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Abstract: 

 
The important of the slider crank mechanism and two-link mechanism is that they are the 
key-player in many mechanical and structural systems. A family of joints in form of l ibrary to 
carry out kinematical and dynamical analyses of mechanical systems was introduced in 
earlier work by authors [1]. Joint programming package was designed employing the 
proposed joint library. In this paper, parametric investigations have been carried out on two 
different types of mechanisms, closed loop mechanism (slider-crank mechanism) and open 
loop mechanism (two-link manipulator) to illustrate their effects on the response of the 
systems. The proposed applications have been described based on the type of joints and the 
number of degrees of freedom of the mechanism. Based on Lagrange multipliers theorem, 
the dynamic and inverse dynamic analyses have been carried out to calculate the reaction 
forces.  
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Introduction 

 
Tremendous efforts in recent years were dedicated to the development of automated methods 
and to increase the degree of intelligence in computer-aided design (CAD) software. It is based 
on a computational method for studying the kinematics and dynamics of mechanical systems as 
first used multi-body dynamics formulations by Haug [2] and were implemented into commercial 
code DADS. Design parameters are modified to improve the performance. Based on 
experience and analytical formulations, a design may undergo a number of iterations before 
reaching an optimum situation [3]. This type of software facilitates constraint-based modeling 
and in many cases provides inference via constraint propagation. Some methods specify a 
parametric dependency between different parts. A design change in the geometry of a part 
propagates through the complete design. Other efforts at CAD/CAM automation include 
reasoning schemes that use topological relationships between features by McMahon [4]. More 
recent efforts to automate the mechanical design process in the manufacturing field were 
demonstrated by Abdel-Malek and Maropis [5]. The work based on recent rigorous 
mathematical formulations, was extended to the automatic computer aided design idea in Zou 
[6]. Jih-Lian Ha et al. [7] derived the equations of motion of a slider crank mechanisms using 
Hmilton's principle and Lagrange multiplier. 
 
Governing Equations in Planar Kinematics 

 
A body "i" can be located by specifying a body reference frame xi-yi which oriented by an angle 

i with respect to a global x-y frame. Hence, the generalized coordinate vector of body "i" may 
be defined as, 
 

   T
iiii

θyxq   (1) 

 

Which can be represented in terms of translation vector u and rotation vector  as follows: 
 

  T
i

uq   (2) 

 
For a general planar mechanism of N rigid bodies, the number of planar generalized 
coordinates is Nq = 3 x N. The system generalized coordinate vector can be defined as: 
 

  TT

N

T

3

T

2

T

1
q...qqqq   (3) 

 
The governing equations in the motion of the planar mechanisms are the constraint equations 
between each two bodies          which impose conditions on the relative motion between them. 
When these conditions are expressed as algebraic equations in terms of generalized 
coordinates, they are called holonomic kinematic constraint Nh can be expressed in vector form 
as:- 

 0(q)k
N

.....Q(q),......k
1

Q(q)kQ
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Hence, the system has NDOF independent coordinates which are called degrees of freedom, 
where 

 NDOF = Nq – Nh  (5) 
 
To analyze the motion of the mechanical system we must define an additional NDOF driving 
constraint that uniquely determines q(t) algebraically. 
 

 0(q,t)QD   (6) 

 
The kinematics and driving constraint equations (4, 6) can be combined in vector form as 
follows: 
 

   0(q,t)Q(q,t)QQ(q,t)
TDK    (7) 

 
Such a system is called Kinematically driven system. 

2.1 VELOCITY AND ACCELERATION DERIVATIONS 
The chain rule of differentiation has been used to obtain the velocity and acceleration equations 
by taken the first and second derivatives of the constraint equations (7) with respect to time as 
follows:  

 
0Q    qQ

tq


 (8) 
 

 
  0qQQqQ2qqQqQ

qttqtqqq
 

 (9) 
Where  

 
 

ttqtqq
QqQ2qqQ  

 (10) 
 
This can be partitioned according to the definition of the generalized coordinate q in equation 
(2) as follows: 
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Where Qq and Qt are defined as the partial derivative of Q with q and t respectively. 
For nonsingular Jacobin matrix Qq, the velocity can be obtained numerically as: 
 

  tq QQq   -   1
                                                            (13) 

 

  
  1 qQq

     (14) 
 
Newton-Raphson method has been used to solve the kinematically driven equations at each 
instant of time.    
2.2 Joint Library 
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The objective of the joint library is to define a set of famous joints through its algebraic 
constraint equations to represent its physical function. The motion of any body is constrained 
relative to the global frame "absolute constraint" or relative to other body reference frame 
"relative constraint" [1].  
2.3 Dynamic Analyses 
Based on energy approach, the reaction forces that act on bodies are derived from Lagrange 

multipliers theorem which guarantees the existence of a Lagrange multiplier vector  such that 
[7], 

 FQqM T

q
   (15) 

This can be partitioned as follows: 
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Equations (12, 16) can be rearranged in mixed differential-algebraic matrix form as: 
 

 

















































































u

u

u

u

uuu

TT

uu

T

u

T

uuuuu

F

Fu

00QQ

00QQ

QQMM

QQMM





 (17) 

 
From equations (11, 12), the velocity and acceleration of the translation coordinates u can be 
represented as: 
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The coefficient  in equation (16) can be obtained as:  
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From acceleration equation into equation (16) to obtain differential equation in the coordinates  
as: 

  FM v   (19) 

 
Runge-Kutta fourth method has been used to solve equation (19) in terms of generalized 

coordinate. 
 
Slider Crank Mechanism  

 
The slider-crank mechanism shown in Figure 1 can be modeled using the constrained body 
analysis and the constraint library of joints developed earlier by the authors [1]. The slider-crank 
mechanism can be modeled in many different ways, one is introduced here to demonstrate the 
perpetration and the analysis of the data required for kinematic, dynamic and inverse dynamic 
analyses of this mechanism.  
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Figure 1.  Slider-crank mechanism 

 
The mechanism is modeled by 4 bodies, ground, crank, connecting rod and slider, with twelve 
generalized coordinates. Joints used herein are three revolute joints and absolute posit ion 
constraints for the slider and ground which demonstrate eleven holonomic constraint equations. 
The data required for the joint modeling is illustrated in table 1. 
 

Table. 1 data of the slider-crank joints 

Joint Revolute Revolute Revolute Ground Slider 

point A B C A C 

bodies 1 2 2 3 3 4 1 4 

xi 0 -1 1 
-

1.75 
0 0 0 0 

yi 0 0 0 0 0 0 0 0 

       0 0 

 
It is clear that the mechanism has one degree of freedom, which must be specified to complete 

the modeling. If the crank rotates with angular velocity 2 rad/s and driven 

constraint t ω
4

π
(t)θ

2
 , Table 2. Shows the geometric properties of the mechanism [2]: 

 
Table 2. Properties of the slider-crank mechanism 

Body Number 1 2 3 4 

Mass [kg] 1 200 35 25 

Moment of inertia [kg 
.m2] 

1 450 35 0.02 

 
 
3.1 Kinematic analysis 
 

By using this model, kinematic analysis of the slider-crank mechanism is carried out using our 
own technique with a Matlab code. Since the motion of the slider (body 4) is of greatest concern 
in industrial applications, the position )x( , velocity )x(  , and acceleration )x(   of the slider are 

plotted for many different variations.  

Two constant driving angular velocities 1 = 2 rad/s and 2 = 4 rad/s are considered, Figure 
2.a. shows the acceleration, for the two driving constraints. Figure 2.b. shows the corresponding 
published results by Haug [2]. 

x 
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x2 x3 
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Figure 2.a. Time history of Slider acceleration 

with different angular velocities () 

Figure 2.b. Time history of Slider 
acceleration with different connecting rod 

length 
 
It is quiet convenient that the lock-up configuration will take place when the connecting rod 
(body 3) is shorter than the crank arm (body 2). Choosing the connecting rod length as 1.9 m 
which is shorter than the crank arm length (L = 2 m). We observe that in Figure 3. at time t = 
0.074 sec both velocity and acceleration of the slider approach infinity, and the acceleration 
shows the more rapid divergence to infinity.  
 

 
Figure 3. Velocity and acceleration of slider versus time (lock-up case) 

 
3.2 Inverse Dynamic 
 
The kinematic driving condition for the slider mechanism is used, to carry out inverse dynamic 
analysis. Gravitational force is neglected in this analysis. The torque required to achieve the 
constant angular displacement driving condition and the reaction force at the crank at the crank 
bearing ( joint A ) are calculated using Lagrange multipliers, as indicate earlier, and plotted in 
Figures 4 and 5. respectively. 
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Figure 4. Driving torque, kinematically drevin 
Slider-crank 

Figure 5. Reactions at joint A; kinematically 
drevin Slider-crank 

 
3.3 Dynamic analysis 
 

A torque of 14450 N.m has been applied on the crank with initial angular velocity 30 rad/s. 
Three simulations were carried out with different values of polar moment of inertia of the crank, 
(J2 = 225, 450, 900 kg.m2). As it is expected that, the larger the flywheel inertias will lead to 
less variation in the angular velocity of the fly wheel. Figures 6 and 7. confirm that behavior, 
both Figures show that, for the 1st choice of the inertia leads to the failure of the compressor to 
complete a single cycle. 
 

  
Figure 6. Angular velocity of crank with 

different flywheel inertias 
Figure 7. Time history of Slider position 

with different flywheel inertias 
 
Two-link mechanism 
 
The important of the two-link mechanism is that it is the key-player in many mechanical and 
structural systems. The geometry and inertia properties of the proposed model are shown in 
Figure 8. and table 3. 
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Table 3.  Properties of the two-link mechanism 

 

Body Number 1 2 3 

Mass [kg] 1 10 2 

Moment of inertia [kg 
.m2] 

1 
10
0 

20 

 
Table 4. Data of the two-link mechanism 

Joint type 
Revol

ute 
Revolute 

Grou
nd 

Related 
point 

A B A 

Related 
bodies "i" 

1 2 2 3 1 

xi 0 
-
0.
5 

0.
5 

-
0.125 

0 

yi 0 0 0 0 0 

     0 
 

Figure 8. the two-link mechanism 
 

 
The model has been analyzed using 3 bodies (ground and two links) and 3 joints (2 revolute 
joints and 1 ground) with the modeling data as shown in table 4, with nine generalized 
coordinates and seven holonomic constraint equations. It is quit clear that, the model has two 
degrees of freedom. 
 
4.1 Kinematical Analysis 
 
By using this model, kinematic analysis of the 2-Link mechanism is carried out using our own 
technique with a Matlab code, since the motion of the second link (body 3) in Figure 8. is of 
greatest concern in manipulator design, the position, velocity, and acceleration of this link are 
plotted for many different variations in the driving constraints; these constraints can be 
represented graphically and analytically  as shown in Figure 9 With k as a constant value 

(equals to 18), and the time period  is chosen to be one sec. 
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Figure 9. Different driving constraints represented graphically and analytically 
 

The length of the first link ( equals 1 m) and the second is ( equals 0.25 m) links are held 
constant. Figures 10 and 11 show the horizontal and vertical positions of the tip with different 
driving constraints, respectively.  
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Figure 10.  Time history of horizontal position 
of the Tip with 3rd driving contraint  

Figure 11.  Time history of veritcal position of 
the Tip with 3rd driving contraint  

 
Figures 12 and 13  show the horizontal and vertical velocities of the tip with different driving 
constraints, respectively.  

3

2

1







 



Proceeding of the 14th AMME Conference, 25 -27 May 2010 Paper   DV  - 5 10 

 

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 0.5 1 1.5 2

Time [sec]

H
o

ri
z
o

n
ta

l 
v

e
lo

c
it

y
 [

m
/s

e
c

]

 

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 0.5 1 1.5 2

Time [sec]

H
o

ri
z
o

n
ta

l 
v

e
lo

c
it

y
 [

m
/s

e
c

]

 

Figure 12.  Time history of horizontal velocity of 
the Tip with 3rd driving contraint  

Figure 13.  Time history of veritcal velocity of 
the Tip with 3rd driving contraint  

 
Figures 14 and 15 show the horizontal and vertical accelerations of the tip with different driving 
constraints, respectively.  
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Figure 14.  Time history of horizontal 
acceleration of the Tip with 3rd driving contraint  

Figure 15.  Time history of veritcal acceleration 
of the Tip with 3rd driving contraint  

 

 A parametric study was carried out  using different length of the second link, that is L1 = 0.25m, 
L2 = 0.5m, and L3 = 0.75 m, the length of the first link is held constant and equals to 1m. We 
chose the third driving constraint as the operating driver.  Figures 16 and 17 show the variation 
of the tip horizontal and vertical positions, respectively.  Figures 18 and 19 show the variation of 
the tip horizontal and vertical velocity, respectively.  Figures 20 and 21 show the variation of the 
tip horizontal and vertical velocity, respectively.        
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Figure 16.  Time history of horizontal position of 

the Tip with different length of 2nd link 
Figure 17.  Time history of vertical  position of the 

Tip with different length of 2nd link 

  
Figure 18.  Time history of horizontal velocity of 

the Tip with different length of 2nd link 
Figure 19.  Time history of vertical velocity of the 

Tip with different length of 2nd link 

  
Figure 20.  Time history of horizontal acceleration 

of the Tip with different length of 2nd link 
Figure 21.  Time history of vertical acceleration of 

the Tip with different length of 2nd link 
 
4.2 Inverse dynamic analysis  

 
The kinematic driving conditions prescribed in reference [1], to carry out inverse dynamic 
analysis. Gravitational force is neglected in this analysis. The torques required to achieve these 
angular driving conditions are calculated using Lagrange multipliers Figure 22 shows the driving 
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torques for the 2 links of the mechanism that are required to achieve the third driving constraint 

3 , Figures 23 and 24 show the reaction forces at joint A. Figures 25 and 26 show the reaction 

forces at joint B. 
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Figure 22.  Driving torques of kinematically driven 2-Link mechansim 
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Figure 23.  Time history of horizontal reaction 
force at joint A 

Figure 24.  Time history of vertical reaction force 
at joint A 
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Figure 25.  Time history of horizontal reaction 
force at joint B 

Figure 26.  Time history of vertical reaction force 
at joint B 
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4.3 Dynamic analysis 
 

In this section the 2-Link mechanism is analyzed with two different cases, in the first case the 
gravitational forces are neglected, and the input torques are equal to the torques resulted from 
the inverse dynamic analysis shown earlier in section 4.2 (similler to the step function torque) 
with no payload.  
Motion begins at t = 0, with initial conditions as follows:- 
 

                      rad.00
2

 ,   rad.00
3

    sec/rad.00
2

 ,   sec/rad.00
3

 . 

 

Where 
22

,   are the angular position and velocity of the 1st link, respectively  and ,
22

,   are the 

angular position and velocity of the 2nd link, respectively. A simulation was carried out with  

time period  equals 2 seconds and k = 18. 
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Figure 27. Analytical and graphical representation of the input Torque 
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Figure 28.  Time history of angular position of the 
1st link derived by input torque  

Figure 29.  Time history of angular position 
of the 2nd link derived by input torque  
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Figure 30.  Time history of angular velocity of the 
1st link derived by input torque  

Figure 31.  Time history of angular velocity 
of the 2nd link derived by input torque  

 
As it expected the resulted angular positions have the same nature of the input ones in the 
inverse dynamic analysis, which is carried out earlier. Figures 28 and 29. show the angular 
position of the two links with the input torque. Figures 30 and 31. show the angular velocity of 
the two links . 
 
Conclusions 

 
The basic objectives of this work have been successfully achieved, and a powerful versatile 
computer package, which is capable of kinematic analysis and dynamic analysis for mechanical 
systems, have been developed based on advanced theory and efficient algorithms. The 
constraint equations of different types of joints have been introduced through joint library of two 
effective types of joints, revolute and prismatic joints. Kinematic and dynamic analyses of any 
mechanical system can be achieved via a run of the developed package, which manually 
considers the types of joints through an input data file by the user to carry out the required type 
of analysis. The dynamic analysis has been represented by mixed differential-algebraic 
equations of motion. The developed computer package has been successfully validated through 
comparison of its results with published results of slider-crank mechanism with different 
effective parameters (length of connecting rod). Parametric study has been carried out on 
slider-crank mechanism and 2-link manipulator. 
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