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Abstract: 
 
This work is concerned with the investigation of the free vibration and stability behavior of the 
buried composite material pipes. Soil is modeled mathematically as a one and two 
parameters foundation, (Winkler and Pasternak respectively). Composite material is treated 
as generally orthotropic material and the flow is a fully turbulent flow. A mathematical model 
based on Timoshenko beam theory is formulated.  A finite element model has been 
implemented to investigate the problem. Mat lab package has been used to construct a 
program for vibration and stability analysis of the system. The obtained results have been 
compared with the published ones to verify the model. A comparison between buried 
composite material pipes and traditional ones is presented. The results show that the soil 
modeling, internal pressure and depth of the soil have an essential effect on the behavior of 
such pipes. 
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Introduction: 

Piping systems are widely used in modern industry in fluid and oil transportation. In some 
applications, the fluid in the piping system has high flow velocities like the nuclear reactors 
and in steam generator. These high flow velocities can cause a damage of the system due to 
instability of the system at certain flow velocities [1].  Buried pipes can sustain to this 
instability. It is well known that, the pipes is dynamically stable at low flow velocity and 
according to the configuration and boundary conditions the system lose its stability in 
buckling mode at certain velocity, like beam subjected to compressive load. When the system 
is a conservative, it loses its stability in a coupled mode flutter in higher modes [2]. While the 
non-conservative system loses its stability in flutter mode. The cause of this instability types is 
mainly due to follower force which the fluid is subjected in the course of lateral motion of the 
pipe. Material properties have a reasonable effect on the critical flow velocity, the velocity at 
which the system loses its stability. On the other hand, composite material parameters like 
fiber orientation angles and stacking order affect the dynamic behavior of such systems. The 
same authors, [3], introduced a work discuss the effect of composite materials parameters on 
the critical flow velocity of such system. A comparison between the traditional material and 
composite one was introduced. 

 As known, the composite material dynamic governing differential equation of motion is sixth 
order differential equation rather than the traditional one which is a forth order. Therefore, the 
traditional material model cannot be used for composite one. Also the shear effect in 
composite material has a major effect due to the nature of material [4], therefore, thick beam 
theory is essential to use in the case of dealing with composite material. Composite materials 
have a competitive chemical and stiffness to weight ratio comparing to traditional material 
ones. Therefore, it is preferable to use it in some applications.  

For buried pipes, soil is a complicated material and there are still great uncertainties on how 
to deal analytically with partially saturated soils [5]. In this paper, soil is modeled as one 
(Winkler) and Two (Pasternak) parameters foundation to investigate the effect of the soil on 
the stability and behavior of such problem. Pasternak model is more convenient for the soil 
due to the nature of soil which is the shear interaction between adjacent soil elements [6]. 

The pipeline is generally simplified as a beam, while pipe–soil interaction is represented by 
soil springs in the axial (or longitudinal), transverse horizontal, and transverse vertical 
directions using a Winkler or Pasternak type model. The properties of soil springs in three 
orthogonal directions are independent. In other words, the deformation of soil in one direction 
has no effect on pipe–soil interactions in other directions. The initial stiffness K of the force–
displacement curve depends on the elastic modulus of the soil E, the diameter of the pipe, 
and the buried depth ratio H/D. Damping of soil is a major parameter in the behavior of such 
system [7]. The damping of soil is modeled as a proportional damping [8]. 

In this paper, the vibration and stability behavior of the composite material buried pipes 
conveying fluids is concerned. The finite element technique is suggested to model and 
investigate this problem. The stability of pipes is governed by the natural frequencies, which 
are greatly affected by flow velocities, soil parameters and pipe depth. The soil is modeled as 
soft and medium clay. A comparison between two foundation types is presented and a 
comparison between traditional and composite materials is discussed. The effect of soil 
damping is introduced.  
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Mathematical Model:  
 

The composite materials are anisotropic material where its properties are direction 
dependent. In this material, the coupling between bending and twisting should be considered. 
The finite element technique has been used to obtain the equation of motion of composite 
material pipes. The model is based on Timoshenko beam theory. Figure (1) shows a pipe 
element conveying steady fluid with velocity (v). In the element shown, three degrees of 
freedom at each node has been considered namely; lateral displacement (y), cross section 

rotation () and cross section twisting (). Note that; 1, 2, 3 are the principal axes of the 
element and X, Y, Z, are the geometric coordinates.  
The strain energy of the pipe element (see the list of symbols in appendix) is [2,6]; 
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The generalized torsional rigidity Ct and mutual rigidity, Cmt, are expressed as[9]; 
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The shear coefficient for orthotropic beam is [10]; 
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Kp Pasternak foundation value 
The kinetic energy of the pipe element is; 
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Figure (1) Model scematic drawing 

 
 
 

Where 
2

pp
t

y
A

2

1












  and 

2

ff
t

y
A

2

1












  are the kinetic energies due to the translation of pipe and fluid 

masses respectively.  
2

xy
t

J
2

1












 and 

2

pp
t

I
2

1












  are the kinetic energies due to twisting and bending rotary 

inertia of the pipe cross section respectively.  
2

fxf
t

I
2

1












 and 
























2

2
ff

dx

dy
V

dt

dy
VA

2

1
 are the kinetic energies due to the fluid rotary inertia 

and the fluid flow velocity respectively. 
 

 
 

Figure (2) Pipe element 
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The modified stiffness matrix for composite material is expressed as[12] 
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The stiffness matrix K for a certain node is presented the three degrees of freedom,

 
 , Φ,  

and Φ’ which implement a more accurate results for such type of materials. 
And the matrix B whose its elements bii in the appendix A 
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The kinetic energy of the composite pipe element is; 
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The nodal displacement vector of the pipe element is; Tyyq }{}{
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Where M is the mass matrix for uncoupled bending-torsion modes.    
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A is the shape function matrix whose elements ija , are 

listed in the appendix (B) in dimensionless form.                   

Applying Lagrange’s equation yields the equations of motion as;       }0{}{}{}{  qKqCqM   

Where [M] and [K] are 6x6 mass and stiffness matrices of the composite pipe respectively 
and [C] is the soil damping matrix and gyroscopic matrices. The gyroscopic matrix presented 
the gyroscopic damping due to Ceriollous force. The damping of soil can be introduced as 

KMC    
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Where
 

22 nnn    

The viscous damping matrix is dependent on stiffness, mass and the natural modes of the 
soil column. The natural modes and the soil stiffness are derived from the shear wave 
velocity profile of the soil column. 
 
Solution Technique: An efficient computer program has been implemented using MATLAB 

to formulate and solve the governed equations of motion. The program is designed in an 
interactive form allowing the user to specify the required model. The parameter that control 
the problem like fiber volume fraction, fiber orientation angle, pipe dimensions, pipe depth, 
flow velocity, soil foundation modeling, soil type, condition of flow, damping of soil …etc are 
user entered data. 
 
Verification of the Model: In this section, a comparison between published results and ones 
of the present model for most of famous configuration of beams and piping systems made of 
traditional and materials supported on foundation is introduced to verify the current model.  
Table (1) shows the effect of the foundation stiffness on the critical flow velocity of pipe made 
of traditional material investigated in reference [14]. The results show that the foundation has 
stabilizing effect on the pipe. The value of the critical velocity increases with the foundation 
value increase. The foundation value affects the type of stability. As the value of foundation 
increased the type of stability of second mode become in flutter mode. The values of the 
critical flow velocity will be closed together as the foundation value increased. The difference 
between the current and the previous results increased as the foundation value increase due 
to the difference between the shear coefficients in both cases. But it does not affect the type 
of stability of foundation values. 

 
Table (1): Effect of foundation stiffness on the critical flow velocity of traditional 

material 
Critical 

flow 
velocity 

Foundation value (N/m) 

K=0 K=1 K=10 K=100 K=1000 K=2000 K=10000 K=2*10000 

First 
buckling 
critical 
velocity 

3.114 
(3.129) 

3.129 
(3.145) 

3.273 
(3.287) 

4.458 
(4.463) 

7.874 
(7.977) 

9.349 
(9.429) 

13.632 
(13.978) 

15.773 
(16.334)[14] 

Mode 
First 

mode 
First 

mode 
First 

mode 
First 

mode 
First 

mode 
First 

mode 
First 

mode 
First mode 

         

second 
buckling 
critical 
velocity 

6.054 
(6.195) 

6.056 
(6.194) 

6.076 
(6.212) 

6.258 
(6.393) 

9.334 
(9.744) 

10.582 
(12.511) 

13.737 
(17.064) 

15.864 
(17.515) 

Mode 
second 
mode 

second 
mode 

second 
mode 

second 
mode 

second 
mode 

third 
mode 

third 
mode 

third mode 

         

Flutter 
critical 
velocity 

6.107 
(6.27) 

6.109 
6.272) 

6.129 
(6.282) 

6.339 
(6.414) 

9.396 
(9.754) 

10.347 
(10.313) 

13.645 
(14.415) 

15.842 
(17.025) 

Mode 
third 

mode 
third 

mode 
third 

mode 
third 

mode 
third 
mode 

second 
mode 

second 
mode 

second 
mode 
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The current model is applying to composite material beams supporting on Winkler foundation, 
at fiber orientation of angle=50. The results in the table (2) show the effect of the foundation 
stiffness on the beam natural frequencies. The calculated values of natural frequencies are 
compared with ones in reference [15].  

 
Table (2): Effect of foundation stiffness on the natural frequency of composite material 

beam 
Critical 

flow 
velocity 

Foundation value (N/m) 

K=0 K=1 K=10 
K=10

0 
K=10

00 
K=20

00 
K=10

^4 
K=2*10^4 

First 
buckling 
critical 
velocity 

3.11
4 

(3.12
9) 

3.129 
(3.14

5) 

3.273 
(3.28

7) 

4.45
8 

(4.46
3) 

7.874 
(7.97

7) 

9.349 
(9.42

9) 

13.63
2 

(13.9
78) 

15.773 
(16.334)[15] 

mode First mode 

         

second 
buckling 
critical 
velocity 

6.05
4 

(6.19
5) 

6.056 
(6.19

4) 

6.076 
(6.21

2) 

6.25
8 

(6.39
3) 

9.334 
(9.74

4) 

10.58
2 

(12.5
1) 

13.73
7 

(17.0
64) 

15.864 
(17.515) 

mode second mode third mode 

         

Flatter 
critical 
velocity 

6.10
7 

(6.27
) 

6.109 
6.272

) 

6.129 
(6.28

2) 

6.33
9 

(6.41
4) 

9.396 
(9.75

4) 

10.34
7 

(10.3
1) 

13.64
5 

(14.4
15) 

15.842 
(17.025) 

mode third mode second mode 

 
Figure (3) shows the effect of the foundation stiffness on the nondimensional natural 
frequencies using the current model. 

 
Figure(3): Effect of foundation on the critical flow velocity 
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From the above results, the current mathematical model and the implemented computer 
program are accurate and efficient tools and valid for further investigations of this area 
 
Results and Discussion: A unidirectional typical composite material pipe made of glass 

fiber–epoxy conveying a steady fluid and buried in a soil has been considered here to 
investigate its dynamic and stability behavior. The behavior of a traditional material pipe 
(made of steel) is also investigated and compared with the composite material one. The 
composite material is generally orthotropic material and soil is handled as soft and medium 
clay with proportional damping. Effect of soil and pipe depth on the stability behavior of the 
pipe is introduced. 
The properties of the considered composite material and steel, [11] are; 
 
 

35.0Pa4.1e9

2.0Pa72.4e9

fiber

fiber









matrix

fiber

E

E
  steelE =200 x 109 Pa   21.0  

 
 
The medium and soft clay properties are taken as shown in the tables (3) and (4) respectively 

 
Table (3): Properties of medium clay [16]  

Parameter value 

Modulus of Elasticity (E) 50 MPa 

Friction angle 240 

Cohesion C 15 (KPa) 

Poisson ratio 0.25  

Soil unit weight 17.7 (KN/m3) 

 
Table (4): Properties of soft clay 

Parameter value 

Modulus of Elasticity (E) 10 MPa 

Friction angle 260 

Cohesion C 17 (KPa) 

Poisson ratio 0.25  

Soil unit weight 17.7 (KN/m3) 

 
Effect of pipe depth: Figure (4) indicates the difference in behavior of both types of soil 

(medium and soft clay) in its first mode. It is shown that the medium clay has a higher critical 
flow velocity than the soft one, the soil is assumed to be Winkler foundation. 
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Figure (4): Comparison between soft and medium clay in the first mode.  

 
Effect of soil model: Table (5) shows the difference between the effect of Winkler and 
Pasternak foundation on the critical flow velocity of the buried pipe at different soil depth. It is 
shown that the critical flow velocity increases when the soil is modeled as Pasternak 
foundation (for buried pipes). This is because the total strain energy increased due to added 
shear strain energy. The shear strain dependence mainly on the type of the soil and it is 
laboratory determined value. In this study it is assumed to be 0.1 from the value of Winkler 
foundation.   

Table(5) non-dimensional critical flow velocity for Winkler and Pasternak foundation 
model at different  soil depth (soft clay) 

Depth (m) 

First critical flow 
velocity 

Second critical flow 
velocity  

Winkler Pasternak Winkler Pasternak 

0 
(unburied) 

2.23 2.23 
5.28 

5.29 

0.25 11.25 13.54 11.96 14.28 

0.5 12.235 14.867 12.875 15.394 

0.75 12.92 15.78 13.38 16.26 

1 13.403 16.746 13.797 16.901 

1.25 13.63 17.32 13.95 17.43 

1.5 13.98 17.76 14.232 17.98 

1.75 14.22 18.24 14.53 18.02 

2 14.558 18.826 14.897 19.089 

 
Figure (5) shows that the difference between critical flow velocities using the two models 
increases with the pipe depth increase. The value of critical velocity when soil is modeled as 
Pasternak foundation is higher than one for Winkler foundation.  
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Figure (5) non-dimensional critical flow velocity using Winkler and Pasternak 

foundations with the pipe depth (soft clay) 

 
The pipe depth is proportional to the foundation stiffness value of Winkler and Pasternak 
foundation. 
 
Comparison between traditional and composite material pipe: Figure (6) shows a 
comparison between critical flow velocities of composite materials and steel pipes buried in 
medium clay in first and second modes.  

 
Figure (6) Comparison between composite material and traditional material pipe in it 

first mode (buckling mode) buried in medium clay. 
 
This figure shows that, the non-dimensional critical flow velocity of buried composite pipe is 
lower than the steel one on both Winkler and Pasternak foundation models. Comparing figure 
5 and 6, it is shown that pipes on medium clay has a higher critical flow velocity than one on 
the soft clay due to high elastic modulus of medium clay than soft clay. It is also noted that 
the difference between the two values are increased with the depth increase due to the 
increase of shear effect.    
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Effect of soil damping and gyroscopic action on the critical flow velocity and stability 
type: Soil damping can be modeled as a proportional damping in the form KM   .  As the 

soil is modeled as Pasternak foundation, the value of  and  depend mainly on the damping 

factor   and the soil natural frequency which can be determined in laboratory for different 

types of soil. The critical flow velocity of the damped system is shown below at different 
values of foundation stiffness. The gyroscopic effect is also included and shear stiffness is 
0.10 from elastic stiffness. 

 
Table (6): First and second critical flow velocity wit and without gyroscopic and soil 

damping (soft clay) at different pipe depth 

Pipe 
depth 

(m) 

First mode 
without 

damping and 
gyroscopic  

First mode 
with 

damping 
and 

gyroscopic 

Second 
mode 

without 
damping 

and 
gyroscopic 

Second 
mode with 
damping 

and 
gyroscopic 

0.5 14.867 14.854 15.394 15.261 

1 16.746 16.721 16.901 16.733 

2 18.826 18.811 19.089 18.826 

Instability 
type 

Buckling buckling buckling 
Coupled 

mode flutter 

 
As expected and shown in the table (5), the damping and gyroscopic effect have no an 
essential effect on the critical flow velocity on the first mode. However, they changes the type 
of instability of the second mode from buckling to coupled mode flutter.  
 
Effect of internal pressure: Most of buried pipes are subjected to internal pressure of the 
carried fluid. Therefore, the effect of the internal pressure on the stability of such pipe is a 
point of interest. This effect on the critical flow velocity is investigated and shown in the figure 
(7). The first and second critical flow velocity at different pressure is calculated at pipe 
depth=1 m in soft clay soil.  
 

 

Figure (7): Change of critical flow velocities  EAvLV ffP /  with non-dimension 

pressure  EIALpP pp /2  
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From the above result, the internal pressure has an essential effect on the critical flow 
velocity especially in the range of (50-100). Numerically, at P=200, the internal pressure 
inside a pipe with outer diameter=0.12m and thickness= 1.5 cm is 288 MPa.  
 
Conclusions: 
An efficient mathematical model and a computer program for investigation of the dynamic 
and stability behavior of composite material pipes transporting a fluid and buried in soil have 
been implemented.  
Composite material pipe transporting high flow velocity fluid has many design parameters can 
optimize the design to adapt the working condition. Soil type, fluid velocity, fluid pressure and 
pipe depth has a great effect on the behavior of such system. Damping and gyroscopic has 
no effect on the critical flow velocity, however, it has an effect on the instability type. 
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Appendix A 
Shape function elements for modified mass matrix 
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Appendix B 
Shape function elements for modified stiffness matrix 
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