four types of brain 

tumors: normal, pituitary, glioma, and meningioma as shown 

in Table 1. The images in this dataset are collected from 

Figshare, SARTAJ, and Br35H datasets. This dataset's scans 

have three different viewpoints: axial, coronal, and sagittal. 

Fig.1 describes a sample of each class in the used dataset.  
 

Table 1: Dataset distribution 

 
1https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-

dataset?select=Training.  
2https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-

dataset?select=Testing. 
 

 

Fig. 1: Samples of the used dataset. 

A. The proposed  framework 

 This section explores the methodology used to classify brain 

tumor types from MRI images. The proposed method's overall 

workflow is depicted as a block diagram in Fig. 2. First, MRI 

images containing slices of various brain tumor types are 

preprocessed in order to make samples for training. The 

proposed approach is based on pre-trained EfficientNets and 

the variations of them that are transferred to the learning 

setting. Here, EfficientNetB3 is explicitly adjusted on the 

dataset’s MRI sequences for extraction of features and 

categorization. This model was chosen because it is 

computationally inexpensive, requires fewer Floating-Point 

Operations per second (FLOPs) for inference, and outperforms 

different state-of-the-art pre-trained deep CNN architecture on 

ImageNet [24]. The FLOPs demonstrate the model's 

complexity by counting the number of transactions in a frozen 

CNN network. The 

following sections provide an extensive description of every 

stage within the suggested approach. 

 

B. Data Preprocessing 

We apply a variety of processing methods before feeding the 

images into the classifier. Data preprocessing, including 

contrast enhancement and normalization, is required for 

medical image analysis. As a result, in order to read the 

image, we must increase its size. Following that, we convert 

all of the images into NumPy arrays (available in Python) so 

that our model takes up a smaller area. The size of the input 

images is first rescaled to 240 x 240 x 3 to have the pre-trained 

EfficientNetB3 model correspond with the dimension tensor 

being used with that of the needed input shape. Image resizing 

additionally assists avoid computational overload while 

training the network by preserving the image's content and 

features. 

 

Class 

 

No. of images in each 

class 

Train 

Pituitary 1457 

Glioma 1321 

Meningioma 1339 

Normal 1595 

Total 5712 

Test 

Pituitary 300 

Glioma 300 

Meningioma 306 

Normal 405 

Total 1311 

https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset?select=Training
https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset?select=Training
https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset?select=Testing
https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset?select=Testing
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The dataset was initially normalized to intensity values before 

being mapped to the 256 levels of grayscale using the 

following Equation: 

𝐼𝑛𝑜𝑟𝑚  =  
𝐼−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
                                         (1) 

where 𝐼𝑛𝑜𝑟𝑚 describes the normalized data, while variables 

𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 are the maximum and minimum pixel intensity 

in the raw data, accordingly [18]. After the normalization step, 

we shuffled the data before splitting it so that our model could 

train on unorganized data. The samples of data are shuffled in 

order to stop the network from learning the dataset's narrow 

band and to allow the system to train on unsorted images. The 

next step is dividing the dataset into three phases: training, 

testing, and validation. About half of the data is used for 

training, 35% for validation, and 15% for testing. After this 

step, the results of class labels in the train, test, and validation 

sets have been assigned to 0,1,2, and 3 for glioma, 

meningioma, normal, and pituitary tumor, as well.  

C. Transfer learning concept 

Contrary to traditional ML techniques, CNN allows for the 

automatic acquisition of both low-level and high-level feature 

maps from the model's convolutional base. The generated 

feature maps have been transformed into a one-dimensional 

feature vector, which is initially classified using an 

arrangement of single or multiple fully connected layers. 

Regardless of its widespread popularity, one of CNN's 

limitations is that it requires a large number of data samples 

for effective model training and preventing overfitting. TL 

employs the understanding of structures that were previously 

developed on a larger benchmark dataset, such as ImageNet, 

to problems with fewer data points, such as the classification 

of brain tumors from MRI. Fig. 3 illustrates the general 

concept of TL. Fine-tuning is a method of upgrading the 

weights taken from some top layers of a deep CNN structure, 

which were initially developed on a massive dataset to address 

additional certain issues. Pre-trained mechanisms may be fine-

tuned by unfreezing all or some layers in the convolutional 

base [25], [26], or by employing pre-trained frameworks as 

fixed feature extractors and then feeding them to other 

algorithms for classification, like SVM [27].  

 

 
 

Fig. 3. Transfer learning idea. 

TL is performed on the pre-trained EfficientNets, namely 

EfficientNetB3, that was originally trained on the ImageNet 

benchmark dataset. Fig. 4 depicts the network architecture of 

the modified EfficientNetB3. The pre-trained EfficientNetB3 

is fine-tuned by first creating a base model utilizing the pre-

trained ImageNet weights as its backbone. For lower 

dimensionality, the Global Average Pooling (GAP) layer is 

added on top of the EfficientNets backbone, while the 
convolutional base of all blocks is retained. The GAP layer 

also helps to simplify the system in terms of several 

parameters without compromising the model's accuracy. GAP 

layer reduces the spatial dimensions of the feature map, 

resulting in rapid training and less utilization of memory. 
Following the GAP layer, a flatten and batch normalization 

layers were added. The benefit of the batch normalization 

layer is to help the model converge faster for the learning rate. 

In addition, batch normalization improves training stability 

and lowers the risk of vanishing or exploding gradients. After 

this layer, two fully connected layers were added with an 

Exponential Linear Unit (ELU) activation function with a 

threshold of 0.2. This function is described by Eq (2). 

 

𝐸𝐿𝑈(𝐼𝑟) = {
𝐼𝑟 , 𝐼𝑟 ≥ 0

𝜎(𝑒𝐼𝑟 − 1), 𝐼𝑟 < 0
                                    (2) 

 

where 𝐼𝑟  describes the input data and σ is the threshold of the 

activation function. Fully connected layers were included as 

well to capture complicated structures, patterns, and nonlinear 

connections in data. After that, a dropout layer with a 

probability of 0.7 is added to the network. Dropout is a 

regularizer that prevents the model from becoming overfit. At 

last, for the classification of four types, the primary output 

layer of one thousand units was substituted by an output layer 

of 4 units and a softmax layer which is defined as: 

𝑆𝑀 =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑘

𝑗=1

                               (3) 

Fig. 2. The proposed model structure. 
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where i= 1, ........, k and z= (𝑧1, ......., 𝑧𝑘) ∈ 𝑅𝑘   

For convenience, the exponential function is given to each 

element 𝑧𝑖 of the input vector z, and the results are normalized 

by dividing by the sum of all exponentials. Normalization 

ensures that each of the components of the output vector SM 

sum to 1. 

D. System requirements 

Simulations are performed on Google Colab, a free GPU 

resource provided by Google to individuals for investigation 

and academic use. Google Colab tool also serves as a tool to 

execute the codes due to the speed of its processor and inbuilt 

libraries. The algorithms used are trained on a K-4 GPU with 

12GB of RAM. The software is written in Python, with 

Tensorflow and Keras API as backend and frontend, 

respectively. 

E. Hyper-parameter setting 

By applying a try and error method, various hyper-parameters 

including batch size, optimizers, learning rate, epochs, and 

loss function have been directly adjusted until the most 

appropriate sets of hyper-parameters for model training and 

achieving the desired outcomes are obtained. Batch size is 

defined as the number of training instances used in one 

iteration. On the other hand, learning rate defines the step size 

at each iteration while moving towards the lowest value of a 

loss function. Because sparse categorical cross-entropy is used 

as a loss function for brain tumor classification, which is a 

multi-class classification task. This loss function is used in 

multi-class classification algorithms with multiple output 

labels. The function computes the variation between the 

expected probability distribution and the actual label 

according to the following equation: 
 L (y, f(x)) = -log (f(x) - y) (4) 
 

where y represents the correct label and f(x) is the expected 

probability distribution across the classes. Adam [29] is the 

optimizer used for the model, with an initial learning rate of 

0.0001. The images from the train set are all loaded in 64-bit 

mini-batch mode. EfficientNetB3 that has been fine-tuned is 

trained for 20 epochs. Each variation of the EfficientNetB3, is 

trained and evaluated using the same experimental and hyper-

parameter conditions. Table 2 provides the optimal values for 

all hyper-parameters utilized during the simulation. 

 
Fig. 4. The network architecture for the modified EfficientNetB3. 

 

 

Fig. 5. Snap shot of the classification code. 
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Table 2 Hyper-parameter setting 
Hyper parameter                                                         Value 

Input shape 240 x 240 x 3 

Drop connect rate 0.7 

Output layer activation function Softmax 

Dense layers activation function ELU 

Threshold of activation function  0.2 

Batch Normalization parameters ɤ = 0.1, β = 0.001 

Epochs 20 

Batch size 64 

Optimizer Adam 

 Learning rate 0.0001 

learning rate decay factor 0.5 

patience 2 

Validation split 0.35 

Loss function Sparse categorical cross-entropy 

 

Table 3 Model structure 

Layer Output Parameters 

EfficientNetB3 10,783,535 

Global_Average_Pooling 0 

Flatten 0 

Batch Normalization 6144 

FC1(Dense layer (256) + ELU) 393472 

FC2(Dense layer (128) + ELU) 32896 

Dropout (0.7) 0 

Classification layer (Dense laye

r (4) +softmax) 

516 

Total parameters 11,216,563 

 

IV. PERFORMANCE METRICS 

We evaluated and analyzed the performance of the DL models 

using metrics like accuracy, precision, recall, F1-score, and 

roc curve. The accuracy can be determined by dividing the 

number of correct predictions by the total number of instances. 
It can be calculated as: 

𝐴𝑐𝑐 =
𝑡𝑛+ 𝑡𝑝

𝑡𝑛+ 𝑡𝑝+ 𝑓𝑝+ 𝑓𝑛
 𝑋100%                           (5) 

 

where: 
𝑡𝑛= true negative 
𝑡𝑝= true positive 

𝑓𝑝= false positive 

𝑓𝑛= false negative 
Another important metric for evaluating the models is recall. It 

can be calculated as: 

𝑅𝑒𝑐 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛

 𝑋100% (6) 

 

In contrast, precision indicates how many of the predicted 

positive values are actually positive: 

𝑃𝑟𝑒 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
 𝑋100%                                         (7) 

 

 

F1-score represents a harmonic average of the Precision and 

Recall outcomes. Using a harmonic mean instead of a simple 

mean prevents extreme instances from being ignored. It is 

calculated from the following equation: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑡𝑝

2𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛

 𝑋 100% (8) 

 
The receiver operating characteristic (ROC) curve is another 

way to assess model performance. It graphically depicts the 

relation between true-positive rate (or recall) and false-

positive rate (equivalent to 1 minus specificity) [30].   

V. RESULTS AND DISCUSSION 

This section explores the outcomes gained after training and 

fine tuning the suggested model and other model variants for 

multi-classification of brain tumor classes into normal, glioma, 

meningioma, and pituitary. Two distinct ablation scenarios 

were investigated: pretrained models, the proposed model with 

different optimizers. Table 4 displays results of the pretrained 

models which were applied on the used dataset. It is observed 

that Resnet101 scored high accuracy of 93.3% and loss of 0.19 

while Inception V3 scored low accuracy of 81% and high loss 

of 1.04 on the used dataset. In addition, the EfficientNetB3 

model attained an accuracy rate of 93.3% with a loss of 0.18 

without adding layers. Table 5 demonstrates the results of the 

suggested fine-tuned EfficientNetB3 after training and 

validation with different optimizers. It shows that the proposed 

approach outperforms other variants with an accuracy of 

97.7%, precision of 96.8%, specificity of 97.3%, and an F1-

score of 96.6% with Adam optimizer.  
 

Table 4 Results with pretrained models  

Model Acc Pre Rec F1-score loss 

Execut

ion 

time(s) 

Vgg16 81.9% 82.8% 82.9% 82.86% 1.09 517 

Resnet101 93.3% 94.7% 94.7% 95.2% 0.19 629 

InceptionV

3 
81% 82% 82.3% 82% 1.04 253 

Xception 88% 87% 87% 87.4% 0.41 501 

Efficient 

B3 
93.3% 93.4% 93.4% 94% 0.18 418 

DenseNet 

121 
86% 86.1% 86.3% 86.2% 0.4 358 

 

These results demonstrated that the suggested approach for 

fine-tuning the pre-trained EfficientNetB3 performed 

significantly better across all metrics used for evaluation. 

Pituitary is the most effectively categorized class, with a test 

accuracy of 98%, while meningioma is the least correctly 

classified class, with an accuracy of 85.7% when compared to 

other classes. This is due to the fact that EfficientNetB3, the 

most basic variation of the EfficientNets family, has only 237 

layers. Regardless of improved training and validation 

accuracy, the model was incapable of generalization well on 

previously hidden samples. 
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Table 5 Model performance of the proposed model with 

different optimizers 

Optimizer Acc Pre Rec 
F1-

score 
loss 

Execut

ion 

time(s) 

Adam 97.7% 96.8% 95.9% 96.9% 0.17 390 

RMSProp 94.5% 94% 94.2% 94.4% 0.2 392 

SGD 92% 
93.11

% 

93.11

% 
93% 0.22 387 

Adagrad 88.5% 89.9% 89.9% 90% 0.3 397 

Adadelta 53% 49.2% 49.2% 
49.45

% 
1.16 401 

Adamax 93% 93.2% 92.8% 93.4% 0.17 391 

 

Fig. 6 indicates the ROC curves for the proposed model with 

different optimizers. Also, it depicts the total performance of 

the proposed modified EfficientNetB3 model with different 

optimizers when predicted and tested on the test data as shown 

in Fig. 6. Meningioma appears to be the only class with a high 

FNR, resulting in lower accuracy with the optimization 

algorithm Adam when compared to the other classes. In 

contrast, pituitary tumor has resulted in the highest levels of 

precision, recall/sensitivity, F1-score, and specificity, at 

96.8%, 95.9%, 96.6%, and 97.3%, respectively, with 

minimum loss of 0.17. From Table 6, it observed that the 

enhancement of the model performance due to the added 

layers. As shown, the proposed model scored higher accuracy 

of 97.7% with the added layer than EfficientNetB3 pre-trained 

model without the added layers which achieved an accuracy of 

93.3%. On the other hand, the second experiment was based 

on applying the pretrained models as it is on the used dataset. 

Fig. 7 indicates the ROC curves for different pretrained 

models. This research also examines the model's robustness 

with consideration of speed (training and inference), overall 

parameters, and model size. Table 6 compares the outcomes of 

the proposed modified EfficientNetB3 with state-of-the-art 

models in terms of accuracy. The ablated models’ results show 

the performance of the proposed model without the GAP, BN 

layers, and ELU activation function respectively. From the 

table, it observed that the integration between the 

EfficientNetB3 pre trained model and the added layers with 

ELU activation function improves the performance of the 

proposed model. Furthermore, to illustrate the benefits of the 

proposed model, we compared the accuracy of the proposed 

system to its competitive current literature models that 

partially employed different public sources of the datasets 

including (Figshare, SARTAJ, and Br35H). In our study, we 

made a combination of the three sources of the datasets 

(Figshare, SARTAJ, and Br35H). The goal of combining the 

dataset from three sources is to get near balanced classes to 

prevent bias in model training and prediction. Further, some 

comparable models used one source from the mentioned three 

sources of the datasets only such as Figshare, SARTAJ, or 

Br35H only compared to our study. We additionally compared 

our method to similar approaches that used consolidation of 

diverse datasets to ensure that its performance and 

generalizability were fairly evaluated. Some studies in the 

literature applied small sample of the dataset. This comparing 

technique enables a fair comparison while still providing 

useful insights into how our system works in the context of the 

datasets and methods utilized by others. The main criterion for 

comparing classification results is accuracy.   

 

Table 6 Comparison of the classification accuracy with 

state-of-the-art models 
Study No. of images Method Accuracy 

Swati et al. [3] 3064 TL+ Vgg 19 94.82% 

Ashfar et al. [17] 3064 BayesCap 78% 

Sohaib and Zhao [18] 2045 TL 95.8% 

Lu et al. [19] 291 Alexnet 89% 

Sajjad et al. [20] 121 Vgg 19 87.4% 

Chato and Latifi [21] 163 DL 90% 

Alanazi et al. [22] 3000 CNN 96.89% 

Irmak et al. [23]  3950 CNN 92.66% 

Proposed without GAP, 

BN, and ELU. 
5721 EfficientNet B3 93.3% 

Proposed without 
(BN+ELU) 

5721 
EfficientNetB3 
+GAP 

94.1% 

Proposed without ELU 5721 
EfficientNet B3 

+GAP + BN 
95.3% 

The proposed model on 

the first dataset 
5721 

TL based on 

modified 

Efficient B3 
model 

97.7% 

The proposed model on 
the second dataset 

1311 

TL based on 

modified 
Efficient B3 

model 

97.2% 

 

 
a) Adadelta 

 

 
b) Adagrad 

 

 
c) SGD 

 

 
d) Adamax 
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e) RMSProp 

 
f) Adam 

Fig. 6. ROC curves for the proposed model with different optimizers. 

 

 
a) Inception V3 

 

 
b) Vgg 16 

 

 
c) DenseNet 121 

 

 
d) Xception 

 
e) EfficientNet B3 

 
f) Resnet 101 

 

Fig. 7. ROC curves for the different pretrained models. 

 

VI. CONCLUSION AND FUTURE WORK 

This study uses TL with pre-trained model versions for 

performing multi-class identification of brain tumors through 

MRI images of three tumor types: normal, glioma, 

meningioma, and pituitary tumor classes. EfficientNetB3 

construction has been altered by initially importing the pre-

trained ImageNet weights into the initial approach. The 

design's convolutional base is then supplemented with few top 

layers, including Global Average Pooling (GAP), batch 

normalization, Flatten, dropout, and a fully connected layer. 
The EfficientNetB3 pre-trained model convolutional base 

served as the feature extractor, along with the upper layers 

were incorporated into the classification algorithm for the 

brain tumor categories classification task. In order to develop 

the model on the brain’s tumors dataset, various hyper 

parameter values for the improved EfficientNetB3 were 

precisely fine-tuned. A variety of experiments were performed 

to compare the reliability for the suggested fine-tuned 

EfficientNetB3 with other pre-trained models. The proposed 

model was tested on two datasets to ensure greater model 

generalization. The suggested technique of fine-tuning 

EfficientNeB3 pre-trained model as its core outperforms 

multiple cutting-edge methods for the same problems with 

classification, scoring 97.7% as a whole test accuracy with 

Adam optimizer. In addition, it achieved an accuracy of 97.2% 

when tested on the second dataset. In the future, a transformer-

based design for brain tumor type classification could be 

proposed as an alternative for deep CNN-based techniques, 

allowing for the extraction of more information-rich feature 

maps while also reducing network complexity. Also, a feature 

fusion method can be applied to achieve higher accuracy. 
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