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ABSTRACT 
 
The objective of this research is to develop a finite element model for the analysis of 
the static response of a composite compressor blade subjected to extension, 
transverse, and torsion loads in addition to the torsion actuation due to the 
piezoelectric patches. The equation of motion is derived based on classical beam 
theory with warping effect is taken into consideration, using the principle of the 
virtual displacement of the structure system. A one dimensional linear isoperimetric 
element with Lagrange and hermit cubic shape functions is used to model the axial 
and transverse deformation. A two end nodes and an intermediate one as well are 
implemented for modeling the torsion deformation. The bending, torsion and axial 
coupling are introduced in the stiffness and mass matrices. The electric potential is 
treated as a generalized electric coordinates like the generalized displacement 
coordinates. A MATLAB interactive code is developed to solve a blade with 
mechanical and electrical loads. The obtained results are found reasonable. 
 

 
KEY WORDS 
 
Finite element method, compressor blade design, composite materials mechanics, 
warping, structural analysis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

_____________________________________________________ 

* Egyptian Armed Forces. 
 



117 SM  Proceedings of the 15
th
 Int. AMME Conference, 29-31 May, 2012 

  

 

NOMENCLATURE 
 

A    Cross sectional area (A = a .b). 
a    Height (thickness) of cross section of the beam substrate. 
A, B, and D   Extension, coupling, and bending matrices. 
b    Width of cross section of the beam. 
c                               Height (thickness) of the piezoelectric layer. 
c1, c2, c3, c4.      Constants of integration. 
E   Modulus of Elasticity. 
F    Total mechanical Loads on single beam element. 
faxial              Linear shape functions for axial deformation. 
fbending              Hermit cubic shape functions for bending deformation. 
ftorsion              Quadratic shape functions for torsion deformation. 
G   Shear modulus. 
h   Single Element length. 
I    Second area moment of inertia. 
Im(x)    Mass polar moment of inertia per unit length. 
J    Area Polar moment of inertia. 
[K]    Stiffness matrix. 
Kwarping  Warping coefficient of the cross-sectional. 
L   Beam Length. 
m(x)    Mass per unit length. 
n   Number of elements. 
P(x)    Axial force acting on beam element. 
T(x)    Torque moment acting on beam element. 

iU
   Total internal strain energy of the structure system. 

Û                             Internal strain energy. 

eU
                           Electric field potential energy. 

u1, and u2   Axial nodal displacements. 
v    Volume. 

eW    External work done of the system. 

w1, θ1, w2, θ2             Transverse and rotation element nodal displacements. 
ε   Axial strain. 
γ   shear strain. 

ϕ(x)    The twist angle at each section. 
θ    The bending angle (slope). 
ρ   Density of the material. 
ν   Poisson’s ratio. 
λ   The Warping function. 
φ1, φ2, and φ3  Torsion nodal displacements. 
∆(λ)    polynomial of degree n in λ.  
Ω(x)    Constant distributed load acting on beam element. 
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INTRODUCTION  

 
The critical structural elements of a typical gas turbine engine are the compressor or 
turbine disk carrying several blades around its circumference. These units operate in 
severe environments characterized by high speeds of rotation and cycle 
temperatures. Most of the failures reported have been due to vibration-induced 
fatigue of blade. The objective is to improve the dynamic performance of the engine 
blade and reduce vibration to an acceptable level and reduce stresses. It is shown 
that incorporating smart structure technology in engine blades can give desirable 
shape control characteristics to improve the blade at all of these areas at a 
reasonable weight.  
 
Modeling of beam structures with coupled behavior (torsion-bending)  has been 
investigated by few authors. Sakawa and Luo [1], used a shear-deformable theory to 
model a mass coupled beam, the internal beam damping was included in the model 
and the actuation torque was applied to the shaft by a motor. Banks and Smith [2], 
studied a coupling problem where the warping effects and the internal shear 
damping were considered in their model.  Banerjee and Williams [3], studied the 
vibration of a beam with geometrical coupling by a Timoshenko beam theory, they 
ignored the warping effect. Suresh et al [4] showed that warping effects can 
significantly influence the natural frequencies of a composite beam. The inclusion of 
the transverse shear deformation becomes necessary in beams with a small width to 
thickness ratio for isotropic beams [5].  The warping effects caused by St. Venant 
and warping torsion were explicitly included in the Sankar’s model [6]. Elshafei et al. 
[7-8], developed finite element model to get static and dynamic response of 
compressor blades subjected to multi mechanical loads they took the warping effect 
into consideration. Their models were for isotropic and anisotropic structures. The 
obtained results were found reasonable.   
 
The behavior of smart structures has received considerable attention in the 
literature. Crawley and de Luis [9] presented an analytical uniform strain model of a 
beam with strain induced actuation by use of surface bonded piezoceramic for beam 
extension, bending included the shear lag effects of the adhesive substrate layer.  
Bailey and Hubbard [10] and Fanson and Chen [11], Sunar and Rao [12], and 
Benjeddou [13] demonstrated the possibility of using piezoelectric materials for 
beam vibration control. Allik and Hughes [14] presented a tetrahedral finite element 
for 3-D electro-elasticity. Based on this model Tzou [15] proposed a method for 
isotropic plate analysis using isoperimetric hexahedron solid elements. 
Chandrashekhara et. al. [16] developed a model based on the first order shear 
deformation theory which needs a shear correction coefficient.  Based on a simple 
higher order shear deformation theory (by Reedy), Elshafei et. al. [17] developed a 
finite element model for isotropic and orthotropic smart beams using Bernoulli-Euler 
theory. All of these models assume that the actuators are aligned with and 
symmetrically located with respect to the beam axis and most of them assumed a 
constant variation of the electric field through thickness the piezoelectric layers.  
      
Few papers have developed the analysis of intelligent structures with coupled 
behavior (torsion-bending). Park and Chopra [18], proposed a model to predict the 
coupled extension, bending and torsion responses of a beam subjected to 
piezoelectric strain actuation. Their experimental test results show that the models 
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are accurate up to 45 degree actuators orientation with respect to the beam axis.  A 
shear lag is introduced to attenuate bending, extension and torsion responses.  Park 
et al. [19], formulate two additional shear lag models one of them permitted an 
arbitrary orientation of the piezoelecrtric patches with respect to the beam axis to 
predict coupled extension, bending, and torsion. The model utilized a Newtonian 
shear lag formulation in which the strain was assumed to be constant through the 
thickness of the actuator and linear through the beam. Takawa  et al [20], proposed 
an experiment of the piezoelectric actuators attached perpendicular to the principle 
axis of elasticity of the beam for controlling the torsional vibration mode of the beam. 
They obtained the natural frequencies of flexural and torsion vibration.  Chen and 
Chopra [21], developed a fraud scale helicopter rotor blade with piezoelectric 
elements placed at positive and negative forty five degree angle with respect to the 
beam axis, they predict the static bending and torsion response of the structure. 
Although the magnitudes of blade twist attained in this experiment were small, it is 
expected that future models can built with improved performance. Elshafei et al. 
[22], proposed a model for the analysis of compressor blade subjected to 
mechanical and electrical load using inclined piezoelectric actuators. The torsion 
response is obtained and compared with available analytical results and found 
reasonable.   
      
In the present studies modeling intelligent structures subjected to combined 
extension, bending, and torsional loads in addition to induced strain actuation 
developed by forty five degree actuators orientation with respect to the beam axis. A 
Matlab code is prepared to obtain the static response of the proposed structure 
system. 
 

 

THEORITICAL FORMULATION 
 

The compressor blade is modeled as an advanced beam under the assumptions of 
Euler-Bernoulli theory of beam. The structure is subjected to axial, transverse, and 
torsion loads. The bending and torsional deformations are shown in Figures 1 and 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  Figure 1:  Bending displacement.                         Figure 2: Torsion displacement. 
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The following formulations are obtained [23]: 
 

                               )cos()cos( βϕβ ⋅−+⋅=∆ rrY     (1) a  
 

where ϕ is the twist angle for each section “x”.   For small angleϕ , cos ( ϕ ) ≅ 1,  

sin (ϕ ) ≅ ϕ , therefore, 

  

                 )sin(βϕ ⋅⋅−=∆ rY        (1) b  
    

Since,        θϕ ⋅⋅−=⋅−=∆ XZZY       (1) c  
     

                   )sin(β⋅= rZ         (1) d 
where, θ   twist is the twist angle per unit length. Similarly, 
  

                    )sin()sin( βϕβ ⋅−+⋅=∆ rrZ       (2)a 
     

                    )cos(βϕ ⋅⋅=∆ rZ        (2) b 
                 

                    θϕ ⋅⋅=⋅=∆ XYYZ        (2) c       
 
Thus the assumed displacements field equations based on the classical beam 
theory at any point in the x, y, and z directions are: 
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where )(xus , )(xw ,  and )(xφ  are the axial displacement, the bending displacement, 

and the torsion twist angle, respectively. The warping function of a bar with non 
circular cross section must satisfy following two conditions: 
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From these conditions, the warping function can be written as: 
 

                              
zyKwarping ⋅⋅=λ

      (4) c         
 

where warpingK  is the warping coefficient of the cross section area.  For beam with 

rectangular cross section area 1=warpingK . 
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Strain-Displacement Relations 
 

The strain displacement relations can be given as: 
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The Piezoelectric Relationships 
 

The piezoelectric constitutive relations  
The linear piezoelectric constitutive equations can be expressed as [24-25]: 
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(The transformation reduced stiffness coefficients ijQ   [N/m2], are given in the 

Appendix). 
 

where [ ]D  is the electric displacement [C/m2], [ ]e  is the electric permittivity matrix 

[C/m
2
], [ ]ε  is the strain vector, [ ]sε  is the dielectric matrix at constant strain [F/m],    

[ ]E is the electric field [V/m], and [ ]σ  is the stress vector [N/m
2
].  

 

Induced strain and electrical forces  
Assuming that the actuators have high aspect ratio, the piezoelectric patch is 
approximated as only inducing a strain along its longitudinal axis. The induced strain 
is thereby transformed to beam axes as shown in Figure 3 [26]: 
 

 
 

Figure 3: Piezoelectric strain when the patch is inclined to the beam axis. 
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               ( )β2cosΛ=Λ xx                     ( ) ( )ββ sincosΛ=Λ xy   (7)     

                                

Where; Λ is the electrical strain of piezoelectric patch ( 31.
.

d
thickness

voltageApplied
=∧ ), and 

β is the inclination angle of the piezoelectric patch with the beam axis.  The electrical 
piezoelectric forces due to induced strain are expressed as follows: 
 

Axial induced electrical forces: 

                                     dAQF xx

A

axial ...11 Λ= ∫        (8) a             

Bending induced electrical moments are 
   

                                dAzQF xx

A

bending ..11 ⋅Λ= ∫        (8) b             

Torsion induced electrical moments are 
  

                                ∫ ⋅⋅Λ⋅=
A

xytorsion dAzQF 66         (8) c              

 

Variational Formulation  
 

The equations of motion can be obtained using the variation approach by equating 
the internal strain energy and the virtual work expressions such as [17]: 
  

                                            ei WU δδ =      (9) 

Thus the internal strain energy for the structure system iU  is the sum of internal 

strain energy ,Û and the electric field potential energy eU  , such as [13-27-28-29]: 
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Where the internal strain energy Û  is represented by: 
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 And the electric energy eU   is expressed by: 
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By inserting Eqn. (7) for the induced strain into Eqn. (15), one can obtain: 
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            (16) 

Thus; the elements of the stiffness matrix                
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                                                                            Elastic matrix 
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The virtual work expressions can be represented as: 
 

                                               
ElecMeche WWW δδδ +=        (18)                                              

 

Where, MechWδ  and ElecWδ  are the two components of the virtual work due to a 

mechanical and the electrical loads; respectively.                     
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              ∫Λ=
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The element mass matrix is obtained using the kinetic energy term as follows: 
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Where ρ  is the density of the material, V  is the velocity (displacement 

differentiation), and )(xm is the mass per unit length of the beam.   

 
Finite Element Formulation 
 

The Nodal displacements for axial, bending and torsion displacements are termed 

as; "u1, u3", "w1, θ1, w3, θ3" and “φ1, φ2, φ3” respectively, in addition to two degrees of 

freedom of electric potential 1Φ   and 2Φ  which are illustrated in the Figure 4.  

 

 

 

 

 

 

 

 

 

 

Figure 4: Nodal Displacements of axial-bending-torsion Element 
                                    and electric potential. 
 

Linear shape function is used for the axial deformation )(xu s  [7-30]: 

 

                                        















−=

h

x

h

x
faxial 1                                                            (23)              

 

The transverse deformation )(xw  is expressed in terms of a hermit cubic shape 
function [7]: 
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For the three nodal displacements on beam element as shown in Figure 4 the shape 
function of the torsion displacements φ(x) can be expressed in terms of quadratic 
interpolation function as follows [7]: 
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For the piezoelectric element, the electric field is treated as the electric degrees of 
freedom like a generalized displacement degrees of freedom [17]. The governing 
equation for the electric potential is given by: 
 

                                                        02 =∇− ϕ      (26)    
By solving Eqn. (39) and applying the boundary condition, the electric potential takes 
the form in axial direction such as: 
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And in the transverse direction through the thickness of the piezoelectric layer can 
be written as: 
                                          

                    ( ) 








Φ

Φ
⋅















−








+=Φ

2

1

2

1

2

1

a

z

a

z
z     (28)        

 

In the present work, the electric potential is considered to be a function of the 
thickness and the length of the beam. Therefore, the electric shape function at the 
nodal element, represented by multiplying the shape function Eq. (27) by the first 
term of shape function Eq. (28). Homogenous boundary conditions for the electric 
potentials will be imposed on the bottom surface to eliminate rigid body modes. Thus 
the shape functions finally take the form [17]: 
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The electric field vector zE  can be expressed as: 
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Equation of Motion 
 

By substituting the shape functions Equations (24), (25), (26), and (31), into 
Equations (18), (20), (21), and (23), the structure element stiffness matrix, both the 
electrical and the mechanical force vectors, and the element mass matrix are 
obtained. The equation of motion of the whole structure system is represented by:  
 

{ }
{ }

[ ] [ ]
[ ] [ ]

{ }
{ }

{ }
{ }


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
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



Q

FU

KK

KKUM

u

uuuuu

ϕϕ ϕϕϕ

ϕ

&&

&&

00

0
,    (31) 

 

where, uuM  is the global mass matrix of the structure and { }U = {u1  w1 θ1 φ1  φ2  u3  

w3, θ3  φ3} is the global nodal generalized displacement coordinates, { }ϕ  is the global 

nodal generalized electric coordinates vector describing the applied voltage at the 

actuators [16], { }F  is the applied mechanical load vector, and { }Q  is the electric 

excitation vector.  
 

The total response of the beam under the action of piezoelectric actuator patch in 
the static analysis can be obtained as: 
  

                               { } [ ] [ ]totaltotaltotal FKq ⋅=
−1

       (32) 

Where; 

                                
[ ] [ ] [ ] [ ]qqqqtotal KKKKK Φ

−

ΦΦΦ ⋅⋅+=
1

    (33) 

and; 

                               
[ ] [ ] [ ] [ ] [ ]QKKFF qtotal ⋅⋅+=

−

ΦΦΦ

1

    (34) 

 

 

VALIDATION EXAMPLES 
 

A MATLAB code is developed to check the validity of the present model. The code is 
able to analyze smart beam structures subjected to different mechanical and 
electrical loads with inclined piezoelectric patches. The input data are the geometric 
and materials properties, applied loads, and the boundary condition as shown in 
Figure 5. 
 

 

 
                         

              01 =Φ                                                                   2Φ          
 

Figure 5:  Degrees of freedom for Fixed-Free beam element. 
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The model results are checked first by solving the structure substrate as isotropic 
material and the obtained results compared to the prediction shown in Ref. [22-26]. 
Second by comparing the obtained results to the predictions presented given by Ref. 
[27-28], as shown in example (1).  
 

Example (1)  
 

In this section, the accuracy and verification of the model is illustrated by comparing 
the obtained results with the generalized model of Robbins and Reddy [27], and the 

model of Sarvanos and Heyliger [28]. Three layers [0°/90°/0°] of (T300/934) 
Graphite/Epoxy composite beam with piezoelectric material (PZT-4) completely 
covered the surface without inclination angle is used. In such case the electric force 
is expressed as: 

                                                   { } ∫ ⋅⋅Φ=

1

1

S

dSQ µδ                                                      (35) 

 

where, µ  is the surface charge density (C/m2) applied to the piezoelectric surface 

area 1S , and Φ  is the electric potential (volt). The obtained results given in Table (1) 

are found in good shape in comparison with the Refs. [27-28].  
 

The properties of the composite beam substrate and the piezoelectric layer are as 
follows: 
 

Composite beam dimensions (T300/934 Graphite/Epoxy): 
Lcomp     = 0.1524  meter 
a  = 0.01524 meter 
 

Piezoelectric dimensions (PZT-4): 
Lpiezo    =   0.1524         meter           Piezoelectric layer length. 
c  =   0.001778        meter          Piezoelectric layer thickness. 
 
Composite beam properties: 
E1   =   126.174         GPa             Modulus of elasticity in longitudinal direction. 
E2  =    7.86        GPa            Modulus of elasticity in transverse direction. 
G12  =    3.447        GPa           Shear modulus in 1-2 plane. 

ρcomp     =   1600        Kg/m
3 

      Material density. 

ν12  =    0.275                                Poisson’s ratio 

ν21  =    0.466                                  Poisson’s ratio 

 

Piezoelectric properties: 
E           =   82.047                 GPa         Modulus of elasticity 
G          =   31.026                 GPa         Shear modulus 

ρpiezo     =   7500             Kg/m
3
     Piezoelectric material density. 

d31        =   -1.219 x 10-10    m/V 

ε
s
33       =   1.475 x 10-5        F/m 

e31        =   0.046              C/m
2
       Electric permittivity constant. 
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Table (1): Tip displacement of smart beam subjected to 12.4 kV. 
 

Normalized tip 
displacement 

Saravanos [28] Robbins [27] Present Model 

w/a (10
-4

) 1.9388 2.0393 1.9237 

 

The obtained normalized results are compared with reference [27, 28] and 
verification is done with a difference of 5.66% from Robbins et al. [27] results with 
model based on higher order theory, and difference of 0.77% from the results 
obtained by Saravanos et al. model [28] using the layer wise method.  
 

Example (2) 
 

In this example the number of elements used in the finite element problem is chosen 
to be thirty elements and the number of piezoelectric patches mounted on the upper 
surface of the [0/90] composite beam is three patches. The patches are fixed at 
elements numbers (10, 15, and 20).  The effect of PZT voltage variations with tip 
displacement and twist angles are obtained 
 
The materials and geometric properties of the smart composite beam are given by: 
 
Graphite/epoxy composite beam: 
  

E1     =   144.8 x 109    (N/m
2
)      Modulus of elasticity in longitudinal direction. 

E2     =   9.65 x 109      (N/m
2
)     Modulus of elasticity in transverse direction. 

G12  =   4.14 x 109      (N/m
2
)     Shear modulus. 

ν12    =   0.3       Poisson’s ratio 

ρcomp    =   2800                (kg/m
3
)        Material density. 

L  =   0.1524            (meter)     Beam length.  
a  =   0.01524          (meter)     Beam thickness. 
b  =   0.0254            (meter)     Beam width. 
 

A (G-1195) piezo-ceramic patches are used with inclination angle (β) = 45º or -45º 
with the beam axis. The material properties are given in Example (1) with the 
following geometric properties:  
 

Piezoelectric patch dimensions: 
 
Lpiezo      =   0.0254            (meter)             Piezoelectric patch length. 
c            =   0.000191        (meter)             Piezoelectric patch thickness. 
Bpiezo        =   0.00635          (meter)             Piezoelectric patch width. 
 

Table 2 shows the effect of increasing the voltage on inclined piezoelectric patches 
mounted on beam with zero mechanical loads. It also shows that as the applied 
voltage increases the static bending displacement as will as the twisting angle 
increases. As demonstrated on Figure 6 the twisting angle and transverse tip 
deflection change linearly with the voltage increase. 
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Table 2: Effect of the voltage on the deformation of [0/90] composite beam 
                         with inclined piezoelectric patches. 
 

Mechanical load PZT 
voltage 
(Volt) 

Piezo 
setting 
angle 

(degree) 

P(x) 
(N) 

ΩΩΩΩ(x) 
N/m 

T(x) 
N.m/m 

Tip 
deflection 

10
-5
 (m) 

Tip twist 
angle (rad) 

0 -45 0 0 0 0 0 

120 -45 0 0 0 1.57 0.005530 

150 -45 0 0 0 1.96 0.006913 

180 -45 0 0 0 2.35 0.008295 

200 -45 0 0 0 2.61 0.009217 

250 -45 0 0 0 3.26 0.01152 

280 -45 0 0 0 3.65 0.01290 

300 -45 0 0 0 3.91 0.01382 

400 -45 0 0 0 5.22 0.01843 

500 -45 0 0 0 6.52 0.02304 

1000 -45 0 0 0 13.04 0.04605 

2000 -45 0 0 0 26.08 0.09203 

10000 -45 0 0 0 130.5 0.45671 

12500 -45 0 0 0 163.2 0.56943 

 

 
Figure 6: Beam response with the applied voltage on the inclined piezoelectric patches. 
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Example (3) 
 

In Table 3 we studied the effect of the applied voltages in addition to mechanical 
loads on a composite beam with fiber orientation angles [0/90] with inclined 
piezoelectric patch fixed at nodes (10, 15, and 20) ,  by selecting a constant applied 
mechanical loads on the beam and variable voltage on the inclined piezoelectric 
patches. It is shown that as the voltage increases in a direction opposite to the 
direction of the applied transverse load and opposite to the polarization direction the 
tip deflection and twisting angle decrease. 
 

 

Table 3: Deformation reduction for [0/90] composite beam with inclined 
                            piezoelectric material. 
 

Mechanical load PZT 
voltage 
(Volt) 

Piezo 
setting 
angle 

(º) 

P(x) 
(N) 

ΩΩΩΩ(x) 
N/m 

T(x) 
N.m/

m 

Tip 
deflection 
10-5 (m) 

Tip twist 
angle 
(rad.) 

Percentage of 
tip 

displacement 
reduction   (%) 

3 piezoelectric patches at nodes (10, 15, and 20): 

0 0 2 2 2 9.112 0.136015 ** 

200 45 2 2 2 6.532 0.127258 6.44 % 

500 45 2 2 2 2.660 0.114115 16.10 % 

550 45 2 2 2 2.015 0.111924 17.71 % 

560 45 2 2 2 1.886 0.111486 18.03 % 

570 45 2 2 2 1.757 0.111047 18.35 % 

580 45 2 2 2 1.63 0.110609 18.68 % 

630 45 2 2 2 0.983 0.108417 20.29 % 

 ** Deflection with no voltage 

 

 

The results shown in Table 3, are plotted in Figure 7 for both tip deflection and 
twisting angle. 
 
Example (4) 
 

The effect of thickness of the piezoelectric layer has been studied for the composite 
beam with configuration [0/90] with inclined piezoelectric patch. The following results 
were recorded in Table 4. With three piezoelectric patches placed at nodes number 
(10, 15, and 20) and zero mechanical loads. 
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Figure 7: Deformation of beam when applying voltage on the three 

piezoelectric patches. 

 

 

Table 4:  Effect of piezoelectric patches thickness on the tip deflection and 
                        twist angle. 

 

Mechanical load 
PZT 

voltage 

(Volt) 

PZT 

thickn

ess 

(mm) 

Piezo 

setting 

angle 

(
0
) 

P(x) 

(N) 
ΩΩΩΩ(x) 

N/m 

T(x) 

N.m/m 

Tip 

deflecti

on 10-5 

(m) 

Tip 

twist 

angle 

(rad.) 

3-D Plot 

3 piezoelectric patches at nodes (10, 15, and 20): 

120 0.1 -45 0 0 0 7.630 0.14294 

 

120 0.15 -45 0 0 0 7.580 0.14211 
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Table 4:  Effect of piezoelectric patches thickness on the tip deflection and 
                        twist angle (Continued). 
 

120 0.2 -45 0 0 0 7.541 0.14142 

 

120 0.25 -45 0 0 0  7.505 0.14084 

 

120 0.3 -45 0 0 0 7.473 0.14033 

 

120 0.5 -45 0 0 0 7.368 0.13875 

 

120 1 -45 0 0 0 7.190 0.13651 

 

120 3 -45 0 0 0 6.802 0.13400 

 
 

 
It is shown in Table (4) that when the piezoelectric material thickness increases from 
0 to 1mm both the twisting angle and the transverse tip deflection decreases 
nonlinearly, while decreasing linearly by increasing the PZT  thickness from 1mm to 
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3 mm . The percentage reduction in tip displacement varies by about 6.29 % when 
the thickness increases from 0 to 3 mm. The percentage reduction of twist angle 
varies by about 8.1 % for the same increase in PZT thickness. 
 

 

Percentage reduction of twist angle = %29.6100
143.0

134.0143.0
=×

−
    

 

Percentage reduction of tip displacement =  1.8100
074.0

068.0074.0
=×

−
 % 

 

The obtained values are plotted in Figure (8). 
 
 

 
Figure 8: Effect of piezoelectric patch thickness on beam response. 

 

 
The effect of fiber orientation angles of the beam material and the number of layers 
on the tip displacement and twist angle of beam are shown in Table 5 for different 
stacking sequences [0/90], [0/90/0], [0/90/0/90], [0/90/90/0], [0/45], [0/45/0/45], 
[0/45/45/0], and [45/-45/45/-45].  
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Table 5:  Fiber orientation angles effect on the beam tip deflection and twist angle. 

 

Mechanical load PZT 
voltage 
(Volt) 

Composite 
configuration 

Piezo 
setting 
angle 

(degree) 

P(x) 

N 

ΩΩΩΩ(x) 
N/m 

T(x) 
Nm/m 

Tip 
deflection 

(m) 

Tip 
twist 
angle 
(rad) 

Notes 

3 piezoelectric patches at nodes (10, 15, and 20): 

120 (0/90) -45 2 2 2 0.00007548 0.14153  

  

120 (0/90/0) -45 2 2 2 0.00005707 0.14178 

The three stacks make 
a higher decrease in 
both bending and 
torsion displacements 
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Table 5:  Fiber orientation angles effect on the beam tip deflection and twist angle 
                 (Continued). 
 

120 (0/90/0/90) -45 2 2 2 0.00003687 0.14201 
 

 

  

120 (0/90/90/0) -45 2 2 2 0.00004287 0.14184 
 

 

  

120 (0/45) -45 2 2 2 0.00001007 0.02502 
less bending 
displacement 
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Table 5:  Fiber orientation angles effect on the beam tip deflection and twist angle 
                 (Continued). 
 

120 (0/45/0/45) -45 2 2 2 0.00001344 0.02389 
Further decrease in 
torsion but increase in 
bending displacement 

  

120 (0/45/45/0) -45 2 2 2 0.00001219 0.06903  

  

120 (45/-45/45/-45) -45 2 2 2 0.00005475 0.01883 

Torsional rotation 
decreases but the 

bending displacement is 
high 
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From Table 5, it is found that the three stacks with arrangement (0/90/0) make a 
higher decrease in both bending and torsion displacements, less bending 
displacement obtained with laminate (0/45), further decrease in torsion but an 
increase in bending displacement with laminate (0/45/0/45). For the laminate with (-
45/45/-45/45) the torsional rotation decreases but the bending displacement is 
higher.  
 

 

CONCLUSIONS  
 

The following conclusions have been drawn: 
 

1. The finite element model is obtained for orthotropic beam structure system with 

inclined piezoelectric actuators on the surface at an angle β with the beam axis. 
The structure is subjected to axial, transverse, and torsion loads, in addition to 
the electrical load due to the piezoelectric patches. The developed code is 
verified by comparison to the published results for some special cases. 

 
2. The maximum effective action of the piezoelectric patches in the torsion 

direction is obtained by an inclination angle equal to forty five degrees, 
increasing the number of patches, and/or increasing the applied voltage. 

 
3. When piezoelectric patches thickness increases the response on twisting angle 

and transverse deflection decreases. 
 
4. The [0/45] symmetric composite beams resist transverse deformation more than 

the twisting rotation while the asymmetric beams resist twisting rotation more 
than (0/90) composite beams. The (0/90) asymmetric composite beams resist 
axial and transverse deflections more than the symmetric one. 

 
5. The developed model can be used to investigate the control of static and 

dynamic response of compressor and turbine blades. The analytical results 
obtained can be verified more accurately by using experimental verification. 

 
The axial and bending deformations of the beam can be controlled using 
piezoelectric patches aligned with the axis of the beam structure. On the other hand, 
the axial, bending and torsion deformations can be controlled by attaching the 

piezoelectric patches at an angle β with the beam axis. 
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APPENDIX A 
 

The reduced stiffness components ijQ  are related to the engineering constants as 

follows [31]:       
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where; iE   is the modules in ix  direction,  ( )jiGij ≠  are the shear modules in the 

ji xx −   plane, and  ijυ  are the associated Poisson's ratios.  

 

The transformed reduced stiffness coefficients ijQ  are represented by: 
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