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ABSTRACT

The ability to change and control the shape of the structure has been a challenging
problem. In the current work the shape control of isotropic as well as an orthotropic
fiber-reinforced composite beam with embedded piezoelectric actuators is
investigated. A finite element formulation is developed for modeling laminated
composite beams with a distributed piezoelectric actuators subjected to both
mechanical and electrical loads. A simple higher order shear deformation theory with
virtual displacement method is used to formulate the equations of motion. The model
is valid for both segmented and continuous piezoelectric elements which can be
either surface bonded or embedded in the laminated beams. A two-node with four
mechanical degrees of freedom is used in the finite element formulation. The
electric potential is treated as a generalized electric coordinates like the generalized
displacement coordinates at the mid-plane of the actuator. A MATLAB code is
developed to compute the static deformations and the natural frequency of the
structure system. The obtained results from the proposed model are compared to
the available analytical and the finite element results of other researchers.
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NOMENCLATURE
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Definition
Beam cross section area.
Elements of extensional stiffness matrix.
Elements of coupling stiffness matrix.
Width of beam element.
Elastic constants.
Constant coefficients.
Elements of bending stiffness matrix.
Electric field potential energy.
Electric field (E, = -Ve¢ ).
Young’s modulus for isotropic materials.
Young’s modulus in the fiber direction.
Young’s modulus in the transversal direction to the fiber.
Piezoelectric constituents' constants.

Element load vector.

Axial and transversal forces.

Shear modulus.
Electric enthalpy.
Thickness of beam element.

Element stiffness matrix.
Mechanical stiffness matrix.
Electric stiffness matrix.

Coupled mechanical - electric stiffness matrix.
Layer number of the laminated beam.

Length of beam element.

Element Mass matrix.

Total number of layers in the laminated beam.
Components of the lamina stiffness matrix.
Nodal displacements and its second derivative.
Surface area in x-y plane

Kinetic energy.

Total strain energy for the structure system
Internal strain energy of the structure substrate.
Electric field potential energy.

Displacements of any point in the x-, y-, and z directions.

Axial displacements at the nodes of beam element.

Reference surface displacements along x-, y-, and z- axes.

Work done due to external loads.
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Wy, Wy, andw, Transversal displacements at the nodes of beam element.
Ve Reference surface Transversal shear strain in x-z plane.
Ve Shear strain in x-z plane.
£ Permittivity constants.
€., & Linear strains in the x-,y-, and x-directions.
e, &, Befer_ence surface extensional strains in the x-, and y-
g directions.
; Transversal displacement shape functions.
K., K, Reference surface curvatures in the x-, and y-directions.
¢ Axial displacement shape functions.
y Mass of the structure material.
c Surface charge.
o, Normal stress in the x-direction.
o, Shear stress in the x-z plane.
[ Electric potential.
P, Angle of rotation.
@, and ¢, Rotation angles at nodes.
g,andg, Electrical potential shape functions.
v, Rotation displacement shape functions.
HSDT Third-order shear deformation Theory.
SSDT Second-order shear deformation Theory.
FSDT First-order shear deformation Theory.
CBT Classical beam Theory.
INTRODUCTION

The development of smart composite has generated great interest. Several
researchers have studied the interaction between the mechanical properties and the
electric field. Crawley et. al [1-2] developed piezoelectric elements for a laminated
beams and plates. Allik and Hughes [3], presented a tetrahedral finite element for a
three dimensional electroelasticity. Based on this model Tzou [4], proposed a
method for solving isotropic plate using isoparametric hexahedron solid element.

Benjeddou et. al [5], presented theoretical formulation and finite element
implementation of adaptive un-symmetric sandwich beams to deal with either
extension or shear actuation mechanism for both static and dynamic analysis of
beams. Shear actuators correspond to an elastic core sandwiched between two
transversely polarized active surface layers, whereas extension actuators consist of
an axially polarized core, sandwiched between two elastic surface layers. Vibration
modes were found to be equivalent in both mechanisms, but shear actuators were
found to be less deformed than extension ones. Their results defined features shear
actuation mechanism over the conventional extension actuation mechanism,
particularly for brittle piezo-ceramics.
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Han et. al [6], proposed a refined finite element model which can effectively describe
the variable in-plane displacements and stepped geometry. They concluded that the
developed finite element computer program can effectively predict the
characteristics of composite beams with a bonded piezo-ceramic actuator.

Clinton et. al [7], developed finite element model with two node Hermatian element
and layer-wise nodes to get the static response of a smart beam with of n-layers.
They deduced the following: (i) the linearity between tip displacements and the
applied voltage of piezoelectric beam might not necessarily hold for other structural
configurations with different properties and boundary conditions, (ii) as the substrate
stiffness decreases the obtained actuation increases, (iii) the actuator positioning
near the fixed end of a cantilever produces greater effect on the curvature, (iv) as
the number of actuators increases the deflection and curvature increases.

Aldraihem and Khdeir [8] formulated and developed analytical models and exact
solutions for beams with thickness-shear and extension piezoelectric actuators.
Based on the first-order beam theory (FOBT) and higher-order beam theory (HOBT).
They concluded that: (i) the obtained deflections from FOBT and HOBT are slight
different for extension-mode actuator, and pronounced difference for shear-mode
actuators. (ii) the obtained deflection for cantilever beam using HOBT is 27% greater
than that of the FOBT however, the pattern of the deflection curves is the same. iii)
the FOBT is very sensitive to the value of the shear correction factor k, for k=2/3, the
tip deflection of a cantilever beam computed by the FOBT matches that computed
by the HOBT. Iv) interesting results are obtained for clamped - clamped beam with
shear-mode actuator, unlike the extension-mode actuator which cannot produce
bending deflection in the clamped - clamped beam.

Khdeir and Osama [9] developed analytical solution for static analysis of smart
beams with extension and shear mode actuators. They used the state-space
concept in conjunction with the Jordan canonical form by making use of Heaviside
discontinuity functions. They studied the effects of actuator length and location on
the deflected shapes of the two structures. Their results showed good agreement
with the extension mode actuators, but indicated for shear mode actuator.

Krommer [10], presented a simple Bernoulli-Euler type beam theory for smart
piezoelectric composite beams. He formulated a purely mechanical beam theory
taking into account the coupling to the electric field by means of the direct
piezoelectric effect. His calculations showed the accuracy of one-dimensional theory
in comparable to the two-dimensional finite element.

Vel and Baillargeon [11], proposed model using piezoelectric shear
actuators/sensors where the electric field is applied perpendicular to the direction of
polarization to cause shear deformation of the material. They presented exact
analysis and active vibration suppression of piezoelectric laminated composite
plates. In addition, experimental and finite element for active vibration suppression
of a sandwich cantilever beams using piezoelectric shear actuators. Their finite
element simulations showed good comparison with the experimental results.

Trindade and Maio [12], reported studies for using thickness-shear piezoelectric
patches connected to resistive shunt circuits for the passive vibration control of
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sandwich beams. They developed theoretical and finite element formulations to
evaluate the vibration damping performance. The obtained results for cantilever
beam with shear piezoelectric patch connected to resistive shunt circuit gave a
reduction up to 15 dB in resonant vibration amplitude of the third mode.

Yeilaghi et. al [13], developed finite element model based on the Euler-Bernoulli
theory to study the shape and vibration control of the function graded materials
beam with piezoelectric materials using new feedback control algorithm. Their
results showed the effects of volume fraction on the shape and vibration of the
beam. Furthermore, it is observed that the natural frequencies and peak responses
can be controlled by the displacement control gain, and active damping can be
provided by adjusting the velocity control gain.

Q. Wang et al [14], provide a basic mechanics model for the flexural analysis of a
sandwich beam coupled with a piezoelectric layer. Their model is based on the Euler
beam model for a long and thin beam structure, together with the electric potential
satisfying the surface free charge condition for free vibration analysis. They
concluded that the dynamic characteristics of the entire structure are related to the
position of the piezoelectric layer. They investigated how the mode shape
distribution of the electric potential in the piezoelectric layer in the longitudinal
direction is related to the transverse displacement, and they concluded that the
distribution of electric potential obtained serves as a guide for selecting the trial
function for the mode shapes of the electric potential required in numerical methods
for coupled piezoelectric structures.

In the present work, a finite element model is developed based on a simple higher
order shear deformation theory made by Reddy [15]. The model represents the
parabolic distribution of transverse shear stresses and the non-linearity of in-plane
displacements across the thickness. The model is able to compute static and
dynamic responses of laminated composite structures with distributed piezoelectric
actuators.

THEORETICAL FORMULATION

Figure (1): Un-deformed and Deformed cross section [16].



Proceedings of the 15" Int. AMME Conference, 29-31 May, 2012 SM | 146

The displacements field equations of the beam are presented as [17]:

dw ) 3 dw
u(x,z>=uo<x>+z[cogwmﬁ(x)}czz w(x)+es(3) [¢<x>+g} (1)a

v(x,z)=0 (1) b
wi(x,z)=w (x) (1)c

where u,v, and w are the displacements field equations along the x,y, and z
coordinates, respectively, u,and w, denote the displacements of a point (x,y,0) at
the mid plane, and ¢(x) and w(x) are the rotation angles of the cross-section as
shown in Figure 1. Selecting the constant values of Egn. (1) a as:

c.,=0, ¢,=1 ¢,=0 c3=—(%)h. The displacements field equations for the

simple higher order shear deformation theory, made by Reddy, at any point through
the thickness can be expressed by [15]:

ulx,y,z)=u(x)+z9, —%Z{@ +aa_v;’}

v(x,y,2)=0 (2)

w(x, y,2) =w,(x)

The Reddy’s displacements field accounts for a parabolic distribution of the shear
strain and the non linearity of in-plane displacements across the thickness and thus
does not involve the shear correction factor.

For a one-dimensional beam, the width in the y-direction is stress free, and from the
plane stress assumption the remaining strains components aree_ and y,. which are

represented by:

ou(x,z) ou 0@, 4|09 O'w 5
e (x,y,2)= =—+z—-2Z =+ =&, TIK T TK 3)a
«%3:2) ox ox  ox 307 ox  ox’ () 7 2 3)
omx,y,2) | ou(x,y,z) ) 4{ aw] ow )
X,y,7) = + =0.~7 | A [F——=V¥ T 3)b
Ve (x7:2) ox 0z /. " & ox | ox Vi) T Kot )
where;
_ Ou dw _ 99,
go(x) - g: 7°(XZ) = ¢x + g ) Ko(x) - g (4) a
g,  9’w ow
kz(x) = _g1|: ax + axz :| ’ kZ(xz) = _g2|:¢x +g:‘ (4) b
and g, =;%, g, =57 £, Is the reference surface extensional strain in the x-

direction, 7, is the in-plane shear strain , «,, and x, , are the reference surface

curvatures in the x-direction, x, , is the reference surface curvature in the z-

xz)

direction. Thus the strains componentse_, and 7, can be expressed as:
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_ 3
£, ()C, ) Z) - go(x) + ZKo(x) Tz Kz(x)
?/xz (x’ Y, Z) = }/O(XZ) + ZZKZ(XZ)

PIEZOELECTRIC CONSTIUTIVE RELATIONS

The piezoelectric constitutive equations are given by [18-19]:

O, =Ciu€u _ekijEk (6)

D, =e; &, +&, E, (7)
where, i,j=1,..,.6 and k=1,...3.

In the present model the piezoelectric element is considered as isotropic material
prior to the poling. But it behaves as transversely isotropic after the poling process.
That is the 1-2 plane is isotropic, while the 3rd direction has properties different from
the other two. For a k" layer. The plane stress approximation is made by setting
o, =0, and the straine,, is eliminated from Eqns. (6) and (7), the constitutive
relations can be written in a matrix form for a material having orthorhombic mm?
symmetry including piezoelectric effect as follows [20]:

O 0, 0, O 0 0 €n 00 e
0y O, On O 0 0 € 0 0 ey [E
Oynp =10 0 Q4 0 0 Exp —| 0 ey 0]4E, (8)
o 0 0 0 Q5 0] |&; es 0 0 |E]),
on), LO 0 0 0 Q] &), LO 0 0]
&
D, 0 0 0 ¢, 0] g, g 0 0 E,
D,y =0 0 e, 0 0|<3&,p +| 0 €; 0|<E, (9)
Dyj, € ey, 0 0 0] |&; 0 0 & B,
€y

where;{D}is the electric displacement vector (C/m?),{e} strain vector,[']is the
dielectric matrix at constant mechanical strain (F/m), {E} is the electric field vector

(V/m),{c} is the stress vector (N/m?) and [Q] is the elasticity matrix for a constant
electric field (N/m?).

’ Ci3 ’ Cy ’ ’
and, €3 = €3~ €335, €3 = €3 €335 €y =€y €5 =E€5, (10) a
3 33
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2
’s s . ’s . ’s __ 33 .
811 - 811’ 822 - 822’ 833 - 833 + s
C33

where, c, are the elastic coefficients given in Appendix A [21].

The reduced stiffness coefficients Q, related to the engineering constants for two
cases as follows [16]:

Case I: Isotropic Beam:

E vE
Q1k1 = ng =T Q1k2 =

1—12 _m QL:Q;:Q&:G (10)b

Where; E , and v are the isotropic material properties.

Case IlI: Anisotropic Beam:

k k ok k
Qk _ El Qk _ leEZ Qk _ E2
= 1 k .k 12 7 1 k .k 22 T 1 k .k
— U0y, — U0, U0y, (1 0) c
ko k o~k k _ o~k
Q44 - G23 st - G13 Qsa - G12

The electric field components are related to the electrostatic potential ¢ by the
equation [22]:

E =-0, (11)

The transformation of Egns. (8) and (9) can be written as [16]:

o] @ 0. 0 0 Q] [ea] [O 0 g
Oy §21 azz 0 0 §26 €y 0 0 e E,
O.r =0 0 §44 §45 0 Vg —|€s €y O E, (12)
o, 0 0 Qs Qs 0| |7| & & 0][E],
Gx,v & _Qﬁ §26 0 0 §66 Jx }/x,v r L 0 0 536 Jk
gxx
D, 0 0 e, ¢5 O €y £, £ ;) 0 E,
D¢ =0 0 e, e 0 Ver + E;) 55) 0 E, (13)
D, . e, e, 0 0 e | Ve 0 0 & . E. .
Vo),

where Q and e, are the transformed reduced stiffness coefficients, and

piezoelectric modules, respectively given in Appendix A.

In the proposed model the following assumptions are used: (1) the width in vy
direction is stress free and a plane stress assumption is used. Therefore, it is
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possible to set o =0, =0,=7,.=7,=0,and ¢ =0 in Eqn. (12) [8], (2) the
polarization axis z is aligned with the thickness direction of the beam, thus only D,

in Eqgn. (13) is taken into consideration. Thus the constitutive relations Eqgn. (12) and
Eqgn. (13) are reduced to:

XX éll O O gxx O 0 531 Ex
ze = O QSS 0 yxz - EIS 0 0 Ey (1 4)
D 5, 0 0|0 0 0 -2

z )k X k 2 |y z )k

where; the coefficients in Eqn. (14) are given by:

Case I: Isotropic Beam:
Qu =E st =G , and 0,=0; (15) a

Case IlI: Anisotropic Beam:

A N QZQZ A 2y 225 Py
Q11:Q11_—— st :st___Q45 (15) b
0, €y
And the piezoelectric coefficients are given by:
~s = E E ~ - — Q ~ - 525514
g =& +%*2 &, =€y —ep =" €5 = €5~ (15) c
Oy Oy €y

By introducing the electric field E, applied across the thickness of the piezoelectric
layers and the other components of the electric fields are zero. And the shear
piezoelectric effect ¢,; and the axial electric permittivity &/, are neglected. Therefore
the constitutive relation, Egs. (14) is simplified as follows:

O-xx él 1 O O gxx 531
ze = 0 QSS 0 7xz - 0 EZ ( 1 6)
D 2, 0 0[]0 -8

2k X k

ENERGY FORMULATION

The kinetic energy of the structure system is given by [23]:
T:%Jv'p[u2+w2]dv (17)

where, p is the mass density of the beam material.

The work done due to external mechanical and electrical loads is represented by
[23]:
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W= If udx+jf,wdx+Pw —IO'(/)dS (18)

where; f, and f, are the transversal and axial forces along the length L, respectively.

a

P is the concentrated force at point i and w, is the corresponding generalized

displacement, o (C/m? is the surface charge density and ¢ is the electric potential
(volt) applied to the piezoelectric surface areas S,.

Thus the internal strain energy for the structure system U is the sum of internal
strain energy U , and the electric field potential energy U, such as [20]:

U=%!(U+Ue)iv (19)
Thus;
U =% j (c.e.+0.7.)-(D.E v (20)
Case I: Isotropic Beam:
:_I[ —¢,E g +(G7/ )7/ (631’9 +EE, )Ez ]dv (21) a
.[[ngx +G7/ 2e3l z xx _gzzEz kv (21) b

By substituting Egns. (3)a and (3)b into Egn. (21) b, one can obtain:
() o)) (2712

E ox ox ox ox 3h ox  ox* )\ ox

B 3:2 ZA(aa% ](aaéx ’ g;vj ’ 91;164 Z{aaéx ’ aa;sz |

Uz! +G{(¢x+g—:j —h—iz2(¢x+aavi°]2+lll—?z4(¢x+aav::}2} v

du, 09, 4 (09, 9w )
- +
—(——a¢j53l ( ox J—'_ Z( ox J 3h* ¢ ( ox  ox’ —lé‘v; (a_(pj
0z 2 0z

D | =

Case IlI: Anisotropic Beam:

U= %J. [(Qllgxx - g3lEz )E (QSS £ )7 6318 + gZZEZ )EZ }lv (23) a
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—& B

U= %_![(én‘gfx + st 7; - 2g3lEz€xx

By substituting Eqgns. (3) a and (3) b into Egn. (23) b, one can obtain:

| a¢x 2_ 8 3a¢x+

9w

(%j2 + 2Z[aﬂ%}+ Z2(
ox ox ox ox

8 Z{a@ j[&(z)x .\ azwj .\
8

__ 3h? ox |\ ox  ox?
8 ow,

)

16
9hn*

Qll

3h® ¢ ( ox
JZ

ZG a¢x + azw
ox  ox’
16

| =

&

ox®

~ ow )’
+ st |:(¢x + gj

hz

zz(;/ﬁx +

ox

jl

"

z‘{qﬁx +—2

99,

4

09, N °w

)

SM

151

dv

(24)

_ 3
ox axj 3hzz(ax asz——

[5e)+4
00 .. +Z
a_zjem

FINITE ELEMENT FORMULATION

9,
9

Figure (2): Nodal degrees of freedoms of the element.

The axial displacement at the mid-plane u, is expressed as the following:

0’u,

ox?

=0 (25)

By solving the previous equation and imposing the boundary conditions, the axial
displacement can be represented as:

uo(x):”1§1 +u,8, :Zz:ujé:j (26)

where the Linear interpolation shape functions y; have the form [24]:
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(;:1—%,and 52:% (27)

The transversal displacement w, at the mid-plane is represented as:

9w,

ox*

=0 (28)
By solving the above equation and applying the boundary conditions to determine
the unknown constants, the transversal displacement w, at the mid-plane can be
expressed in terms of the nodal displacement as:
4
Wo(x):W1§1+W2§2+W3;3+W4§4 :ZW/‘;/‘ (29)
j=l
The Hermit cubic shape functions &; have the form [24]:
2 3 2 3
X X X X
4121—3(Zj +2(Zj gzzx—Z(Tj‘FF
2 3 2 3
X X X X
=3 = -2/ — =+
(={3) 3] f--Ees
The rotation angle of the normal to the mid-plane about the y axis ¢, is represented
by:

(30)

G 31)

Similarly; by solving Egn. (31) and applying the boundary conditions the rotation
angle is given by:

2
9, (x) =W, + 0.V, = z¢ijj (32)
j=1
where the Linear interpolation shape functions y; have the form [24]:
X X
‘//1:1_Zs and szz (33)

In the proposed model the electric potential is considered as a function of the
thickness and the length of the beam [23]. In case of the electric potential is function
of the length, it can be represented by [25]:

2
¢(x):¢1§1 +¢2§2 :zgp‘,‘;;‘ (34)
=
where,

(35)
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And in case the electric potential is function of the thickness of the beam, it can be
given as [25]:

2
¢(Z): ¢1§1 + (02?2 = 2%5;

j=1

(36)

where,
1 z

§2:2 A

1.z
2 h

6 = (37)
Thus by the product of equations (35) and (37) and impose the homogenous
boundary condition on the bottom surface to eliminate the rigid body modes. Thus
the electric potential can be written as [23]:

2
¢(X,0,Z) =@6 T 9,6, = z¢jgj (38)
j=1
And the shape functions are finally takes the form [23]:
1 z X 1 z\ «x
==+ 2 1=2 5 o= o+ | =
d [2 hj( Lj & [2 hj(Lj (99)

VARIATIONAL FORMULATION

By applying the principle of the virtual displacements to a representative physical
element of the beam, thus:

oU = oW + 6T (40)
By substituting Eqgn. (2) into the kinetic energy Eqgn. (17) yields:
. . 4 .dw )
T=Jv',0(uo +Z¢X—WZ3(¢X+ dxonrWojdV (41)
The first variation of the kinetic energy Eqgn. (41) is expressed as:
(A 4 iy |
o [”“ ERCETER R TR j+
ol (ot Vi v g B gt e 16 o [ A e, 16 o) diy
éT_{pO %, ([Z 3 ° j”“” TR AT ¢"+( RS j dx J+ v (42)
dig \ (4 )y o4 e 16 Gy 16 din)
_5[ dx ] ([ 3 ]””[ 32 ot t j¢x+9h4 dx j+5w° ()
Thus the elements of the mass matrix can be expressed as:
L
M, = l Sl 1 iy dx M, =0 M, =0 “3)
M, =0

21
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. 8 16 .
5¢:[12 —3714 +9716j¢xdx
4 16 dw
- I, + I O ldx
( 3 ont 6]( dx J

. T
4 16 .
j [— e I, +9h4 I6j¢xdx

dwojT(m j(dwoj Coar
I, dx + | O,y I, W,dx
dx on* dx -([

X
i

I
.
~

=

553
)

X X X
=
Il
St Ot O Ot O~

N

S,
Q
SRS

[}
LS}

=
I

where;
hil?2

(10’12’14’16): J-po(l’zz’zél’Zé}lA

-h/2

By substituting the shape functions equations (26), (29), and (32) into Eqgn. (43) yield
the mass matrix of the beam element.

The first variation of the external work equation (18) takes the form:
L L
W = [ f,Gudx+ | f,8vdx+ P,ow, — [ o6, (44)
0 0 S

By substituting the displacements Eqn (2) in Eqn.(44) yields;

3 dw,
dx

4 5
4

L
oW = faé‘[u +20 ——
! ’ 3k

4 L
0. e [ R, - [, (a9
0 Sy

By substituting the shape functions equations (26), (29), (32) and (38) into Eqgn. (45)
and perform the integration over the length of the beam yields the element load
vector.

Case I: Isotropic Beam:

The first variation of the strain energy equation (22) takes the form:
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([0 gouy ), (Ouy 509, 09, o), (09, 509,
ox  Ox ox ox Odx Ox ox  Ox
4

T 3| T O gOU U GO W I WO
3hZZ ox 8x+8x 8x+8x 8x+8x axJ

4
_37Z ox ox ox dx> oOx ox

2 2 2
L 16 o[ 99, 509, 99, M+M5%+J5M
ont ox oJx dx dx* dIx* ox dx* ox’

(55}
Q)
<
Q)

Y

IS
[\
Q
e
Q
e
+
Q
e

2
W+3W53¢xj

(=)}

Q
S
;&

h? ht ox

[(Ou, .09 0@ .ou ol 8(/7 99 .99,
—L5-L+—L5>2 5= o=
( ox 0z Jdz Ox j ( ox az Jdz  ox

+eé5| —

3h2Z ox dz dz ox oJx> 9dz 9z Ox*

e 2 o2 ()
g 0x ox 3h ox ox
o4 o w) (o
ko = —E![Z 3h* J(axz j (axj}v

on* | ox? ox>

Rryeie
h* ox ox

+G (1—8z +16j((¢x5¢ )+ (¢ 5aW° oy 5¢xj+(aw° 5%

ow\ (9w 8 [ow
5(—) ( j = 5(
2 NTr~2
ks :J. E[z6 16 5[8 Wj [a wﬂﬂ; dx) \ox ox

Ky :j c

_ 4 (0w T(
3t ox?

ow
_‘5( e

4 16
h4

2 T
a¢xj+zé( 16 ja 0°w (a;z)x
ox on* ox? 0x

ow ow)
(axj Ptz (axj ¢X:l

)

5 4 Ewgw aﬁgai J58¢ a%asz _ K

I

dv

SM | 155
dv (46)
(47)
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_ 9, Y (u) 5 4 {09, (0u
o _E!{Z5( ox j (axj Ve 5( ox j (aszldv
R J(a;»xj (azwjﬂé( 16 Hagj (azwj}
I 37\ ox ox’ 9hn* ox ox?
() o)t
) (o)ear ) () Ge) ()
ox ox ht ox ox
[6¢ b -z —(5¢ 6. +24 28070, ﬂ
k, _631I5[ j (gzjdv
et 2
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By substituting the shape functions equations (26), (29), (32) and (38) into Eqgn. (47)
and perform the integration over the beam volume yields the element stiffness
matrix for isotropic beam.

dv

E

ks :I




Proceedings of the 15" Int. AMME Conference, 29-31 May, 2012

Case IlI: Anisotropic Beam:

The first variation of the strain energy equation (24) takes the form:
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Thus the element of the stiffness matrix can be given as:
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dv  (48)
(49)
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Known that, A, and A, are the extensional stiffness, B,, is the bending stiffness,
D, and D, are the bending stiffness, E,, is the warping extension stiffness, F,,
and F,, are the warping bending stiffness, and H,, is the higher order warping
bending coupling stiffness and given by [15]:
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Where; k is the layer number. The distance & is taken from the middle surface of
the laminate to the outer and inner surfaces of the k" lamina.

By substituting the shape functions equations (26), (29), (32) and (38) into Eqgn. (49)
and perform the integration over the beam with length L, width b, and height h yields
the element stiffness matrix for anisotropic beam.

EQUATION OF MOTION

The equation of motion of the whole structure system is represented by:

qu 0 q + qu KCI(D q — F (51)
0 0]l¢ qu KW 4 G
where M, is the global mass matrix of the structure and{g} is the global nodal

generalized displacements coordinates vector, {o} is the global nodal generalized
electric coordinates vector describing the applied voltages at the actuators [20-23],
{F} is the applied mechanical load vector, and {G} is the electric excitation vector.
In case of the piezoelectric layer working as sensor, the electric excitation applied to
the sensor layer is zero (G =0), the voltage from the sensor layer can be written as:

{py=-Ix,,I"[x,, Ja} (52)

VALIDATION EXAMPLES

In the present study, a MATLAB code is constructed to perform the finite element
analysis of isotropic and orthotropic smart beams with piezoelectric materials using a
simple higher order shear deformation theory. The static deformation and the
fundamental natural frequency are calculated for beams subjected to different kinds
of mechanical and electrical loads.

The geometry of the smart beam, structure substrate, adhesive layer, and
piezoelectric layer are shown in Figure 3. The length and width of the beam are L =
0.1524 m, b=2.54x10"m respectively. The thicknesses of the substrate, PZT and

adhesive are h =0.01524 m, i, = 1.524x107m, h, =0.254x10"m , respectively.

Model Convergences

The convergence of the present model is checked for a given beam with the material
properties given in Table (1) for the beam substrate, adhesive and piezoelectric
layers. A constant electric potential of 12.5 k-volts was applied on the upper surface
of the PZT-4 layer, while the lower surface was grounded.
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Figure 3: Smart Beam with PZT layer.

Table 1: Material properties of the smart structure.

Property Aluminum Adhesive
Young modulus E =703 GPa E=69 GPa
Shear modulus G=27.6 GPa G=246 GPa

Poisson ratio v=0.345 v=0.4
Density p=2769 kg/m’ | p=1662 kg/m’
Piezoelectric
Stiffness coefficient 0, 13.910" Pa
Stiffness coefficient Q,, 7.78 10" Pa.
Stiffness coefficient Q,, 11.510" Pa.
Stiffness coefficient Q,, 7.4310" Pa.
Stiffness coefficient Q,, 2.56 10" Pa.
Piezoelectric constant e,, -5 C/m?
Piezoelectric constant e, 15 C/m?
Piezoelectric constant &3, 5'6}9/8’”1 0°
Density p 7600 kg /m’
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Figure 4 shows the effect of number of elements on the transverse displacement of
an aluminum beam with piezoelectric actuator. The beam is composed of two layers
of aluminum, one layer of adhesive and one layer of PZT-4 actuator. It can be seen
that the transverse deflection reduces until it reaches an asymptotic value at
reasonable number of elements which proves convergence of the finite element
solution.

effect of number of elements on transverse displacement
'EI 28 T T T T T

-0.3

-0.32

-0.34

transverse displacement (mmy}

042 1 1 1
0 10 15 20 25 30

number of elements

(g

Figure 4: Effect of number of elements on the transverse displacement of
Aluminum beam with piezoelectric actuator.

Case I: Isotropic Beam

Static validation

The transverse displacements obtained by the proposed model for cantilever beam
composed of two layers of aluminum, and one layer of adhesive, and one layer of
piezoelectric actuators are given in Figure (4) and compared with the results given in
references [23-26-27].

The predicted mid-span deflection of cantilever beam shown in Table 2 is compared
with other references as shown in Table 2. The obtained results are found almost
identical however the Sarvano and Heyliger model [26] was based on layer wise
method, and Elshafei and Bendary [33], whose models were based on the classical
beam theory and Chee model [27] developed his model based on the third-order
beam theory.

The difference between the static deflection calculated with Sar/Hey [26], and Chee
[27] are found to be 8.2 % and 1.03 %, respectively.
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Figure 4: Transverse deflection of cantilever beam.
Table 2: mid-span deflection (mm) of cantilever beam.
References Ref. Ref. Ref. [27] | Present
[23] [26] Model

Mid-span deflection 0.093 0.089 0.094 0.0937

The effect of the applied voltage on the transverse displacement of the aluminum
beam is shown in Figure 5. It is seen that as the voltage increases, the transverse
displacement linearly increases.

Figure 5 presents the effect of the applied voltage on the transverse displacement of
the aluminum beam. It is seen that as the voltage increases, the transverse
displacement increases almost linearly.

Figure 6 presents the effect of applied voltages with different values on the
transverse displacement of an aluminum beam with PZT-4 actuator under clamped-
free boundary conditions. It is shown that as the voltage increases the transverse
displacement increases.
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Figure 5: Applied voltage vs. transverse displacement.
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Figure 6: The effect of applied voltage value on transverse displacement.



Proceedings of the 15" Int. AMME Conference, 29-31 May, 2012 SM | 164

Dynamic validation

Table 3 shows the first four natural frequencies (Hz) obtained by the proposed
model compared with the results given in reference [26] for cantilever beam
composed of two layers of aluminum, one layer of adhesive and one layer of PZT-4
actuator with material properties shown in Table 1. The obtained results are
computed for different number of elements.

Table 3: First four natural frequencies (Hz) of aluminum beam compared with

Ref.[26].
Mode No of elements Present Model Reference [26]
1 10 556 567.1
20 555 544.2
30 555 544.1
2 10 3425 3287
20 3419 3242
30 3413 3232
3 10 7635 7254
20 7629 7616
30 7628 7614
4 10 9545 8976
20 9327 8496
30 9288 8428

The difference between the first three natural frequencies Table 3 was 1.94 %, 5.17
%, 0.17 %, respectively.

Case Il: orthotropic Beam

Static Validation
The static deflection is performed for laminated graphite epoxy composite beam with
the following material properties: E, = 144.80 GPa, E, = 9.65 GPa, G,, = 4.14 GPa,

%, =03 and p = 1389.23Kg / m’ .

The effect of ply-orientation angle on the transverse displacement of cantilever
graphite epoxy composite beams with PZT-4 given in Table 1 is shown in Figure 7.
A constant electric potential of 500 volt was applied and the number of twenty
elements is taken for this example. Results are reported.
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Figure 7: Effect of ply-orientation angle on smart orthotropic beams with PZT.

Dynamic Validation

The free vibration validation is performed for a graphite/epoxy cantilever beam of [0/
90] stacking sequences for beam with various types of piezoelectric materials with
properties shown in Table (4). The first three natural frequencies (Hz) for the beams
are given in Table (5).

Table (4). Piezoelectric Characteristics.

Property PZT-2 PZT-5A | PZT-8A | PZT-5H
0, 10" Pa. 135 12.1 14.9 12.6
0, 10" Pa. 6.79 7.54 8.11 7.95
0., 10" Pa. 113 111 13.2 117
0,, 10" Pa. 6.81 752 8.11 8.41
0., 10° Pa. 222 211 3.13 2.3
e, Clm -1.86 5.4 4.1 -6.55
ey, Clm 9 15.8 14 233
e /e 260 830 600 1470
0 kg/m’ 7600 7750 7600 7500

2
where; 80:8.85*10‘”( - 2]
N-m
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Table (5) Effect the type of PZT-Material on natural frequency.

Type of Material First Mode Second Mode Third Mode
PZT-2 560 3450 7661
PZT-5A 535 3294 7499
PZT-8A 562 3464 7675
PZT-5H 533 3285 7491
CONCLUSION

A finite element model was proposed to predict the static and the free vibration
characteristics of laminated aluminum and fiber reinforced composite beams with
piezoelectric materials using a simple higher order shear deformation theory made
by Reddy. The following conclusions have been drawn:

1.

10.

The good agreement was found between the present model predictions using

a simple higher order shear deformation theory, and the corresponding

predicted results of other investigators using Euler-Bernoulli’'s beam theory,

layer wise theory with different models, and HODT modeling, proved the

predictive capabilities of such model with less computational effort.

The developed displacements model can explain the parabolic distribution of

the transverse shear stresses as an advantage over the classical laminated

theory which neglects the effects of transverse shear stresses.

The proposed model using Reedy method did not suffer from the shear

correction factors which are problematic in the first order shear deformation

theory.

The number of degrees of freedom of the element in the present model is one

third of the number of degrees of freedom of the element in the model

developed by the higher order shear deformation theory, which, of course,

save the computational time.

The validity of representing the electric potential shape function at each node

as a function of the thickness and the length of the beam in the proposed

finite element model using the Reddy theory.

The proposed finite element model results were obtained at resizable number

of elements

As the applied voltage increases, both the transverse and axial displacements

increase, respectively.

As the number of layers increases, the transverse deflection and the natural

frequencies decrease.

The types of the piezoelectric materials affect the obtained natural

frequencies of the beams.

The model can be extended to the following:

(@)  Studying the forced vibration analysis for both mechanical and
electrical loads applied to the beams using the same theory.

(b)  Taking into account the geometric nonlinearities in the finite element
model which may improve the obtained results.
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Appendix A

The elastic coefficients ¢, are given by [21]:

cll — 1_1)231)32 012 — 021 + v31023 — le + 1)32013 (A'1)
E,E,A E,E,A EE,A
_ 1)31 + 021032 _ vl3 + 1)121)23 _ 1_ vl3v31
" E,ELA EEA " EEA
— 1)32 + 1)121)31 — 023 + levl3 c — 1_ 0121)21
® EENA E,E,A ¥ EE,A
where; ¢, =G, Css =Gy, Ces =Gy

1- V), Uy = U35, — U3 V)5 — 20210327)13
E1E2E3

A=

The transformed reduced stiffness coefficients Q are represented by [14]:

§11 =
Q=

Q,,cos*@+2(Q,, +20,,)cos’@sin’ 8+ Q,, sin* 9 (A-2)
(Q,, +0Q,, —4Q,,)c0s’8 sin’8+Q,,(cos*d +sin* 9)
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Q,, =(0,, —20,, —0,,)c0s°6sin 6+ (Q,, — Q,, +20,,)cosBsin’@
Q,, =0Q,5in*0+2(0Q,, +20,,)cos’&in’0 + Q,,cos*8

Q,, =(0,, —20,, —0,,)cossin*0 + (Q,, — Q,, +20,,)cos’&ind
Q. =(0,, +0,, —20,,)cos” &in*0+Q,, (cos* +sin*H)

Qs = Qs c0s” O+, sin’0

Q56 = (Q55 - Q66 )cos&siné
666 = Q,5sin’6 + Qysc0s°6

The transformed piezoelectric modulese,. And the transformed dielectric oefficients

£,.€,, and g, are represented by [14]:

— ’ 2 ’ .2 —s ’s 2 ’s 2.2

e, =e; cos” @+ey,sin” @ E) =&, cos” B+¢&,sin" 0 (A-3)
e,, =€}, sin” +el, cos’ g, =€/, sin’ @+ cos’ 6

e, = e, £, = (Sl'f —Sgg)sin fcos 8

e, = (€5, — e, )sinfcos O g =&,

e, =(e/,—el,)sinBcos @
— _ 7 2 ’ - 2
e,, =€, cos" O+e; sin” @
— ’

_ 2 ’o2
e =e5cos” @+e,, sin” @

e,s = (el — e}, )sinfcos O



