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Abstract: 
 
A mathematical model and numerical simulations of the new shear-driven micro-fluidic pump 
concept is presented. The flow of the Newtonian and shear-thinning non-Newtonian fluid in 
plane 2D geometry, micro-channel, or pipe is achieved by oscillatory motion of the channel 
walls. The oscillatory flow for finite 2D geometry and ramp quasi-periodic boundary conditions 
is presented resulting in positive flow rate for Newtonian and some rheological fluids. Various 
layouts of the oscillatory motive plates can be achieved. Such micro-fluidic pumps can be 
easily arranged in a serial or parallel layout to deliver desired flow rates and/or efforts. 
Proposed shear-driven micro-fluidic pump can find variety of applications in supporting blood 
flow in vascular channels, MEMS fluidic systems, nanotechnology, food processing, 
automotive industry, etc. 
 
Keywords: 

Micro-fluidic pump, MEMS, Stokes 2nd problem, Oscillatory flow, Fourier decomposition, 
Numerical finite-difference method, Boundary layer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Proceeding of the 14th AMME Conference, 25 -27 May 2010 Paper   MP  - 9 2 
 

 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
* Aviation Department, Minnesota State University, Mankato, MN 56001, USA 

** Mech. Eng. Department, Minnesota State University, Mankato, MN 56001, USA 
 
1. Introduction: 
 
A large number of scientific literatures have been devoted to the topic of the Stokes’ 2nd 
problem. A classical Stokes’ 2nd problem represents one of the very few known exact 
solutions of the Navier-Stokes (NS) equations.  
 
 
A harmonically oscillating infinite flat plate sets the semi-infinite fluid in motion, which after the 
initial transients dies out settles into steady-state oscillatory flow. The exact solutions of the 
classical Stokes’s 2nd problem can be found, for e.g., in books by Lamb [1], Schlichting [2], 
and Batchelor [3]. This problem is very similar to the celebrated Kelvin’s problem of 
penetration of harmonically induced temperature waves in a semi-infinite medium as shown 
in classical text by Carslaw and Jaeger [4]. 
 
In recent years, the topic of Stokes’ 2nd problem regained attention due to the possible 
application in MEMS, nanotechnology, etc. Article by Panton [5], and more recently by 
Erdogan [6], Khaled and Vafai [7], and Muzychka et al. [8], was discussing various analytical 
solutions of the Stokes’ 1st and 2nd problem and Couette flow in general. These solutions 
were mostly concerned with the transient and steady-state velocity distribution of a 
Newtonian fluid in a semi-infinite domain, with and without slip condition and for various 
harmonic excitations. Ai and Vafai [9] numerically solved nonlinear Stokes’s 2nd problem 
using several models of non-Newtonian (rheological) fluids.  
 
Recently, a micro-axial blood pump model was presented by Triep, et al. [10].  Their design 
requires expensive and complicated micro-fabrication. On the other hand, our primary 
interest is on how to implement the theory of oscillatory, shear-driven, fluid flow for a design 
of a practical inexpensive micro-fluidic pump for blood flow and other applications. A 
harmonic excitation Stokes’ 2nd problem results in a zero net flow for Newtonian fluid. A non-
Newtonian fluid may experience small drift due to nonlinear coupling between shear rate, 
shear stress and viscosity. Using harmonic wall excitations basically is useless for any 
practical pump design as the fluid only oscillates back and forth. Therefore, in our study we 
use oscillatory non-harmonic excitation of one or more channel walls. This approach resulted 
in a positive flow rate and practical design of a shear-driven micro-fluidic pump. Simple 
mechanisms can be designed to induce various periodic, yet non-harmonic oscillations. A 
Fourier analysis is used to decompose such periodic motion in various harmonics.      
 
We are solving nonlinear diffusion-type oscillatory boundary-layer equation for periodic 
vibrations on one or both side-walls to simulate our 2D micro-fluidic pump. The shear stress 
produced by oscillating flow generates heat which is accounted for as a Rayleigh dissipation-
function heat source in the thermal-energy diffusion equation. Conservative explicit and 
implicit Crank-Nicolson finite-difference methods [11-15] are used to solve the differential 
conservation equations for mass, linear momentum, and energy. Here, we only present 
simple Power-Law shear-thinning model of blood flow. The results of other blood-models, 
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such as Casson or Quamada [9,16] will be shown elsewhere. Besides numerical efforts, 
many closed-form analytical solutions (not shown here) have been obtained for the 
Newtonian fluids and periodic boundary conditions using Eigenfunction expansion, Laplace 
and Fourier integral transform, and Duhamel’s principle. We used Fourier decomposition of 
the ramp function governing the wall motion. Using the same Fourier methodology various 
oscillatory boundary conditions (BC) could be applied to obtain various flow patterns and 
positive flow rates. 
 
2.Mathematical Model: 
 
We are starting from the general, time-dependent, compressible, 2D, boundary-layer (BL) 
equations [2,17], describing mass, linear momentum and energy conservation: 
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In addition, we need to specify the equation-of-state, which for incompressible liquid (blood) 
will simply imply constant density. We neglected body forces. Dynamic viscosity for a general 
non-Newtonian fluid can be a function of temperature. Appropriate BC and IC have to be 
specified for a given flow geometry. However, the mathematical model can be significantly 
simplified by assuming incompressible 1-D flow ( 0v ), small Reynolds number (convective 

terms negligible) and the pressure gradient is zero; 0 ixp . In this case, the nonlinear 

coupled model of incompressible oscillatory flow controlled by diffusion of viscosity and 
thermal diffusivity becomes: 
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The Dirichlet BCs are given for the velocity and temperature at finite and one infinite 
boundary; h . In the case of one semi-infinite domain with one plate oscillating, we obtain 

the celebrated Stokes 2nd problem. If the other plate is located at a finite, but small distance, 
h , and is moving with the constant speed, starting from the rest, while the lower plate is 

immovable, we arrive to the well-known Couette flow.  Our mathematical model is capable of 
dealing with the several limiting cases of the general problem: stationary, harmonic, and 
general periodic oscillations of one or both plates (vibrating walls), as well as, use of 
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Newtonian or non-Newtonian fluids.  
 

The Rayleigh dissipation function  jiij xu  '
 
describes the rate at which the deviatoric 

stresses do irreversible work in the fluid. This work then appears as a volumetric heat source 
in the energy equation. The two-sided coupling between momentum and energy equation 
could be obtained by demanding that the dynamic viscosity is a function of temperature.  
 
In the case of Newtonian fluid, the shear stress is a linear function of the velocity gradient: 
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We are using power-law or Ostwald-de Waele [9,16-17] rheological model for shear-thinning 
non-Newtonian blood model only. In this model, the dynamic viscosity is a function of the 
generalized shear rate: 
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Here, K  is the consistency coefficient and n  is the power-law index assumed to be constant 

over the total range. Obviously, for 1n , we will have shear-thinning or pseudo-plastic 

behavior (soft-spring effect), while for 1n , the fluid will show shear-thickening or dilatant-

fluid behavior (hard-spring effect). For, 1n , the fluid is pure Newtonian in which the dynamic 

viscosity is independent of the shear rate, while the shear stress is linearly proportional to the 
shear rate (velocity gradient). 
 
We have mentioned earlier that the Dirichlet BCs could be or zero, constant, harmonic, or 
general periodic function. One of the main features and contributions of this work is the 
introduction of the ramp BCs on one or both plates. As is well known from the classical 
Stokes 2nd problem and the Kelvin’s solution of penetration of the temperature waves into soil 
[4], the lower disturbance frequencies will affect the oscillatory flow to a higher depth than the 
higher frequencies which dissipate in shorter distance. In addition, a pure harmonic motion 
(sine or cosine) really does not induce any mean motion other than for a small drift that could 
exist due to the nonlinear fluid properties. The unity ramp function for the plate excitation 
velocity is sketched in Fig. 1. The Fourier expansion of the ramp function is: 
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The plate acceleration, b , in a generalized ramp function   bttf   is constant (slope of the 

uphill straight line) and accordingly the velocity is a linear function of time. The distance 

covered during one period is simply, 22bTs  . 
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Figure (1): 2D channel with oscillating wall plates and graph of ramp excitation 
 
3. Numerical Method: 
 
A forward time central space (FTCS), yet stable, explicit (Euler) finite-difference discretization 
scheme was used to calculate nonlinear and coupled velocity and temperature distribution in 
finite and semi-infinite flow domains [11-15]. Although not unconditionally stable as implicit 
methods, the ease of programming and execution on today’s fast computers was the 
deciding factor. We are not showing implicit fully-conservative control-volume approach here. 
The discretization equations for explicit velocity and temperature fields are thus given here 
as:  
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Note that the index n  stands for the power-law index, while m  is time step index. Also, if we 

set index 1n  in Eq. (5), we obtain the classical FTCS conditionally stable Euler scheme. 

We assumed that the dynamic viscosity is not a function of temperature for this small 
temperature range and that fluid conductivity and temperature diffusivity a  also stays 

constant over the same range. 
 
4. Results and Discussion: 

 
A velocity distribution in a semi-infinite geometry for cosine harmonic oscillation of one wall 

boundary and Newtonian fluid is shown in Fig. 2. One period T  last 2 seconds ( 5.0f Hz) 

and basically all transients die out by then. The thickness of the Stokes’ penetration layer is 

about 4 mm while the maximum velocity is 01.0  m/s. In Fig. 3, we show the velocity 

distribution of the steady-state oscillations of Newtonian Fluid in semi-infinite geometry with 
the same conditions as before. As was to be expected the average flow rate or velocity is 
zero averaged over one period and hence useless for any pump design. This result also 
agrees well with the results reported in Ai and Vafai [9]. Since we are developing practical 
design it is not allowed for the oscillating plate to move with high speed and simultaneously 
low frequency (to increase penetration depth). Such a configuration would result in 
unacceptably long distance of the plate movement which is not possible in a small MEMS 
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design. We basically were restricting the linear movement of the plate to the order of 
magnitude of the channel thickness. Consequently, such pump is viable for micro-fluidic 
applications. 
 
In Fig. 4, we show side-by-side velocity distributions in a finite 2D planar channel with 
thicknesses of 5 mm for a Newtonian and non-Newtonian (power-law) blood models. One 
wall is vibrating with the perfect ramp oscillation while the other has no-slip zero boundary 
value. This arrangement can be regarded as an oscillatory Couette flow. Obviously, the flow 
is positive averaged over one cycle and due to the nature of the ideal ramp oscillation there is 
never back-flow. In a practical design it is not possible to obtain a perfect ramp-excitation, so 
little back-flow is inevitable, but due to high frequency of the plate reverse motion, this 
disturbance will not propagate very far in the fluid. This is also the main idea behind our 
micro-fluidic pump design. In addition, one can observe that power-law blood model 

( 7755.0n ) [9] shows higher positive flow rates than the corresponding Newtonian model. 

 

In Fig. 5, we show the temperature distribution in a thin 2D channel mm5h  thick with the 

initial temperature of 273 K and a fixed Dirichlet boundary temperature of 293K. In Fig. 6, we 
show side-by-side velocity distribution in a thin 2D channel, 5 mm thick, with both walls being 
excited with ramp oscillations with zero phase difference for Newtonian and non-Newtonian 
blood-fluid models. Again, due to the nonlinear nature of the shear rate, shear stress, and the 
dynamic viscosity, the flow rate of the non-Newtonian fluid is higher and more uniform over 
the entire cross section than Newtonian. 

 
Figure (2): Transient oscillatory flow of Newtonian fluid under cosine harmonic oscillation 
of one wall in semi-infinite region. 

 



Proceeding of the 14th AMME Conference, 25 -27 May 2010 Paper   MP  - 9 7 
 

   
Figure (3): Developed steady-state oscillatory flow of Newtonian fluid under cosine 
harmonic oscillation of one wall in semi-infinite region. 

 

 
 
 

 
 
Figure (4): Velocity distribution in thin 2D channel Newtonian (RHS) and non-Newtonian 
power-law blood-model (LHS) with the ramp oscillation of a single wall. 
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Figure (5): Temperature distribution in a 2D channel for non-Newtonian blood mode and 
given Dirichlet Temperature and harmonic velocity boundary conditions on one wall. 
 
 

 
Figure (6): Velocity distribution in a 5 mm 2D channel for Newtonian (RHS) and non-
Newtonian (LHS) blood model and ramp boundary conditions on both walls. 
 
5. Conclusions: 

 
Due to its simple design and ease of micro-fabrication, the new shear-driven micro-fluidic 
pump could be used as a blood pump in cardiac support, facilitating and enabling blood flow 
in various, mostly small, vascular channels, etc. Shear stresses should be well below the 
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critical limits for blood. One can envision applications of such miniature pump for various 
other bio-medical applications, such as moving fluid in a human articular cartilage, etc. The 
proposed micro-pump could also be used in automotive industry to help start and move high-
viscous oils and other fluids in low temperatures. Also, food-processing industry could see 
benefits from its applications. A proposed pump is ideally used in micro-fluidic MEMS 
systems. The non-periodic wall oscillations delivers positive flow rate whether the fluid is 
Newtonian or non-Newtonian and unlike pure harmonic excitation which is only “wind-milling” 
the fluid. Other non-periodic wall excitation and blood rheological models will be used as well. 
Experimental techniques, such as, PIV, LDV, MRI and/or Doppler ultrasound will be used to 
measure velocity profiles and verify the fidelity of the mathematical model. 
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Nomenclatures: 
 
a  Thermal diffusivity of the fluid [m2/s] 

b  Constant acceleration of the wall plate(s) [m/s2] 

  Coefficient of thermal expansion [K-1] 

pc  Specific heat capacity at constant pressure [J kg-1 K-1]  

  Shear rate [s-1] 

f  Natural Frequency of plate oscillation [Hz] 

  Rayleigh’s dissipation function [m2/s2] 

h  Channel height [m] 

k  Thermal conductivity [W m-1 K-1] 

K  Consistency coefficient in power-law model [Pa sn] 
  Dynamic viscosity [Pa s] 

n  Power-Law index [-] 

p  Normal Stress - pressure [Pa] 

  Density [kg/m3] 

t  Time [s] 

T  Period of oscillations [s] 

T  Temperature [K] 

oT  Boundary Temperature [K] 

T  Initial Temperature [K] 

  Shear Stress [Pa] 
u  Velocity in x-dimension [m/s] 

BC  Boundary Conditions 

IC  Initial Conditions 

 


