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ABSTRACT 
 

The analysis of pressure hull is of great importance among structural engineering 
due to the complexity involved in the collapse mechanism of stiffened shell 
structures. Due to this complexity, only a limited amount of test data was available to 
evaluate the effect of the external pressure on the stability of stiffened shell structure. 
The proposed work considers theoretical study and experimental test data of the 
pressure hull. Uniformly ring stiffened cylinder, dome and conical elements of a 
pressure hull are considered. For the same experimentally considered model, a 
numerical study using Finite Element Method (by ABACUS program) is also 
presented. The obtained experimental and numerical results are compared. 
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NUMOCLATURE 
 
P Hydrostatic external pressure. 
R Shell radius.  
h Shell thickness. 
D Flexural rigidity. 
E Modulus of elasticity. 
υ  Poisson’s ratio. 
ϑ  Angle of rotation of tangent to the shell meridian. 
N Normal force per unit length. 
Q Shear force per unit length. 
M Bending moment per unit length. 

maxσ  Maximum normal stress. 

w Radial deflection. 
 
 
INTRODUCTION 
 
Designing stiffened shells under external hydrostatic pressure is a complex task. 
Different buckling modes are often relevant, each one affected distinctly by the 
effects of mode interaction, boundary conditions, shape imperfections and residual 
stresses. General purpose Finite Element programs are now available which can, in 
principle, estimate knock-down factors taking into account all of these aspects. The 
models used, however, have to be validated in the light of mesh studies, other 
theories, numerical results and, experimental results. Even after such a painstaking 
process, the designer cannot expect to be truly representing the behavior of a real 
structure due to factors beyond his control, such as spatial variation of material 
properties and shape imperfections, degree of workmanship and maintenance. 
Structural design in general has been traditionally based on deterministic methods in 
which the above uncertainties are tackled, broadly speaking, by designing the 
structure to have some safety margin against the worst possible combination of 
these effects, sometimes regardless of how likely (or unlikely) such a combination 
may be. 
 
Timoshenko and Gere [1] gave the classical solution of the buckling pressure for a 
very long cylindrical shell with uniform thickness under external hydrostatic pressure 
by considering that the cylinder is in plane strain and solving for the buckling load of 
a ring. The plane strain assumption that allows one to model shell collapse as ring 
collapse is valid when length-to-diameter ratio of the shell is greater than 25. When 
the length-to-diameter ratio is less than 25, the shell must be treated as one with 
finite length since the stiffening effect of the end constraints are no longer negligible 
and will affect the pressure at which buckling occurs. Xue, M.S. Hoo and Fatt  [2] 
gave an exact solutions of elastic buckling pressure for a non-uniform, long 
cylindrical shell subjected to external hydrostatic pressure are derived. The Defense 
Research and Development Canada [3] indicated that the analysis of the 
experimental data suggests that the role of eccentricity due to one-sided shell 
thinning can have an equal or greater strength-reducing effect than the thinning 
itself.  
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The present work has examined experimentally the behavior of ring-stiffened shell 
with externally hydrostatic pressure. The shells represent a similar structure of 
submarine. A finite element analysis for an identical geometry is also performed and 
discussed in the light of experimental results. Little information is available on the 
effects of scaling. Work in this field is vital particularly if the results of any 
experimental test are to be successfully correlated to full scale event.    
 
In this paper, the stress analysis of a submersible pressure hull subjected to external 
hydrostatic pressure under initial hydrostatic pressure is investigated using classical 
thin shell theory. The effects of ring stiffeners are proposed over the surface of the 
shell, the stiffened shell can be modelled as an equivalent uniform orthotropic shell. 
The pressure hull is constructed from three parts: ring-stiffened cylindrical shell, cone 
and dome. The governing equations are described in this section.  
 
 

GOVERNING EQUATIONS 
  
Membrane Stresses 
 
The membrane meridinal and hoop stresses σm  and σH are [4] : 
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- In conical shell 
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Because of boundary effects at locations where the deflections are restricted, or 
there is a change in geometry, such as the cylindrical-to-spherical shell junction, the 
membrane theory is inadequate to maintain deflection and rotation compatibility 
between the shells. Therefore, it is very important to determine the bending stress 
and field displacement by using moment theory. 
 
Bending Stresses 

 
At the junctions between the cylindrical shell and both the spherical and conical 
shells, stiffening rings of T-shape cross-section are fixed. The stresses at the vicinity 
of these junctions are mainly bending stresses. A general differential equation in the 
form [5]: 
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Where, the parameter β for cylindrical, spherical and conical shells are given as: 
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where l=1.25 π/β  
 
the solution of the def. eqn.(7), within a narrow distance from stiffening ring, x<l 
(figure 1), can be written in the form,[6]: 
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The constants c1 and c2 are chosen to make the displacement w and the angle of 
rotation dw/dx zero at the origin of x (at the stiffener of the junction between the 
cylinder and the hemisphere). We then obtain: 
 
          c1=c2 = -p/4β4D 
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The bending moment expressions are given as: 
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The bending moment in tangential direction MH is related to the meridional moment 
by [7]: 
 
                          MH=υ Mx                                                                                     (12) 
 
The maximum normal stresses due to bending moments occur at inner and outer 
faces of the considered shell are: 
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The total stress, at the outer and inner surfaces, can be obtained from 
superimposing of membrane stresses and bending stresses then: 
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And the stress-strain relations are: 
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PLASTIC DEFORMATION IN PLATES 
 

The deferential equation of equilibrium of a rectangular plate, fig. 1, under uniform 
load is given in the form [8]: 
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Consider a plate clamped at its four ends which super loaded such that two opposite 
ends are totally plastic (x=0, x=a) and the other two ends (y=0, y=b) are partially 
plastic as shown in fig. 2. When the load is released, the plate does not return to the 
original shape, and the plate undergoes to known ultimate plastic moment Mυ at x=0, 
x=a and to undetermined moment My at ends y=0, y=b, depending on the depth of 
plastic region throw the plate thickness. Due to the formation of plastic hinges at the 
plate contour, the boundary conditions can be considered as: 
 
At  x=0, x=a=240 mm : w=0, Mυ=Mx   and  at y=0, y=b=90 mm ; w=0, My is unknown. 
 
In this case, where the load is released, the right hand side of equilibrium equation is 
zero, and the equilibrium equation reaches the form: 

 02 =∇ w            (17-a) 

A possible solution of the above equation is expressed as: 
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The last equation can be separated to be in form:  
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Two separate differential equations are obtained in terms of variables x and y 
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Solutions of these two differential equations are: 
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Satisfying boundary conditions along sides x=0, and x=a → w =0 then, 
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Hence the deflection w can be expressed in the following parabolic form: 
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In a similar way satisfaction of boundary condition along sides y=0, y=b → w=0 we 
get: 
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The bending moment expressions in a general case are: 
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Substituting the expression of w, in terms of x into the above equation of Mx leads to: 
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At x=0 and x=a, 
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             σy…. is the yield stress of the material. 
 
Considering equations 18 and 19 the radial deflection w may be expressed as: 
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where, 
                W* is the maximum value of radial deflection at w(a/2,b/2). 
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EXPERIMENTAL WORK 
 
A substantial amount of work has been performed so far to analyze stress 
distribution throughout stiffened cylindrical shell. Experiments are carried out on a 
model with the same dimension as the numerical analysis as shown in fig. 3 and 
fig.4. Several points are measured as shown in fig. 5 using strain gauges [9].  
 
Pressure is raised in the pressure tank until reaching eighteen bars then a sudden 
drop in pressure occurred. Plastic deformations are noticed and as well as a 
separation between the two flange (cylinder & hemisphere) occurred as shown in fig. 
6 and fig. 7. Consequently, pressure drops inside the cylinder. 
 
 
NUMERICAL ANALYSIS VERIFICATION 
 
A substantial amount of work has been performed so far to investigate the analysis 
of ring stiffened shell. The geometrical configuration, boundary condition, material 
property and element mesh are described in this section. The model consists of a 
stiffened cylindrical shell with 250 mm diameter having three T-shape  W10x20 mm 
stiffeners and connected by each end with hemispherical shell (Φ=250mm) and 
conical shell (250mm long) respectively. The boundary condition and load 
description are shown in fig. 8. The model has constructed from DIN 1623-2 steel 
with: E=209 GPa, 289.0=υ , ρ=7800 kg/m3 , σY=380 MPa and σult= 468 MPa.  
 
A finite element model is built using Abacus software [10] dividing the pressure hull 
into three sections and then these results in fig. 9 are compared to theoretical ones. 
Several numerical approaches have been proposed and validated through 
experimental testing. 
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RESULTS AND CONCLUSIONS 
 
Another test can be added to the limited amount of test data to evaluate the effect of 
external pressure on stiffened shell. The results of the test are compared with the 
theoretical and numerical results. Table 1 shows the comparison between the plastic 
deformations happened in the deformed part of the cylinder shell due to 
experimental test fig. 10 and the theoretical calculations by equation 26. 
 

Table 1. Radial Deflections Comparison. 
 

Location (points) 1 2 3 4 5 6 7 8 9 
theoretical 3.17 4.13 4.72 4.13 2.6 3.2 4.19 4.19 1.8 W (cm) 
experimental 2.2 2.8 3.5 2.8 1.5 0.8 1.7 1.5 0.8 

 
Another approaching between the strain gauges measurements, the axial strain 
calculated by equation (15-a) and numerical results. Figure 11 shows the strain of 
the point at the same location of channel 7 and fig. 12 show the measured values by 
strain gauges. Table 2 shows the calculated values of axial strain of point at the 
same location as channel 22 and in fig. 13, these values were plotted at the 
measured one. 
 

Table 2. Axial Strain of Channel 22. 
 

P (bar) 2 4 6 8 10 12 14 16 

εx (10-6) 11.395 22.789 34.184 45.579 56.974 68.369 79.76 91.158 
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Fig. 1. Rectangular plate under uniform load. Fig. 2. Rectangular plate under boundary bending. 

 

 

 

 
Fig. 3. Model main dimensions. 

 
 
 

 

 
 

 

Fig. 4. The model used in experimental study. 
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Fig. 5. Location of glued strain gauges. 

 

 

 

Fig. 6. The shape of the deformed model.  

 

 

 

Fig. 7. The deformed part in cylinder shell. 
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Fig. 8. Model loaded and boundary conditions. 

 

 

 

Fig. 9. Numerical results. 

 

            
Fig. 10. The locations of points where radial deflection is measured. 
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Fig. 11. Numerical result of axial strain of point at channel 7.  

 

 
Fig. 12. Measured axial strain of point at channel 7. 

 

 
 

Fig. 13. Comparison between strain measured and calculated for point at channel 22. 


