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ABSTRACT 

 
In this paper, a finite element model has been proposed to analysis the response of  
isotropic and anisotropic beams subjected to different mechanical loads. The assumed field 
displacements of the beam are represented by simple first order deformation theory, the 
Timoshenko beam theory. The equation of motion is derived using the principle of virtual 
work. A hermit cubic shape function is used to represent the axial displacement u, the 
transverse displacement w is represented by a quadratic shape function, whereas the 

normal rotation x  is represented by a linear shape function. The shear correction factor is 

used to improve the obtained results. A MATLAB code is constructed to compute the 
natural frequency, the static deformations, and the stresses on the structure due to the 
applied loads at different boundary conditions. The obtained results of the proposed model 
are compared to the available results of other investigators, good agreement is generally 
obtained. 
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INTRODUCTION 
 

Several researchers are interested to solve the beam structures by different theories. 
Khdeir and Reddy [1] presented the solution of the governing equations for the bending of 
cross-ply laminated beams using the state-space concept in conjunction with the Jordan 
canonical form. They used the classical, the first-order, the second-order, and the third-
order beam theories in their analysis. They determined the exact solutions for symmetric 
and asymmetric cross-ply laminated beams with arbitrary boundary conditions subjected 
to arbitrary loads. They studied the effect of shear deformation, number of layers, and the 
orthotropic ratio on the static response of composite beams. They found that the effect of 
shear deformation caused large differences between the predicted deflections by the 
classical beam theory and the higher order beam theories, especially when the ratio of 
beam length to its height was low. They also deduced that the symmetric cross-ply 
stacking sequence gave a smaller response than those of asymmetric ones. In case of 
asymmetric cross-ply arrangements, they noticed for the same beam thickness that the 
beam deflection decreased with increasing the number of beam layers and the orthotropic 
ratio, respectively. 
 
Rao and Ganesan [2] investigated the harmonic response of tapered composite beams 
using a finite element model. They incorporated the uniaxial bending and Poisson’s effect 
in their formulation. The effects of the in-plane and rotary inertia were considered in the 
mass matrix. They also investigated the influence of taper profile and taper parameter on 
the transversal displacement. For the taper profile effect, they predicted for any taper 
parameter and point harmonic load acting at one-quarter span that the transversal 
displacement obtained with increasing-decreasing thickness variation was lower than that 
of a uniform beam. For other thickness variation, the transversal displacement is higher 
than that of a uniform beam. For the taper parameter effect, they deduced that the 
frequency decreases with its increase in cases of increasing-decreasing thickness 
variations and vise-verse.  
      
Yildirim, et al. [3] studied the in-plane free vibration problem of symmetric cross-ply 
laminated beams based on the transfer matrix method. They considered the rotary inertia, 
the shear, and the extensional deformation effects on the Timoshenko’s beam analysis 
which gave good results compared to other reporters for the natural frequencies 
associated with the first and higher modes.  
  
Nabi and Ganesan [4] studied the free vibration characteristics of laminated composite 
beams using a general finite element model based on a first-order deformation theory. 
The model accounted for bi-axial bending as well as torsion. Their obtained results 
explained the effect of shear-deformation on various vibration frequencies of angle ply 
laminates. Also, they studied the effect of beam geometry and boundary conditions on 
natural frequencies. They concluded that: (i) the natural frequencies decrease with the 
increase of fiber orientation angle, (ii) the non-dimensional frequency increases for all fiber 
orientations, with the increase of the beam length to height ratio, (iii) the clamped-free 
boundary conditions give the lowest natural frequency, and (iv) the shear deformations 
decrease the non-dimensional natural frequencies. 
 
Elshafei, et al. [5,6] proposed a finite element model to study the static and the free 
vibration response of isotropic and anisotropic beams subjected to axial, bending, and 
torsion loads with warping effect using the classical beam theory. They found that an 
additional node in the middle of the beam element is required to give a better twisting 
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deformation. The obtained results were in good agreement with FOBT and HOBT, 
respectively. 
       
Armanios and Badir [7] evaluated analytically the effect of elastic coupling mechanisms on 
vibration behavior of thin-walled composite beams. Their analytical results were compared 
with those of the finite element models developed by Giavotto, et al. [8] and Hagodes, et 
al. [9], and the experimental measurements obtained by Chandra and Chopra [10]. Good 
agreement was obtained between their predictions and other predicted and experimental 
results of other investigators. 
 
Chandrashekhara and Bangera [11] developed a finite element model based on a higher-
order shear deformation theory with Poisson’s effect, in-plane inertia and rotary inertia. 
They concluded that: (i) the shear deformations decrease the natural frequencies of the 
beam, (ii) the natural frequencies increase with the increase of the number of beam 
layers, (iii) the clamped-free boundary condition exhibits the lowest frequencies, (iv) the 
increase of fiber orientation angle decreases the natural frequency, and (v) the natural 
frequency decreases by increasing the material anisotropy.   
 
In the present work, a finite element model has been proposed, based on Timoshenko 
beam theory with a shear correction factor, to predict the static and dynamic responses as 
well as the stress analysis of advanced isotropic and anisotropic beams. A MATLAB code 
is constructed to compute the structure response due to different applied loads at different 
boundary conditions. 

 
THEORETICAL FORMULATION 
 

The displacements field equations of the beam are assumed as [5]: 

   
3

2

1 2 3( , ) ( ) ( ) ( ) 

dw dwzu x z u x z c c x c z x c x
hdx dx

  
   

        
   

, 
(1)a 

where  

( , ) 0v x z  , (1)b 

and  

( , ) ( )w x z w x . (1)c 

 
u ,v  and w  are the displacements field equations along the x , y  and z  coordinates, 

respectively,  0u and ow   denote the displacements of  a point ( , ,0)x y  at the mid plane, 

and ( ) x  and ( ) x  are the rotation angles of the cross-section as shown in Fig. 1. 

Selecting the constant values of Eqn. (1)a as:
 1 , 2 30, 1 0, 0   c c c c , the 

displacements field equations for Timoshenko first-order theory (FOBT) at any point 
through the thickness can be expressed as [12]: 
 

  ( , ) ( ) ( )u x z u x z x   

( , ) 0v x z                                                       

( , ) ( )w x z w x   

(2)  

 
The strain-displacement relationships obtained by differentiating the assumed 
displacements field equation, Eqn. (2), are represented by: 
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( , ) ( , )( , , )
( , , )


   

    
  

x
xx xx xx

u x z x zu x y z
x y z z z

x x x

 
   (3)a 

( , , )
( , , ) 0


 


yy

v x y z
x y z

y
   (3)b 

( , , )
( , , ) 0


 


zz

w x y z
x y z

z
   (3)c 

o0
xz x xz

dwu(x,y,z) w(x,y,z)
(x,y,z)

z x dx

 
       

 
 (3)d 

( , , ) ( , , )
( , , ) 0xy

v x y z u x y z
x y z

x y


 
  

 
   (3)e 

yz

w(x,y,z) v(x,y,z)
(x,y,z) 0

y z

 
   

 
   (3)f 

 
According to the assumptions of the first order Timoshenko beam theory 

 0      yy zz xy yz
, the only non-zero stress and strain components are xx ,

 

xz , xx ,
 xz [13]. The strains at any point through the thickness of the beam can be written 

in matrix form as:  

xx xx xx

xz xz xz

z
  

  

    
      

     

 

 

 

(4)a

 

where  

( , )
( , )





xx

u x z
x z

x

 

 

(4)b

 

( , )





 


X
xx x z

x



 

(4)c

 
and  

 

( , )     xz x xz

dw
x z

dx




 

(4)d 

 

xx 
is the reference surface extensional strain in the x-direction, xz 

 is the in-plane shear 

strain, and xx 
 is the reference surface curvature in the x-direction. 

 
 
VARIATIONAL FORMULATION 
 
The equation of motion of the structure is derived herein using the principle of minimum 
potential energy. The total potential energy of the structure, Π, is represented by [14]: 
 

WU  .

 
(5) 

 
The internal strain energy for a beam element, U, is represented by [14]: 

1
( )

2
xx xx xz xz

v

U dv     .

 
(6) 
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Case I: Isotropic beam 
The stress-strain relation is given as [15]:  

  xx xx  

 (7) 

 

  xz xz s xzG k G   

 
where sk is the shear correction factor. 

 
Substituting by Eqn. (7) into Eqn. (6) results in: 
 

    2 21
  

2
xx s xz

V

U E k G dV  
 

(8) 

 
  By inserting Eqns. (3)a and (3)d into Eqn. (6), one can obtain:  
 

   
2 2

1
  

2

 


xx xx s x

V

dw
U E z k k G dV

dx
 

    
            


 

(9) 

       
2 2 2

21
 2  2

2

   
 

xx xx xx xx s x x

V

dw dw
U E z k z k k G dV

dx dx
   

           
                

             


 
(10)a

 

Substituting by Eqn. (4)b into Eqn. (10)a, one can obtain: 
 

2 22

2 21
2  2

2

   
s x x

V

du du dw dwd d
U E zE z E k G dV

dx dx dx dx dx dx

 
 

            
                

              


 
(10)b 

 
The variation of the strain energy term U , Eqn. (10)b is expressed as: 

   

4 4

1 1

2 4 4 2

1 1 1 1

2 2
2

1 1

2

1

2

2

1
2

2

2

o io j

j i

j o jo i i

j i j i

j i

j i

j i

i

s

dudu
E

dx dx

d dudu d
Ez

dx dx dx dx

d d
U Ez

dx dx

k G



   

  


 

 

   

 



   
   
     

          
           

          

    
      

   

 

   

 

 

 

2 2 3

1 1 1

3 2 3 3

1 1 1 1

v

o i
j

j j i

o j o j o i
i

j i j i

dv

dw

dx

dw dw dw

dx dx dx







  

   

 
 
 
 
 
 
 
 
  
 
 

      
      

      
                               



   

   

 
(11)

 

 

Case II: Anisotropic Beam 
 

The stress-strain relation of a lamina in matrix notation is given in by [13,16]: 
 


























xz

xx

xz

xx

Q

Q









55

11
~

~

 
(12) 
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The complete derivation of Eqn. (12) can be seen in Appendix A. Substituting by Eqn. (4) 
into Eqn. (12) yields the stress strain relation for the lamina as: 
 

11

55

0

0

 

 

         
      

xx
xx xx

xz
xz

Q z k

Q









 

(13) 

 

The resultant forces and moments per unit length, xN and xM , acting on a lamina are 

obtained by integrating the stresses in each layer through the lamina thickness as:  
 

 

 

1

1

/ 2

/ 2
1

/ 2

/ 2
1

  

 











  
  

  
  

 

 

k

k

k

k

Nh z

x x x kh z
n

Nh z

xz xz xz kh z
n

N dz dz

N dz dz  
(14) 

 

 

 

1

1

/ 2

/ 2
1

/ 2

/ 2
1

  

 

 

 











  
  

  
  

 

 

k

k

k

k

Nh z

x x x kh z
n

Nh z

xz xz xz kh z
n

M zdz zdz

M zdz zdz  
(15) 

 
Substituting by Eqn. (13) into Eqn. (14) and (15) yields: 
 

1 1

11

1 55

 

 

         
         

         
  

k k

k k

N z z
x xx xx

z z
nxz xz xzn

N Q
dz zdz

N kQ

 

 




 

(16) 

and 

1 1

211

1 55

 

 

         
         

         
  

k k

k k

N z z
x xx xx

z z
nxz xz xzn

M Q
zdz z dz

M kQ

 

 




 

(17) 

 
The mid-plane strain and curvatures are given in terms of forces and moments as [17]: 
 


























0

0





DB

BA

M

N

 

(18) 

 

where
 ijij BA ,  and ijD  represent the elements of the lamina extensional stiffness, coupling 

stiffness and bending stiffness matrices, respectively, and given by: 
 

   1
1





  
N

ij ij k k
k

k

A Q z z ,

 
 

   2 2

1
1

1

2




  
N

ij ij k k
k

k

B Q z z , and (19) 

   3 3

1
1

1

3




  
N

ij ij k k
k

k

D Q z z .  

Substituting by Eqn. (12) into Eqn. (13), then the internal strain energy of the composite 
beam is represented by:  
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  22

11 55

1
( )

2
   

xx s xz

V

U Q k Q dV 

 
(20) 

 
Substituting by Eqns. (3)a and (3)d into Eqn. (20), the internal strain energy of the beam is 
represented by:  
  

22

11 55

1

2

   
             


 
 

xx x s x

V

dw
U Q z k k Q dV

dx
 

 
(21) 

 or 
22 2

2

11 55

1
2 2

2

          
               

             


   
  

x x x x s x x

V

dw dw
U Q z k z k k Q dV

dx dx
   

 
(22) 

     
By performing the integration through the thickness, the internal strain energy for 
anisotropic beam in its final form is represented by:  
 

 

2 2

11 11 11
/ 2

2
/ 2 0 2

s 55

2
1

2
2                   

 

 

x x

b L

b

x x

du du d d
A B D

dx dx dx dx
U dxdy

dw dw
k A

dx dx

 

 


           
            

              
  

     
       

      

 
 

(23) 

 
By taking the variation of Eqn. (23), one can obtain: 
 

   

4 4

11

1 1

2 4 4 2

11

1 1 1 1

2 2

11

1 1

2

1

s 55

2

2

1
2

2

2

j i

j i

j ji i

j i j i

j i

j i

j i

i

du du
A

dx dx

d dudu d
B

dx dx dx dx

d d
U D

dx dx

K A



   

  


 

 

   

 



    
    

   

          
           

           

    
      

   



 

   

 

 

 

/ 2

/ 2 0

2 2 3

1 1 1

3 2 3 3

1 1 1 1

.

b L

b

i
j

j j i

j j i
i

j i j i

dxdy

dw

dx

dw dw dw

dx dx dx









  

   

 
 
 
 
 
 
 
 
 
 
 

      
      

      
                                

 

   

   

 
(24) 

 
The work done due to external loads is represented by [4]: 
 

   dydzufdxdywftuW
R

a

R

t    

or 

(25) 

     
/ 2 / 2 / 2

/ 2 0 / 2 / 2

 u   
  

       
b L h b

t a

b h b

W t f w dxdy f u dydz

 
(26) 
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where  t  is the traction force along the surface,  tf  is the transversal forces, and  af  is 

the axial forces. The first variation of Eqn. (26) yields: 
 

     
/ 2 / 2 / 2

/ 2 0 / 2 / 2

     

b L h b

x t a

b h b

W t u z f w dxdy f u dydz    
  

         

 
(27) 

 
 
FINITE ELEMENT FORMULATION 
 
In formulating the finite element equations, two models are used. The first model is a 
simple one, which  has two nodes for each element; each node has 6 degrees of freedom 
which representing the deformations u, w, and  . A linear shape function is used for each 

of them. In such a case, the predictions of the finite element model are not converged. In 
the second model, the element has 5 nodes with 9 degrees of freedom representing the 
deformations u, w, and   as shown in the Fig. 2. The predictions of the finite element 

model in this case are converged and it is used for calculating the deflection and the 
natural frequency in the present work.  
 

 

The axial displacement u  is expressed in the following form [18]: 
  

4

4
0

u

x





 

(28) 

 
By solving the previous equation and imposing the boundary conditions, the axial 
displacement can be represented as:  
 

4

1 1 2 2 3 3 4 4

1

( ) j j

j

u x u u u u u    


    
 

(29) 

 

The Hermit cubic shape functions  j  are found to be: 

2 3

1 1 3 2
   

     
   


x x

L L
,

 

2 3

2 2
     

       
     

x x x

L L L


 (30) 2 3

3 3 2
   

    
   

x x

L L


 

3 2

4

   
     

   

x x

L L


 
 
The transversal displacement w is represented as [19]: 

 
3

3
0

w

x





 

(31) 

 
By solving the above equation and apply the boundary conditions to determine the 
unknown constants, the transversal displacement w can be expressed in terms of the 
nodal displacement as: 
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3

1 1 2 2 3 3

1

( ) j j

j

w x w w w w   


   
 

(32) 

 
where, the quadratic interpolation shape functions are given by: 

2

1 1 3 2
x x

L L


   
     

     

2

2 4 4
x x

L L


   
    

     

2

3 2
x x

L L


   
     

     
(33) 

 

The rotation angle x  is expressed as [19]: 

 
2

2
0x

x





 

(34) 

 
By solving Eqn. (34) and apply the boundary conditions, the rotation angle is given as: 
 

2

1 1 2 1

1

( ) j j

j

x    


  
 

(35) 

 

where the Linear interpolation shape functions j   have the form: 

 

1  j

x

L
,  and      j

x

L
.

 
(36) 

 
Case I: Isotropic beam: 
 
Substituting by Eqns. (29), (32) and (35) into Eqn. (11), one can obtain: 
 

   

4 4

1 1

2 4 4 2

1 1 1 1

2 2
2

1 1

2

1 1

2

2

1
2

2

2

j i

j i

j ji i

j i j i

j i

j i

j i

j i

s

d d
E

dx dx

d dd d
Ez

dx dx dx dx

d d
U Ez

dx dx

d

k G

  

    

  


  

 

   

 

 

    
    

   

          
           

           

    
      

   



 

   

 

  

 

2 2 3

1 1

3 2 3 3

1 1 1 1

V

i
j

j i

j j i
j

j i j i

dV

d

dx

d d d

dx dx dx

 


   


 

   

 
 
 
 
 
 
 
 
 
 
 

      
      

      
                                



  

   

 
(37) 

 
Equation (37) defines the element of stiffness matrix of the beam as: 
 

4 4

11

1 1

ji

i jV

dd
K E dV

dx dx



 

   
    

    
 

 (38) 

12 21 0K K 
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4 2

13

1 1

ji

i jV

dd
K Ez dV

dx dx



 

   
     

    
 

 
3 3

22

1 1

ji
s

i j

dd
K k G dV

dx dx



 

   
    

    
 

 

 
3 2

23

1 1

i
s j

i jV

d
K k G dV

dx




 

  
    

  
 

 
2 4

31

1 1

ji

i jV

dd
K Ez dV

dx dx



 

   
     

    
 

 

 
2 3

32

1 1

j

s i

i jV

d
K k G dV

dx




 

  
    

  
 

 

   
2 2 2 2

2

33

1 1 1 1

ji
s i j

i j i jV

dd
K Ez k G dV

dx dx


 

   

      
               

   
 

Substituting by Eqns. (30), (33) and (36) into Eqn. (38), and perform the integration, the 
element stiffness matrix for isotropic Timoshenko Beam is obtained, Cf. Appendix B. 
 
Case II: Anisotropic Beam: 
 

Substituting by Eqns. (29), (32) and (35) into Eqn. (24) yields: 
 

 

4 4

11

1 1

2 4 4 2

11

1 1 1 1

2 2

11

1 1

s 55

2 

2 

1
2 

2

2  

j i

j i

j i i i

j i j i

j i

j i

j

d d
A

dx dx

d d d d
B

dx dx dx dx

d d
U D

dx dx

K A

  

     

  


 

 

   

 

    
    

   

           
            

           

    
      

   



 

   

 

   

 

2 2 2 3

1 1 1 1

3 2 3 3

1 1 1 1

.

i
i j

j i j i

j j i
i

j i j i

dxdy

d

dx

d d d

dx dx dx

 


   


   

   

 
 
 
 
 
 
 
 
 
 
 

      
      

      
                                



   

   

 

(39) 

 
Rearranging Eqn. (39) gives: 
     

 

 

4 4 4 2

11 11

1 1 1 1

3 3 3 2

s 55 s 55

1 1 1 1

2 4

11 s 55

1 1

 .  .

0  .  .

 .  .  

j ji i
j j j

i j i j

ji i
j j j j

i j i j

j ji
j i

i j j

d dd d
A u o w B

dx dx dx dx

dd d
U u k A w k A

dx dx dx

d dd
B u k A

dx dx dx

  


 
  

 


   

   

  

   
   

   

   
    

   

 
 

  
  

   

   

 

/ 2

/ 2 0

2 3 2 2 2 2

11 s 55

1 1 1 1 1 1

. .

b L

b

ji
j i j

i i j i j

dxdy

dd
w D k A

dx dx


 



    

 
 
 
 
 
 
 
 
        
       
         

 

     

 
(40) 
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The element stiffness matrix can be deduced from equation (40) as: 
 

4 4

11 11

1 1

.


 

   
    

    
 

ji

i jA

dd
K A dxdy

dx dx
 

(41) 

12 21 0K K 

 
4 2

13 11

1 1



 

  
            

  

 
ji

i jA

dd
K B dxdy

dx dx
 

3 3

22 s 55

1 1



 

   
    

    
 

ji

i jA

dd
K k A dxdy

dx dx
 

3 2

23 s 55

1 1




 

    
     

   
 

i
j

i jA

d
K k A dxdy

dx
 

2 4

31 11

1 1



 

  
          

  

 
ji

i jA

dd
K B dxdy

dx dx
 

2 3

32 s 55

1 1




 

   
      

    
 

j

i

i jA

d
K k A dxdy

dx
 

2 2 2 2

33 11 s 55

1 1 1 1


 

   

   
                        

   
ji

i j

i j i jA

dd
K D k A dxdy

dx dx
 

 
Substituting by Eqns. (30), (33) and (36) into Eqn. (41) and perform the integration, the 
element stiffness matrix of anisotropic beam element is obtained, Cf. Appendix B. 
 
The consistent mass matrix for a beam element in stretching and bending can be obtained 
using the kinetic energy equation as follows: 
 

2 21

2
    

V

T u w dV 

 
(42) 

 
where   is the material mass density. The first variation of Eqn. (42) yields: 

 
1

2  w .
2

V

T u u w dV    
 

(43) 

 
Substituting by Eqn. (2) into Eqn. (43) yields: 
 

          2 .     x x x x

V

T u u z u z u z w w dV               .

 
(44) 

 
The element mass matrix can be obtained from Eqn. (44) as: 

 11

0

 .

L

M I u u dx   

 
(45) 



Proceeding of the 14th AMME Conference, 25 -27 May 2010 Paper   SM  - 16 13 

 

12 21 0M M 

 
 13 1

0

 .

L

xM I u dx    

 

 22

0

 .

L

M I w w dx   

 

23 32 0M M 

 
 31 1

0

 .

L

xM I u dx   

 

 33 2

0

 .

L

x xM I dx  
 

where    2

1 2, , 1, , .

A

I I I z z dA  and I is the moment of inertia.  

Substituting by Eqns. (29), (30), (32), (33), (35) and (36) into equation (45) and perform 
the integrating, the element mass matrix is obtained, Cf. Appendix B. The element load 
vector can be obtained by substituting the shape functions Eqns. (29), (32) and (35) into 
Eqn. (27), which yields: 
 

.

j i j a i
A A

j i j t i
A A

W t u dxdy f u dydz

z t dxdy f w dxdy

    

   

       

       

 

 
 

(46) 

 
From equation (46), the elements of the load vector are: 
 

   
/ 2 / 2 / 2

1 1 1

/ 2 0 / 2 / 2

(1,1)      
  

    
b L h b

b h b

F t dxdy fa dydz

 

(47) 

   
/ 2 / 2 / 2

1 2 2

/ 2 0 / 2 / 2

(2,1)     
  

    
b L h b

b h b

F t dxdy fa dydz

 

   
/ 2 / 2 / 2

1 3 3

/ 2 0 / 2 / 2

(3,1)     
  

    
b L h b

b h b

F t dxdy fa dydz

 

   
/ 2 / 2 / 2

1 4 4

/ 2 0 / 2 / 2

(4,1)     
  

    
b L h b

b h b

F t dxdy fa dydz

 

 
/ 2

2 1

/ 2 0

(1,1)   


  
b L

b

F ft dxdy

 

 
/ 2

2 2

/ 2 0

(2,1)   


  
b L

b

F ft dxdy

 

 
/ 2

2 3

/ 2 0

(3,1)   


  
b L

b

F ft dxdy

 

 
/ 2

3 1

/ 2 0

(1,1)   


  
b L

b

F t z dxdy
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 
/ 2

3 2

/ 2 0

(2,1)   


  
b L

b

F t z dxdy

 
                                                                                                                  
Substituting by Eqns. (30), (33) and (36) into Eqn. (46) and perform the integrating, the 
element load vector can be obtained, Cf. Appendix B.  
 
Equation of Motion 

 
The system equation of motion is given in matrix form as [2]: 
 

    [ ]{ }


 M q K q F

 

(48) 

 

where
 
 M  is  the  global  mass  matrix,  q  is  the   second   derivative  of   the   nodal 

displacements with respect to time,  K  is the global stiffness matrix,  q  is the nodal 

displacements vector and  F  is the global nodal forces vector. 

Numerical Examples 
 

A MATLAB code is constructed to perform the analysis of isotropic and anisotropic beams 
using the present finite element model. The static and free vibration analyses are 
preformed for beams subjected to different kinds of mechanical loads. The model inputs 
are the beam dimensions (length, width and height), material specifications (Young’s 
modulus, material mass density) and number of beam layers and its elements. The 
present model is capable of predicting the nodal (axial and transversal) deflections, 
normal and shear stresses and the fundamental natural frequency of the beam, 
respectively. 

  
Case I: Isotropic beam results 
 
a) Model validation   
 
The validation of the present model and its results convergence are checked for the 
isotropic beam element with the material properties shown in Table (1). The obtained 
results are shown in Fig. 3, which presents the effect of number of element on the  
transversal tip deflection of a cantilever beam, with length to height ratio of 10, subjected 
to uniform distributed loads. It can be seen from the figure that the model predictions are 
converge at number of elements of 8. 
 
b) Static analysis 
 
Another example of an isotropic beam with simply supported boundary condition 
subjected to uniform distributed loads is presented. The input data to the finite element 
model are listed in Table 2.  
 
The predicted results of the model are listed in Table 3 and Fig. 4 for the maximum 
transversal deflection of isotropic beam subjected to a uniformly distributed load with 
simply supported boundary condition at its ends when using a shear correction factor k 
=5/6. These results are compared to the exact solution of Ref. [12] which are plotted on 
the same figure. 
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Table 4 shows the comparison of the maximum deflection of a clamped-clamped beam 
under uniformly distributed load. It can be seen that the model gave good results 
compared to the exact solution given by Ref. [12]. 
 
Case II: Anisotropic Beam results 
 
a) Static Analysis 
  
To check the validity of the anisotropic model and to establish its range of applicability, a 
numerical example is investigated and the obtained results are compared to the published 
results for the same example. For a cantilever beam presented by Ref. [20], its predicted 
mid span displacements are compared with the predictions of the present model. Results 

are reported with the following dimensionless material properties, 25/ 21 EE , 

212 5.0 EG   and 25.012 v . The beam is considered to have different length to height 

ratio,  / 5,10,50L h  , and is subjected to a uniformly distributed load with intensity of 10 

(kN/m). The  beam  is  solved  considering different fiber orientation angles 
 

Table 1. Material properties for aluminum isotropic beam. 
 

Property Aluminum Unit 

E  68.9 GPa 

  0.25 - 

G 27.6    GPa 

  2769 (kg/m3) 

Length, L 0.1524 (m) 

Width, b 0.0254 (m) 

Height, h 0.01524 (m) 

 
 

Table 2.  Material properties for steel isotropic beam. 
 

Property Steel Unit 

E  30 x 106 psi 

  0.36 - 

G 11 x 106 psi 

  0.281 (Ib/in3) 

Length, L 100 (in) 

Width, b 1 (in) 

Height, h 1 (in) 
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Table 3. Finite element results for the maximum deflection at mid span of simply  
                          supported beam under uniformly distributed load (L/h=100). 
 

Load (lb/in) 

Maximum deflection of simply supported beam, [in] 

Ref. [12]  (8-element) 
Present model (8-

element) 

1.0 0.5208 0.5144 

2.0 1.0417 1.0289 

3.0 1.5625 1.5433 

4.0 2.0833 2.0577 

5.0 2.6042 2.5721 

6.0 3.1250 3.0866 

7.0 3.6458 3.6010 

8.0 4.1667 4.1154 

9.0 4.6875 4.6298 

10.0 5.2083 5.1443 

 
Table 4. Finite element results for the maximum deflection at mid span of a clamped-  

 clamped beam under uniformly distributed load (L/h=100). 
 

Load (lb/in) 

Maximum deflection of a clamped-clamped beam, 
[in] 

Ref. [12] (8-element) 
Present model (8-

element) 

1.0 0.1034 0.0978 

2.0 0.2023 0.1955 

3.0 0.2939 0.2933 

4.0 0.3774 0.3910 

5.0 0.4530 0.4888 

6.0 0.5216 0.5866 

7.0 0.5841 0.6843 

8.0 0.6414 0.7821 

9.0 0.6943 0.8798 

10.0 0.7433 0.9771 

 
 

for  the  case  of  symmetric cross-ply )0,90,0(  and asymmetric cross-ply )90,0(  . Each 

lamina is assumed to have the same thickness and made of the same material. The non-

dimensional transversal deflection is determined by:
4

22

2 10

Lf

hWAE
w



 ; where (w) is the 

actual transversal deflection and  f  is the uniformly distributed load. For the case of 

symmetric cross-ply )0,90,0(   and asymmetric cross-ply )90,0(  laminations, the static 

results are presented in Tables 5, 6 and 7 in comparison to the results obtained by Khdier 
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and Reddy [1]. It is clear from the tables that the obtained results by the present model is 
better for beams having small aspect ratios and close to the predictions of FOBT theory. 
 
Figure 5 compares between the transversal deflection of the beam with the results 
obtained in Ref. [20]. The present figure shows the effect of number of layers on the non-
dimensional transversal deflection of the beam. It is seen that the beam stiffness 
increases and consequently the non-dimensional transversal deflection decreases as the 
number of layers increases.  
 
b) Stress Analysis 
 
In the following, the normal and shear stresses distributions of a composite beam having 

25/ 21 EE , 212 5.0 EG   and 25.012 v ,  / 10L h  , and subjected to a uniformly 

distributed load with intensity (1 N/m) are predicted using the present model. Figure 6 and 
Fig. 7 show the normal stress distribution for a symmetric cross ply composite laminate 

with fibers orientation angles of )0/90/90/0(   and an asymmetric cross ply laminate 

with fiber orientation angles of )0/45/45/90/90/,45/45/0(   , respectively. In addition, 

Figure 8 shows the shear stress for a symmetric cross-ply composite laminate with fibers 

orientation angles of )0/90/90/0( 
.  

 

Table 5. Non-dimensional mid-span deflection of symmetric cross-ply )0,90,0( 

 

                      Laminated cantilever beams. 
 

L/h 

Non-dimensional mid-span deflection of cantilever beams 

HOBT [1] SOBT [1] 
FOBT 

[1] 
CBT [1] Present model 

5 6.824 5.948 6.698 2.198 6.6364 

10 3.455 3.135 3.323 2.198 3.3994 

50 2.251 2.235 2.243 2.198 2.3636  

 
 

Table 6. Non-dimensional mid-span deflection of symmetric cross-ply )0,90,0( 

  
                      laminated clamped-clamped beams. 
 

Beam 
laminate 
orientati

on 

L/h 

Non-dimensional mid-span deflection of C-C beams 

FOBT [1] Present Model 

( 0/90/0 ) 
 

5 1.537 1.5740 

10 0.532 0.4950 

50 0.147 0.1498 

( 0/90 ) 

5 1.922 2.4357 

10 1.005 1.1169 

50 0.679 0.6948 
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Table 7. Non-dimensional mid-span deflection of symmetric (0 ,90 ) 

 laminated 
                       cantilever beams. 
 

L/h 

Non-dimensional mid-span deflection of cantilever beams 

HOBT [1] SOBT [1] FOBT [1] CBT [1] 
Present 
model 

5 15.279 15.695 16.436 11.293 17.198 

10 12.343 12.400 12.579 11.293 13.242  

50 11.337 11.338 11.345 11.293 11.976  

 
c) Free vibration Analysis 
 
The predicted values of the fundamental natural frequency are compared with that of Ref.  

[11] for a composite cantilever beam. The beam properties are: 80.1441 E GPa, 

65.92 E GPa, 14.412 G GPa, 3.012 v ,and 3/23.1389 mKg . The beam length to 

height ratio is hL / 15. The non-dimensional fundamental natural frequency is calculated 

by: )/( 2

1

2 hEL    , where   and   are the free natural frequency and material 

density of the beam, respectively. For the symmetrically laminates with orientation angles 
of [0/90/90/0], and  [45/-45/-45/45], Table 8 shows that the obtained results of the present 
model are agreed with the results of the higher order shear deformation theory (HSDT) 
[11]. 
 
Table 9 shows the effect of number of layers on the non-dimensional natural frequencies 
of symmetrical laminated beams with clamped-free edges obtained by the present model 
and the corresponding predicted results of Ref. [11]; good agreement is generally 
obtained. It is also seen from the table that the predictive capability of the model is 
improved with increasing the number of layers. In addition, Table 10 shows the predicted 
effect of ply orientation angles on the non-dimensional natural frequencies of clamped-
clamped beams of the present model and the corresponding predictions of Ref. [11]. Good 
agreement is obtained for ply orientations of [ 0/90/90/0 ] and  [ 45/-45/-45/45 ] till the third 
mode. For higher modes, further work is needed to improve the predictive capabilities of 
the model. 
 
Table 11 shows the effect of different boundary conditions of asymmetric laminated 
beams on their non-dimensional natural frequencies predicted by the present model and 
the corresponding predictions of Ref. [11]. The listed results recommend further work to 
improve the model predictions.  
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Table 8. Non-dimensional natural frequencies of symmetrically laminated beams 
                        under various boundary conditions at (NE=80). 
 

Parameter Non-dimensional natural frequencies. 

Ply 
orientation 

[ 0/90/90/0 ] [ 45/-45/-45/45 ] 

Boundary  
Conditions 

Ref. [11] 
Present 
model 

Ref. [11] 
Present 
model 

S - S 2.5023 2.5236 0.8295 0.9096 

C – C 4.5940 4.7619 1.8472 2.0054 

C – S 3.5254 3.6078 1.2855 1.4033 

C - F 0.9241 0.9268 0.2965 0.3256 

 
 

Table 9. The effect of number of layers on the non-dimensional natural frequencies of  

                angle-ply and cross-ply laminated beams with clamped-free edges. (NE=80). 
 

Parameter Non-dimensional natural frequencies. 

Ply 
orientation 

 [45/-45/45/…]  [0/90/0/…] 

No. of layers Ref. [11] 
Present 
model 

Ref. [11] 
Present 
model 

2 0.3031 0.3254 0.4800 0.4750 

4 0.3223 0.3254 0.6748 0.6735 

6 0.3242 0.3254 0.7047 0.7042 

8 0.3247 0.3254 0.7148 0.7147 

10 0.3249 0.3254 0.7195 0.71953 

 
 

Table 10. The effect of ply orientation angle on the non-dimensional natural frequencies 

                  of clamped–clamped beams (NE=80). 
 

Paramete
r 

Non-dimensional natural frequencies of clamped–clamped beams. 

Ply 
orientatio

n 
[ 0/90/0/90 ]  [ 45/-45/45/-45 ] [ 30/50/30/50 ] 

Mode No. Ref. [11] 
Present 
model 

Ref. [11] 
Present 
model 

Ref. [11] 
Present 
model 

1 3.7244 3.7951 1.9807 2.0054 2.2526 2.6180 

2 8.9275 9.1776 5.2165 5.2926 5.8624 6.7417 

3 15.3408 15.8238 9.6912 9.8504 10.7609 12.2361 

4 22.3940 23.1233 10.5345 15.2896 11.9506 18.5929 

5 24.3155 30.7024 15.0981 15.2912 16.5747 21.0844 
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Table 11. Non-dimensional natural frequencies of anti-symmetric laminated beam with 
        plies angles [45/-45/45/-45] with various boundary conditions (NE=80). 

 

Parameter 
Non-dimensional natural frequencies of anti-symmetric laminated 

beam with plies angles [45/-45/45/-45] 

Beam type 
C-F 

 

S-S 

 

C-C 

 

Mode No. Ref. [11] 
Present 
model 

Ref. [11] 
Present 
model 

Ref. [11] 
Present 
model 

1 0.2962 0.3256 0.8278 0.9096 1.8298 2.0054 

2 1.8156 1.9910 3.2334 3.5469 4.8472 5.2926 

3 4.9163 5.3752 7.0148 7.6747 9.0601 9.8504 

4 5.3660 10.0384 10.7449 12.9927 10.7449 15.2896 

5 9.2162 15.2896 11.9145 15.2896 14.1999 15.2912 

 
 
CONCLUSIONS 

 
The following conclusions have been drawn: 
1. The good agreement between the mid-span deflections predicted by the present 

model and the corresponding predictions of other investigators using FOBT, SOBT, 
and HOBT theories proves the predictive capabilities of such a model. 

2. The transversal displacements predicted by the present finite element model are 
found to converge towards an asymptote at reasonable number of elements. 

3. As the number of layers increases, the transversal deflection decreases and the 
accuracy of the present model for the natural frequencies increases.  

4. The inclusion of shear correction factor in the present model may improve its 
predictions. 

5. Further work is needed to improve the predictive capabilities of the present model by 
covering the following: 

(a)  Using the first order shear deformation theory, SOBT, to include the transversal 
shear effects, and 

(b)  Taking into account the geometric nonlinearities. 
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Appendix A 
  
The stress-strain relation for a thin orthotropic lamina of an anisotropic beam having 
coincidence of  principal axis on geometric axis is given by [16]: 
 

1 11 12 1

2 12 22 2

6 66 6

4 44 4

5 55 5

0

0

0 0

0

0

Q Q

Q Q

Q

Q

Q

 

 

 

 

 

     
    

    
         

     
    

     

 

(A-1) 

   

where, ijQ  is the reduced stiffness coefficient.  

  

The components of the lamina stiffness matrix in terms of the engineering constants are 
given as : 
 

1 12 2
11 12 66 12

12 21 12 21

2
22 44 23 55 13

12 21

, ,
1 1

, , ,
1

E E
Q Q Q G

E
Q Q G Q G



   

 

  
 

  


 
(A-2) 

 

where; 1E  and 2E  are the Young’s modulus in the longitudinal and the transversal 

directions of the fiber, respectively, and 12 , and 21 are Poisson’s ratios in the two 

directions. The stress-strain relation of a lamina in the geometric directions x, y and z is 
given by: 
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where; 
ijQ is the transformed reduced stiffness coefficient. 

   
The stress-strain relation of a lamina is rewritten as [17]: 
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where, 
ijQ is the transformed reduced stiffness coefficient and given by: 

 



Proceeding of the 14th AMME Conference, 25 -27 May 2010 Paper   SM  - 16 23 

 

ij ij i3 j3 33Q Q Q Q /Q     For  i, j = 1

 
ij ijQ Q     For  i, j = 5

 

(A-5) 

 
Appendix B 

 
The element stiffness matrix for isotropic Timoshenko Beam is: 
  

2 2

6 6
0 0 0 0 0

5 10 5 10

7 5 8
0 0 0 0

3 6 3 3 6

5 2
0 0 0 0

6 12 3 3 6 12 6

10

s s s s s

s s s s s

EA EA EA EA

L L

k GA k GA k GA k GA k GA

L L L

k GA k GLA k GA k GA k GLAEAh EAh

L L

EA

       
       

       

         
         

         

        
            

        

2
0 0 0 0 0

15 10 30

8 2 16 8 2
0 0 0 0

3 3 3 3 3

6 6
0 0 0 0 0

5 10 5 10

0 0 0
10 30 10

s s s s s

ELA EA ELA

k GA k GA k GA k GA k GA

L L L

EA EA EA EA

L L

EA ELA EA

       
        

       

         
           
         

       
         
       

    
     

    

2 2

2
0 0

15

8 7 5
0 0 0 0

3 6 3 3 6

2 5
0 0 0 0

6 12 6 3 6 12 3

s s s s s

s s s s s

ELA

k GA k GA k GA k GA k GA

L L L

k GA k GLA k GA k GA k GLAEAh EAh

L L

 
 
 
 
 















  
     


         

                     

         

            
         























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The element load vector:      
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The element stiffness matrix for Anisotropic Timoshenko Beam:  
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The element mass matrix for the Timoshenko Beam: 
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(B-4) 

  

 
 

Fig.1. Deformed and un-deformed shape of Timoshenko beam [12]. 
 

 
Fig. 2. Nodal degrees of freedom for higher order element. 
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Fig. 3. Transversal tip displacement vs. number of elements. 

 

 
Fig. 4. Comparison of the deflection of the present model and the exact  

                          solution for a simply supported beam. 
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Fig. 5. Non-dimensional transversal deflection vs. non dimensional distance 

                       along the beam length (L/ h=10). 
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Fig. 6. Normal stress distribution for a composite laminate )0/90/90/0(  . 
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Fig. 7. Normal stress distribution for a 

composite 
        

laminate )0/45/45/90/90/,45/45/0(    

Fig. 8. Shear stress for a composite 

              laminate )0/90/90/0(  . 
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NOMENCLATURE 
 

Symbols definition 

 Mass matrix of the beam element in stretching. 

 K  Element stiffness matrix. 

 F  Element nodal forces.  

q Nodal displacement.  

q  The second derivative of the nodal displacement.  

  Total potential energy. 

U Internal strain energy. 
W  Work done by external loads. 
u Displacement of any point in the x-direction. 
w Displacement of any point in the z-direction. 

x  Angle of rotation. 
u  Reference surface displacement along x-axis. 
w  Reference surface displacement along z-axis. 

x  Linear strain in the x-direction. 

y  Linear strain in the y-direction. 

z  Linear strain in the z-direction. 

x
  Reference surface extensional strain in the x-direction. 

y
  Reference surface extensional strain in the y-direction. 

xy  In-plane shear strain. 

x  Reference surface curvature in the x-direction. 

xz   Transversal shear strain in x-z plane. 

n Layer number in the beam.  
N  Total number layers in the beam. 

A  Beam cross section area. 

x  Normal stress in the x-direction. 

E Young’s modulus. 

1c , 2c , 3c  and 4c  Constant values. 

43,21 , uanduuu  Axial displacements at the boundaries of beam element. 

1 2 , 3w ,w and w  Transversal displacements at the boundaries of beam element. 

21  and  Rotation angles. 

elementF   Element load vector. 

L Length of beam element . 
b Width of beam element.  
h Height of beam element.  

kT  Kinetic energy. 

  Mass density of material. 

i  Axial displacement shape function. 

i  Transversal displacement shape function. 



Proceeding of the 14th AMME Conference, 25 -27 May 2010 Paper   SM  - 16 28 

 

i  Rotation displacement shape function. 

t Traction force.  

tf  Transversal force. 

af  Axial force. 

ijQ  Reduced stiffness coefficients. 

ijs  Element of the lamina Compliances matrix. 

1E  Young’s modulus in the fiber direction. 

2E  Young’s modulus in the transversal direction to the fiber.  

xN  Force per unit length. 

xM  Moment per unit length. 

ijA  Extensional stiffness matrix element. 

ijB  Coupling stiffness matrix element. 

ijD  Bending stiffness matrix element. 

  Circular frequency of the structure. 

ijklC  Elasticity matrix. 

dxdydz  Dimensions of the control volume. 

HOBT Third-order Beam Theory. 
SOBT Second-order Beam Theory. 
FOBT First-order Beam Theory. 
CBT Classical Beam Theory. 

 


