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ABSTRACT 
 
The ability to change and control the shape of the structure has been a challenging 
problem. In the current work the shape control of isotropic as well as an orthotropic 
fiber-reinforced composite beam with embedded piezoelectric actuators is 
investigated. A finite element formulation is developed for modeling laminated 
composite beams with a distributed piezoelectric actuators subjected to both 
mechanical and electrical loads. A simple higher order shear deformation theory with 
virtual displacement method is used to formulate the equations of motion. The model 
is valid for both segmented and continuous piezoelectric elements which can be 
either surface bonded or embedded in the laminated beams. A two-node with four 
mechanical degrees of freedom is used in the finite element formulation.  The 
electric potential is treated as a generalized electric coordinates like the generalized 
displacement coordinates at the mid-plane of the actuator. A MATLAB code is 
developed to compute the static deformations and the natural frequency of the 
structure system. The obtained results from the proposed model are compared to 
the available analytical and the finite element results of other researchers. 
 
 
KEY WORDS 
 
Finite element - piezoelectric materials –higher order beam theory – composite 
materials mechanics - smart structure system. 
 
 
 
 
 
 
 
 
 
 
 
____________________________  
*   Egyptian Armed Forces. 
**  Libyan Armed Forces. 



142 SM  Proceedings of the 15
th
 Int. AMME Conference, 29-31 May, 2012 

  

NOMENCLATURE 
 

Symbol Definition 

A  Beam cross section area. 

ijA  Elements of extensional stiffness matrix. 

ijB  Elements of coupling stiffness matrix. 

b  Width of beam element. 

ijklC  Elastic constants. 

1c , 2c , 3c  and  4c  Constant coefficients. 

ijD  Elements of bending stiffness matrix. 

iD  Electric field potential energy. 

kE  Electric field ( ϕ−∇=kE  ). 

E  Young’s modulus for isotropic materials. 

1E  Young’s modulus in the fiber direction. 

2E  Young’s modulus in the transversal direction to the fiber.  

ijke  Piezoelectric constituents' constants. 

{ }F  Element load vector. 

af   , tf  Axial and transversal forces. 

G  Shear modulus. 

H  Electric enthalpy. 

h  Thickness of beam element.  

[ ]K
 Element stiffness matrix. 

[ ]qqK  Mechanical stiffness matrix. 

[ ]ϕϕK  Electric stiffness matrix. 

[ ]ϕqK  Coupled mechanical - electric stiffness matrix. 

k  Layer number of the laminated beam.  
L Length of beam element. 

 
Element Mass matrix. 

N  Total number of layers in the laminated beam. 

ijQ  Components of the lamina stiffness matrix. 

q  , and q&&  Nodal displacements and its second derivative.  

1S  Surface area in x-y plane 

T  Kinetic energy. 

U  Total strain energy for the structure system 

Û  Internal strain energy of the structure substrate.  

eU  Electric field potential energy. 

wvu ,,  Displacements of any point in the x-, y-, and z directions. 

43,21 , uanduuu  Axial displacements at the nodes of beam element. 
o

u , o
v ,  

o
w

 
Reference surface displacements along x-, y-, and z- axes. 

W  Work done due to external loads. 
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321 ,, andwww  Transversal displacements at the nodes of beam element. 
o

xyγ  Reference surface Transversal shear strain in x-z plane.  

xzγ  Shear strain in x-z plane. 
s

ijε  Permittivity constants. 

xε , 
yε ,  zε  Linear strains in the x-,y-, and x-directions. 

x
oε , y

oε  Reference surface extensional strains in the x-, and y-
directions. 

iζ  Transversal displacement shape functions. 
o

xκ , o

yκ  Reference surface curvatures in the x-, and y-directions. 

iξ  Axial displacement shape functions. 

ρ  Mass of the structure material. 

σ  Surface charge. 

xσ  Normal stress in the x-direction. 

xzσ  Shear stress in the x-z plane. 

ϕ  Electric potential. 

xφ  Angle of rotation. 

21 φφ and  Rotation angles at nodes. 

21 ςς and  Electrical potential shape functions. 

iψ  Rotation displacement shape functions. 

HSDT Third-order shear deformation Theory. 
SSDT Second-order shear deformation Theory. 
FSDT First-order shear deformation Theory. 
CBT Classical beam Theory. 

 

 
INTRODUCTION 

 

The development of smart composite has generated great interest. Several 
researchers have studied the interaction between the mechanical properties and the 
electric field. Crawley et. al [1-2] developed piezoelectric elements for a laminated 
beams and plates.  Allik and Hughes [3], presented a tetrahedral finite element for a 
three dimensional electroelasticity.  Based on this model Tzou [4], proposed a 
method for solving isotropic plate using isoparametric hexahedron solid element. 
 
Benjeddou et. al [5], presented theoretical formulation and finite element 
implementation of adaptive un-symmetric sandwich beams to deal with either 
extension or shear actuation mechanism for both static and dynamic analysis of 
beams. Shear actuators correspond to an elastic core sandwiched between two 
transversely polarized active surface layers, whereas extension actuators consist of 
an axially polarized core, sandwiched between two elastic surface layers. Vibration 
modes were found to be equivalent in both mechanisms, but shear actuators were 
found to be less deformed than extension ones. Their results defined features shear 
actuation mechanism over the conventional extension actuation mechanism, 
particularly for brittle piezo-ceramics.  



144 SM  Proceedings of the 15
th
 Int. AMME Conference, 29-31 May, 2012 

  

Han et. al [6], proposed a refined finite element model which can effectively describe 
the variable in-plane displacements and stepped geometry. They concluded that the 
developed finite element computer program can effectively predict the 
characteristics of composite beams with a bonded piezo-ceramic actuator. 

 
Clinton et. al [7], developed finite element model with two node Hermatian element 
and layer-wise nodes to get the static response of a smart beam with of n-layers. 
They deduced the following: (i) the linearity between tip displacements and the 
applied voltage of piezoelectric beam might not necessarily hold for other structural 
configurations with different properties and boundary conditions, (ii) as the substrate 
stiffness decreases the obtained actuation increases, (iii) the actuator positioning 
near the fixed end of a cantilever produces greater effect on the curvature, (iv) as 
the number of actuators increases the deflection and curvature increases. 
 
Aldraihem and Khdeir [8] formulated and developed analytical models and exact 
solutions for beams with thickness-shear and extension piezoelectric actuators. 
Based on the first-order beam theory (FOBT) and higher-order beam theory (HOBT). 
They concluded that: (i) the obtained deflections from FOBT and HOBT are slight 
different for extension-mode actuator, and pronounced difference for shear-mode 
actuators. (ii) the obtained deflection for cantilever beam using HOBT is 27% greater 
than that of the FOBT however, the pattern of the deflection curves is the same. iii) 
the FOBT is very sensitive to the value of the shear correction factor k, for k=2/3, the 
tip deflection of a cantilever beam computed by the FOBT matches that computed 
by the HOBT.  Iv) interesting results are obtained for clamped - clamped beam with 
shear-mode actuator, unlike the extension-mode actuator which cannot produce 
bending deflection in the clamped - clamped beam.  
 
Khdeir and Osama [9] developed analytical solution for static analysis of smart 
beams with extension and shear mode actuators. They used the state-space 
concept in conjunction with the Jordan canonical form by making use of Heaviside 
discontinuity functions. They studied the effects of actuator length and location on 
the deflected shapes of the two structures. Their results showed good agreement 
with the extension mode actuators, but indicated for shear mode actuator. 
  
Krommer [10], presented a simple Bernoulli–Euler type beam theory for smart 
piezoelectric composite beams. He formulated a purely mechanical beam theory 
taking into account the coupling to the electric field by means of the direct 
piezoelectric effect. His calculations showed the accuracy of one-dimensional theory 
in comparable to the two-dimensional finite element. 
 
Vel and Baillargeon [11], proposed model using piezoelectric shear 
actuators/sensors where the electric field is applied perpendicular to the direction of 
polarization to cause shear deformation of the material. They presented exact 
analysis and active vibration suppression of piezoelectric laminated composite 
plates. In addition, experimental and finite element for active vibration suppression 
of a sandwich cantilever beams using piezoelectric shear actuators.  Their finite 
element simulations showed good comparison with the experimental results. 
 
Trindade and Maio [12], reported studies for using thickness-shear piezoelectric 
patches connected to resistive shunt circuits for the passive vibration control of 
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sandwich beams. They developed theoretical and finite element formulations to 
evaluate the vibration damping performance. The obtained results for cantilever 
beam with shear piezoelectric patch connected to resistive shunt circuit gave a 
reduction up to 15 dB in resonant vibration amplitude of the third mode. 

  
Yeilaghi et. al [13], developed finite element model based on the Euler-Bernoulli 
theory to study the shape and vibration control of the function graded materials 
beam with piezoelectric materials using new feedback control algorithm. Their 
results showed the effects of volume fraction on the shape and vibration of the 
beam. Furthermore, it is observed that the natural frequencies and peak responses 
can be controlled by the displacement control gain, and active damping can be 
provided by adjusting the velocity control gain. 
 
Q. Wang et al [14], provide a basic mechanics model for the flexural analysis of a 
sandwich beam coupled with a piezoelectric layer. Their model is based on the Euler 
beam model for a long and thin beam structure, together with the electric potential 
satisfying the surface free charge condition for free vibration analysis. They 
concluded that the dynamic characteristics of the entire structure are related to the 
position of the piezoelectric layer. They investigated how the mode shape 
distribution of the electric potential in the piezoelectric layer in the longitudinal 
direction is related to the transverse displacement, and they concluded that the 
distribution of electric potential obtained serves as a guide for selecting the trial 
function for the mode shapes of the electric potential required in numerical methods 
for coupled piezoelectric structures. 
 
In the present work, a finite element model is developed based on a simple higher 
order shear deformation theory made by Reddy [15]. The model represents the 
parabolic distribution of transverse shear stresses and the non-linearity of in-plane 
displacements across the thickness. The model is able to compute static and 
dynamic responses of laminated composite structures with distributed piezoelectric 
actuators. 
 

 
THEORETICAL FORMULATION 
 
 

 

                        
Figure (1): Un-deformed and Deformed cross section [16]. 
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The displacements field equations of the beam are presented as [17]: 
 

( ) ( )
3

2

1 2 3( , ) ( ) ( ) ( )φ ψ φ
   

= + + + + +      

dw dwzu x z u x z c c x c z x c x
hdx dx

o o
 (1) a 

 

( , ) 0v x z =  (1) b 

( , ) ( )
o

w x z w x=  (1) c 

                                                                                            
 

where ,,vu  and w  are the displacements field equations along the ,, yx  and z  

coordinates, respectively, 0u and ow   denote the displacements of a point ( , ,0)x y  at 

the mid plane, and ( )φ x  and ( )ψ x  are the rotation angles of the cross-section as 

shown in Figure 1. Selecting the constant values of Eqn. (1) a as:
 

( )1 2 3
40, 1 0

3
c c c c h= = = = −
o

. The displacements field equations for the 

simple higher order shear deformation theory, made by Reddy, at any point through 
the thickness can be expressed by [15]: 
 

3

2

4
( , , ) ( )

3
φ φ

∂ 
= + − + ∂ 

x x

w
u x y z u x z z

h x
o

 

  ( , , ) 0v x y z =  

 ( , , ) ( )w x y z w x=
o

 

(2) 

 

The Reddy’s displacements field accounts for a parabolic distribution of the shear 
strain and the non linearity of in-plane displacements across the thickness and thus 
does not involve the shear correction factor.  
 
For a one-dimensional beam, the width in the y-direction is stress free, and from the 

plane stress assumption the remaining strains components are xxε and xzγ    which are 

represented by: 
 

( ) ( ) ( )

2
3 3

22 2

( , ) 4
( , , )

3

x x
xx x x x

u x z u w
x y z z z z z

x x x h x x

φ φ
ε ε κ κ

 ∂ ∂∂ ∂ ∂
≡ = + − + = + + ∂ ∂ ∂ ∂ ∂ 

o o
 (3) a 

( ) ( )
2 2

22

( , , ) ( , , ) 4
( , , )xz x x xz xz

w x y z u x y z w w
x y z z z

x z h x x
γ φ φ γ κ

∂ ∂ ∂ ∂ 
≡ + = − + + = + ∂ ∂ ∂ ∂ 

o
 (3) b 

  

where; 

( )x

u

x
ε

∂
=

∂o
, ( ) xxz

w

x
γ φ

∂
= +

∂o
, ( )

x

x
x

φ
κ

∂
=

∂o
 (4) a 

( ) 








∂

∂
+

∂

∂
−=

2

2

12
x

w

x
gk x

x

φ
  ,  ( ) 






∂

∂
+−=

x

w
gk xxz φ22  (4) b 

 

and 
21

3

4

h
g = , 

22

4

h
g = , ( )x

ε
o

 is the reference surface extensional strain in the x-

direction, ( )xz
γ
o

 is the in-plane shear strain , ( )x
κ

o
 and ( )2 x

κ  are the reference surface 

curvatures in the x-direction, ( )2 xz
κ  is the reference surface curvature in the z-

direction. Thus the strains components
xx

ε , and 
xz

γ  can be expressed as: 



147 SM  Proceedings of the 15
th
 Int. AMME Conference, 29-31 May, 2012 

  

 

( ) ( ) ( )

( ) ( )

3

2

2

2

( , , )

( , , )

xx x x x

xz xz xz

x y z z z

x y z z

ε ε κ κ

γ γ κ

= + +

= +

o o

o

 (5) 

 
 
PIEZOELECTRIC CONSTIUTIVE RELATIONS 
 

The piezoelectric constitutive equations are given by [18-19]: 
 

kkijklijklij Eec −= εσ
 

(6) 

                                                                                                              

k

s

ikklikli EeD εε +=
 

(7) 
 

 where, 6,..,1, =ji  and 3,..,1=k .  
 

In the present model the piezoelectric element is considered as isotropic material 
prior to the poling. But it behaves as transversely isotropic after the poling process. 
That is the 1-2 plane is isotropic, while the 3rd direction has properties different from 

the other two. For a th
k  layer. The plane stress approximation is made by setting 

033 =σ , and the strain 33ε  is eliminated from Eqns. (6) and (7), the  constitutive  

relations can be written in a matrix form for a material having orthorhombic mm
2
 

symmetry including piezoelectric effect as follows [20]: 
 

k

kkkk

E

E

E

e

e

e

e

Q

Q

Q

QQ

QQ







































′

′

′

′

−

















































=



























3

2

1

15

24

32

31

12

13

23

22

11

66

55

44

2212

1211

12

13

23

22

11

000

00

00

00

00

0000

0000

0000

000

000

ε

ε

ε

ε

ε

σ

σ

σ

σ

σ

 (8) 

       

kk

s

s

s

k

kk
E

E

E

ee

e

e

D

D

D

































′

′

′

+











































′′

′

′

=
















3

2

1

33

22

11

12

13

23

22

11

3231

24

15

3

2

1

00

00

00

000

0000

0000

ε

ε

ε

ε

ε

ε

ε

ε

 (9) 

 

where;{ }D is the electric displacement vector (C/m
2
),{ }ε strain vector,[ ]ε s is the 

dielectric matrix at constant mechanical strain (F/m), { }E  is the electric field vector 

(V/m),{ }σ is the stress vector (N/m
2
) and [ ]Q  is the elasticity matrix for a constant 

electric field (N/m
2
). 

  

and,      ;33

33

13
3131 e

c

c
ee −=′    ;33

33

23

3232 e
c

c
ee −=′   ;2424 ee =′   ;1515 ee =′  (10) a 
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;1111

ss εε =′            ;2222 εε =′s         
33

2

33
3333

c

es +=′ εε  ; 

 

where,  ijc  are the elastic coefficients given in Appendix A [21]. 

 

The reduced stiffness coefficients ijQ   related to the engineering constants for two 

cases as follows [16]: 
 
Case I: Isotropic Beam: 
 

22211
1 ν−

==
E

QQ
kk        

212
1 ν

ν

−
=

E
Q

k       GQQQ
kkk === 665544  (10) b 

 

Where; E  , and ν  are the isotropic material properties. 
 
Case II: Anisotropic Beam: 
 

kk

k

k E
Q

2112

1

11
1 υυ−

=     
kk

kk

k E
Q

2112

212

12
1 υυ

υ

−
=    

kk

k

k E
Q

2112

2

22
1 υυ−

=  

 

2344 GQ
k =              kk

GQ 1355 =             kk
GQ 1266 =  

(10) c 

 

The electric field components are related to the electrostatic potential ϕ  by the 

equation [22]: 
 

kkE ,ϕ−=  (11) 
 

The transformation of Eqns. (8) and (9) can be written as [16]: 
 

kz

y

x

kk
xy

xz

yz

yy

xx

kk
xy

xz

yz

yy

xx

E

E

E

e

ee

ee

e

e

QQQ
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
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





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













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



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−


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


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
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
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
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
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
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


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




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


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




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




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2515

2414
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262221
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0
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γ

γ

γ

ε

ε

σ

σ

σ

σ

σ
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kz
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zz
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s
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γ

γ

γ

ε
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000
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363231

2524

1514

 (13) 

 

where ijQ  and ije  are the transformed reduced stiffness coefficients, and 

piezoelectric modules, respectively given in Appendix A.    
 

In the proposed model the following assumptions are used: (1) the width in y 
direction is stress free and a plane stress assumption is used. Therefore, it is 
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possible to set 0===== xyyzxyyzyy γγσσσ , and  0≠yyε  in Eqn. (12) [8],  (2) the 

polarization axis z is aligned with the thickness direction of the beam, thus only  zD  

in Eqn. (13) is taken into consideration. Thus the constitutive relations Eqn. (12) and 
Eqn. (13) are reduced to: 
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where; the coefficients in Eqn. (14) are given by: 
 

Case I: Isotropic Beam: 
 

EQ =11

~
            GQ =55

~
        , and         ijij QQ =  (15) a 

  
Case II: Anisotropic Beam: 
 

22

1212
1111

~
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QQ
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24
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5555

~
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e

e
QQ −=  (15) b 

 

And the piezoelectric coefficients are given by:  
 

22

3232~
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ees
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zz += εε      
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12
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By introducing the electric field zE  applied across the thickness of the piezoelectric 

layers and the other components of the electric fields are zero. And the shear 

piezoelectric effect 15e  and the axial electric permittivity 
s

11ε  are neglected. Therefore 

the constitutive relation, Eqs. (14) is simplified as follows: 
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ENERGY FORMULATION 
 
The kinetic energy of the structure system is given by [23]: 
 

[ ]dvwuT
v

∫ += 22

2

1
&&ρ  (17) 

 

where, ρ  is the mass density of the beam material. 
 

The work done due to external mechanical and electrical loads is represented by 
[23]: 
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a dSwPwdxfudxfW σϕ  (18) 

                                                                

where;
 af

 
and

 tf
  
are the transversal and axial forces along the length L , respectively.  

iP   is the concentrated force at point i  and  iw  is the corresponding generalized 

displacement, σ  (C/m
2
)  is the surface charge density and ϕ  is the electric potential 

(volt) applied to the piezoelectric surface areas 1S .    

 
Thus the internal strain energy for the structure system U  is the sum of internal 

strain energy Û , and the electric field potential energy eU  such as [20]: 
 

( )dvUUU
v

e∫ += ˆ
2

1
 (19) 

   Thus;                                                                 

( ) ( )[ ]dvEDU
v

zzxzxzxxxx∫ −+= γσεσ
2

1
 (20) 

 
Case I: Isotropic Beam: 
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v
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By substituting Eqns. (3)a  and (3)b into Eqn. (21) b, one can obtain: 
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Case II: Anisotropic Beam: 
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By substituting Eqns. (3) a and (3) b into Eqn. (23) b, one can obtain: 
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FINITE ELEMENT FORMULATION 
 

 
 

Figure (2): Nodal degrees of freedoms of the element. 
 
 

The axial displacement at the mid-plane 0u   is expressed as the following: 
 

0
2

0
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=
∂

∂

x

u
 (25) 

                                                                                                                                 

By solving the previous equation and imposing the boundary conditions, the axial 
displacement can be represented as: 
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where the Linear interpolation shape functions jψ   have the form [24]: 
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L

x
−= 11ξ  ,  and  

L

x
=2ξ  (27) 

 

The transversal displacement 0w at the mid-plane is represented as: 
 

0
4

0

4

=
∂

∂

x

w
 (28) 

 

By solving the above equation and applying the boundary conditions to determine 

the unknown constants, the transversal displacement 0w  at the mid-plane can be 

expressed in terms of the nodal displacement as: 
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The Hermit cubic shape functions ξ j  have the form [24]: 
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The rotation angle of the normal to the mid-plane about the y axis 
x

φ  is represented 

by: 

0
2

2

=
∂

∂

x

xφ
 (31) 

 
Similarly; by solving Eqn. (31) and applying the boundary conditions the rotation 
angle is given by: 
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where the Linear interpolation shape functions jψ  have the form [24]:  

 

      
L

x
−= 11ψ  ,  and  

L

x
=2ψ  (33) 

 

In the proposed model the electric potential is considered as a function of the 
thickness and the length of the beam [23]. In case of the electric potential is function 
of the length, it can be represented by [25]: 
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And in case the electric potential is function of the thickness of the beam, it can be 
given as [25]: 
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where,                                                                                                                        
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 (37)   

 

Thus by the product of equations (35) and (37) and impose the homogenous 
boundary condition on the bottom surface to eliminate the rigid body modes. Thus 
the electric potential can be written as [23]: 
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And the shape functions are finally takes the form [23]: 
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VARIATIONAL FORMULATION 
 
By applying the principle of the virtual displacements to a representative physical 
element of the beam, thus: 
 

TWU δδδ +=  (40) 
                                                                                                       

By substituting Eqn. (2) into the kinetic energy Eqn. (17) yields: 
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The first variation of the kinetic energy Eqn. (41) is expressed as: 
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Thus the elements of the mass matrix can be expressed as: 
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By substituting the shape functions equations (26), (29), and (32) into Eqn. (43) yield 
the mass matrix of the beam element.   
 
The first variation of the external work equation (18) takes the form: 
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By substituting the displacements Eqn (2) in Eqn.(44) yields; 
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By substituting the shape functions equations (26), (29), (32) and (38) into Eqn. (45) 
and perform the integration over the length of the beam yields the element load 
vector.    
 
Case I: Isotropic Beam: 

The first variation of the strain energy equation (22) takes the form: 
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Thus the element of the stiffness matrix can be given as: 
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By substituting the shape functions equations (26), (29), (32) and (38) into Eqn. (47) 
and perform the integration over the beam volume yields the element stiffness 
matrix for isotropic beam.   
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Case II: Anisotropic Beam: 
 
The first variation of the strain energy equation (24) takes the form: 
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Thus the element of the stiffness matrix can be given as: 
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Known that , 11A  and  55A  are the extensional stiffness,  11B  is the bending stiffness, 

11D and 55D  are the bending stiffness,  11E  is the warping extension stiffness, 11F  

and 55F  are the warping bending stiffness, and 11H  is the higher order warping 

bending coupling stiffness and given by [15]: 
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Where;  k   is the layer number. The distance h  is taken from the middle surface of 

the laminate to the outer and inner surfaces of the  
th

k   lamina. 
 
By substituting the shape functions equations (26), (29), (32) and (38) into Eqn. (49) 
and perform the integration over the beam with length L, width b, and height h yields 
the element stiffness matrix for anisotropic beam.    
 
 
EQUATION OF MOTION    
 
The equation of motion of the whole structure system is represented by: 
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where uuM  is the global mass matrix of the structure and{ }q  is the global nodal 

generalized displacements coordinates vector, { }ϕ  is the global nodal generalized 

electric coordinates vector describing the applied voltages at the actuators [20-23], 

{ }F  is the applied mechanical load vector, and { }G  is the electric excitation vector. 

In case of the piezoelectric layer working as sensor, the electric excitation applied to 
the sensor layer is zero ( 0=G ), the voltage from the sensor layer can be written as: 
 

{ } [ ] [ ]{ }qKK qϕϕϕϕ 1−
−=  (52) 

 
 
VALIDATION EXAMPLES 
 
In the present study, a MATLAB code is constructed to perform the finite element 
analysis of isotropic and orthotropic smart beams with piezoelectric materials using a 
simple higher order shear deformation theory. The static deformation and the 
fundamental natural frequency are calculated for beams subjected to different kinds 
of mechanical and electrical loads. 
 
The geometry of the smart beam, structure substrate, adhesive layer, and 
piezoelectric layer are shown in Figure 3. The length and width of the beam are L = 

0.1524 m, 2
2.54 10b m

−= ×  respectively.  The thicknesses of the substrate, PZT and 

adhesive are h =0.01524 m, 31.524 10ph m
−= × , 3

0.254 10
a

h m
−= × , respectively. 

 
Model Convergences 
 
The convergence of the present model is checked for a given beam with the material 
properties given in Table (1) for the beam substrate, adhesive and piezoelectric 
layers. A constant electric potential of 12.5 k-volts was applied on the upper surface 
of the PZT-4 layer, while the lower surface was grounded. 
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Figure 3: Smart Beam with PZT layer. 

 

Table 1: Material properties of the smart structure. 
 

Property Aluminum Adhesive 

Young modulus 70.3E GPa=  6.9E GPa=  

Shear modulus 27.6G GPa=  2.46G GPa=  

Poisson ratio 0.345v =  0.4v =  

Density 32769 /kg mρ =  31662 /kg mρ =  

Piezoelectric  

 Stiffness coefficient  11Q   13.9 10
10

 Pa  

 Stiffness coefficient 12Q   7.78 10
10

 .Pa  

 Stiffness coefficient  33Q  11.5 10
10

 .Pa  

 Stiffness coefficient  13Q  7.43 10
10

 .Pa  

 Stiffness coefficient  44Q   2.56 10
10

 .Pa  

 Piezoelectric constant  31e     -5 2/ mC  

 Piezoelectric constant 33e   15 2/ mC   

 Piezoelectric constant  s

33ε    
5.6198 10

-9
 

mF /  

 Density   ρ    7600 3/ mkg   
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a
h h 
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Figure 4 shows the effect of number of elements on the transverse displacement of 
an aluminum beam with piezoelectric actuator. The beam is composed of two layers 
of aluminum, one layer of adhesive and one layer of PZT-4 actuator. It can be seen 
that the transverse deflection reduces until it reaches an asymptotic value at 
reasonable number of elements which proves convergence of the finite element 
solution. 
 

 

Figure 4: Effect of number of elements on the transverse displacement of 
            Aluminum beam with piezoelectric actuator. 

 

Case I: Isotropic Beam 
 
Static validation 
The transverse displacements obtained by the proposed model for cantilever beam 
composed of two layers of aluminum, and one layer of adhesive, and one layer of 
piezoelectric actuators are given in Figure (4) and compared with the results given in 
references [23-26-27].  
 
The predicted mid-span deflection of cantilever beam shown in Table 2 is compared 
with other references as shown in Table 2. The obtained results are found almost 
identical however the Sarvano and Heyliger model [26] was based on layer wise 
method, and Elshafei and Bendary [33], whose models were based on the classical 
beam theory and Chee model [27] developed his model based on the third-order 
beam theory. 
 
The difference between the static deflection calculated with Sar/Hey [26], and Chee 
[27] are found to be 8.2 % and 1.03 %, respectively.  
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Figure 4: Transverse deflection of cantilever beam. 
 
 

Table 2: mid-span deflection (mm) of cantilever beam. 
 

References Ref. 
[23] 

Ref. 
[26] 

Ref. [27] Present 
Model 

Mid-span deflection 0.093 0.089 0.094 0.0937 

 

The effect of the applied voltage on the transverse displacement of the aluminum 
beam is shown in Figure 5. It is seen that as the voltage increases, the transverse 
displacement linearly increases. 
 
Figure 5 presents the effect of the applied voltage on the transverse displacement of 
the aluminum beam. It is seen that as the voltage increases, the transverse 
displacement increases almost linearly. 
 
Figure 6 presents the effect of applied voltages with different values on the 
transverse displacement of an aluminum beam with PZT-4 actuator under clamped-
free boundary conditions. It is shown that as the voltage increases the transverse 
displacement increases. 
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Figure 5: Applied voltage vs. transverse displacement. 

 

 

           Figure 6: The effect of applied voltage value on transverse displacement. 
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Dynamic validation 
Table 3 shows the first four natural frequencies (Hz) obtained by the proposed 
model compared with the results given in reference [26] for cantilever beam 
composed of two layers of aluminum, one layer of adhesive and one layer of PZT-4 
actuator with material properties shown in Table 1. The obtained results are 
computed for different number of elements. 
 
 

Table 3: First four natural frequencies (Hz) of aluminum beam compared with 
Ref.[26]. 

 

Mode No of elements Present Model Reference [26] 

1 10 556 567.1 

 20 555 544.2 

 30 555 544.1 

2 10 3425 3287 

 20 3419 3242 

 30 3413 3232 

3 10 7635 7254 

 20 7629 7616 

 30 7628 7614 

4 10 9545 8976 

 20 9327 8496 

 30 9288 8428 

 
 
The difference between the first three natural frequencies Table 3 was 1.94 %, 5.17 
%, 0.17 %, respectively.    
 
Case II: orthotropic Beam  
 
Static Validation 
The static deflection is performed for laminated graphite epoxy composite beam with 

the following material properties: 80.1441 =E  GPa, 65.92 =E  GPa, 14.412 =G  GPa,  

3.012 =γ   and 3/23.1389 mKg=ρ .  

 
The effect of ply-orientation angle on the transverse displacement of cantilever 
graphite epoxy composite beams with PZT-4 given in Table 1 is shown in Figure 7.  
A constant electric potential of 500 volt was applied and the number of twenty 
elements is taken for this example. Results are reported.  
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Figure 7: Effect of ply-orientation angle on smart orthotropic beams with PZT. 
 

 
Dynamic Validation 
The free vibration validation is performed for a graphite/epoxy cantilever beam of [0/ 
90] stacking sequences for beam with various types of piezoelectric materials with 
properties shown in Table (4). The first three natural frequencies (Hz) for the beams 
are given in Table (5). 
 

Table (4). Piezoelectric Characteristics. 

Property PZT-2 PZT-5A PZT-8A PZT-5H 

11Q  .1010
Pa   13.5 12.1 14.9 12.6 

12Q  .1010
Pa  6.79 7.54 8.11 7.95 

33Q  .1010
Pa  11.3 11.1 13.2 11.7 

13Q  .1010
Pa  6.81 7.52 8.11 8.41 

44Q  .1010
Pa  2.22 2.11 3.13 2.3 

31e   2/ mC  -1.86 -5.4 -4.1 -6.55 

33e   2/ mC  9 15.8 14 23.3 

33
/sε ε

o
 260 830 600 1470 

ρ  3/ mkg  7600 7750 7600 7500 

where;  
2

12

2
8.85 10

c

N m
ε −  

= ∗  
− 

o
 



166 SM  Proceedings of the 15
th
 Int. AMME Conference, 29-31 May, 2012 

  

 
Table (5) Effect the type of PZT-Material on natural frequency.  

 

Type of Material  First Mode Second Mode Third Mode 

PZT-2 560 3450 7661 

PZT-5A 535 3294 7499 

PZT-8A 562 3464 7675 

PZT-5H 533 3285 7491 

 
 
CONCLUSION 
 
A finite element model was proposed to predict the static and the free vibration 
characteristics of laminated aluminum and fiber reinforced composite beams with 
piezoelectric materials using a simple higher order shear deformation theory made 
by Reddy. The following conclusions have been drawn: 

 
1. The good agreement was found between the present model predictions using 

a simple higher order shear deformation theory, and the corresponding 
predicted results of other investigators using Euler-Bernoulli’s beam theory, 
layer wise theory with different models, and HODT modeling, proved the 
predictive capabilities of such model with less computational effort. 

2.   The developed displacements model can explain the parabolic distribution of 
the transverse shear stresses as an advantage over the classical laminated 
theory which neglects the effects of transverse shear stresses.   

3.   The proposed model using Reedy method did not suffer from the shear 
correction factors which are problematic in the first order shear deformation 
theory.  

4. The number of degrees of freedom of the element in the present model is one 
third of the number of degrees of freedom of the element in the model 
developed by the higher order shear deformation theory, which, of course, 
save the computational time.  

5. The validity of representing the electric potential shape function at each node 
as a function of the thickness and the length of the beam in the proposed 
finite element model using the Reddy theory. 

6. The proposed finite element model results were obtained at resizable number 
of elements 

7. As the applied voltage increases, both the transverse and axial displacements 
increase, respectively. 

8. As the number of layers increases, the transverse deflection and the natural 
frequencies decrease. 

9. The types of the piezoelectric materials affect the obtained natural 
frequencies of the beams.  

10. The model can be extended to the following: 
(a) Studying the forced vibration analysis for both mechanical and 

electrical loads applied to the beams using the same theory.  
(b) Taking into account the geometric nonlinearities in the finite element 

model which may improve the obtained results. 
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The elastic coefficients ijc  are given by [21]: 
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  where;  2344 Gc =                3155 Gc =                  1266 Gc =         
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The transformed reduced stiffness coefficients ijQ  are represented by [14]: 
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The transformed piezoelectric modules ije .  And the transformed dielectric oefficients 
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