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Abstract: 

 
In the literature, very few publications are available that deal with the structural response of 
biocomposite plates with interlayer slips. Realistically, the bonding in the plates is rigid 
enough to make a significant contribution to the overall structural integrity of the plate, yet 
flexible enough to permit interlayer shear deformation. A closed-form solution for laminated 
biocomposite plates assembled with non-rigid bonding and subjected to edgewise loading is 
presented in this paper. The edgewise load can be uniaxial or biaxial; applied to the facings 
only, core only, or to both components. The solution satisfies the equilibrium equations of the 
layers, the compatibility equations of stresses and strains at the interfaces, and the boundary 
conditions. To investigate the effects of the finite values of bonding stiffness on the 
mechanical responses of the plates, numerical evaluations are conducted. 
 
The results obtained have shown that the adhesive stiffness has a strong effect on the plate 
mechanical response. Beyond a certain level of stiffness, the usual assumption of perfect 
bonding used in classical theories is acceptable. This could provide an answer to what 
constitutes perfect bonding in terms of the ratio of the inner layer stiffness to the bonding 
stiffness. 
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1. Background: 

 
Significant advances in the development of biodegradable composites have promoted the 
modern application of biocomposite plates to meet modern challenges (3, 7, 11, 12, 20, 22, 
26, 27, and 30). They have gained unprecedented popularity in high-performance products 
that need to be lightweight yet strong enough to take harsh loading conditions. In recent 
years, increasing attention has turned to novel composites for the resistance to blasts due to 
possible manmade incidents (2, 21, and 31). Furthermore, the increased interests in 
environmental sustainability of resources have propelled considerable advancements in 
biocomposites made from natural materials. Through natural and synthetic fibers, hybrid 
designs are emerging as competitive composites for conventional structural components (22, 
26, and 27). They introduce viable alternatives to classic systems and became one of the 
fastest growing products for decks, bridges, emergency shelters, and off-shore deck 
platforms. 
 
It should be emphasized that bonding plays, unavoidable role in the manufacturing and 
performance of composite systems. However, modern challenges urge the development of 
natural bonding to substitute for the synthetic thermosetting resins in order to decrease the 
dependence on fossil fuels and meet ever-increasing environmental requirements. An in-
progress research (3, and 8) aims at the potential use of the lignin and a formaldehyde-free 
bonding. 
 
Existing analytic and experimental methods of analysis of composite have invariably 
assumed perfect bonding between layers (1, 23, 24, 21, 29, and 31). Nevertheless, interlayer 
slips do occur because of the finite bonding stiffness; the bonding creep under sustained 
loads and environmental effects. Analysis of wood joist floor systems, taking into account 
interlayer shear stresses, was done by Goodman et al. (4, 5, 6, and 30). The interlaminar 
shear in composites under plane stress was investigated analytically by Puppo and Evensen 
(25) and with the finite element method by Isakson and Levy (19). In a series of analytic and 
experimental studies, the author has investigated the structural behaviors of plates with 
interlayer slips and under transverse and thermal loads (14, 15, 16, and 18) and beam-
columns with interlayer slip (18). 
 
The objective of this paper is to ascertain the effect of interlayer slips on the performance of 
plates due to edgewise loads. Because of the inherit complexity of composite plates, this 
paper uses three layers plates in order to institute the foundation for future further studies. In 
this way, high confidence is established in the reliability of the very complex mathematic 
approach of the problem. 
 
2. Formulation: 

 
Consider a composite plate of span 2a and width 2b, subjected to in-plane biaxial loads as 
shown in Figure 1. The facings or outer layer are of equal thickness t f. The middle layer of a 
thickness 2 tc, has a modului of elasticity, Ecx and Ecy usually significantly less than those of 
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the faces Efx and Efy. However, its shear modului Gcxy, Gcxz and Gcyz should be high enough 
to develop the interaction required between the layers. The adhesive between the facings 
and core has finite stiffness Kx and Ky. This kind of problem has been attacked using the 
fundamentals of theory of elasticity (9, 10, 13, 14, 15, 16, 17, and 18). Generally, the stress 
state in the faces and core elements is shown in Figure 2. The equilibrium of the face 
element requires that 
 

f fyx x

f

σ τ q
0

x y t

 
  

 

x
 (1) 

 

fy fxy y

f

σ τ q
0

y x t

 
  

 
 (2) 

 
in which 

fx, fy =  Normal stress components in faces; 

fxy, fyx  =  Shear stress components in faces; 
qx and qy  =  Interlayer shear stress; 
tf  =  The thickness of the face; 
f = Subscript denoting face; 
x, y  =  Coordinate axes. 
 
The state of stress in the core must satisfy the following equilibrium equations. 
 

cx cyx czxσ τ τ
0

x y z

  
  

  
 (3) 

 
cy cxy czyσ τ τ

0
y x z

  
  

  
 (4) 

in which  

cx, cy, cz  =  Normal stress in the core; 

cxy, cyz, czx  =  Shear stress in the core; 
c =  Subscript denoting core. 
 
The normal stress components in the facings and core must also satisfy the overall 
equilibrium equations, which are 
 

f fx cx x

y=2b y=2b y=2bz=tc

2 t dy + dy dz + dy = 0pσ σ

y=0 y=0 z=-tc y=0

     (5) 

f fy cy y

y=2a y=2a y=2az=tc

2 t dx + dx dz + dx = 0pσ σ

y=0 y=0 z=-tc y=0

     (6) 

 
where px and py are the applied edge loads. At the interfaces between the core and the skins, 
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the stresses and strains must be compatible, thus 

x czx=q τ
z=±tc

 (7) 

y czy=q τ
z=±tc

 (8) 

x

c
cxfx

Δ
-ε ε

x z=±t





 (9) 

y

c
cyfy

Δ
-ε ε

y z=±t





 (10) 

c
cxyfxy

=γ γ
z=±t

 (11) 

in which 

 and   = Normal and shear strain, respectively; 

i  =  i

i

q

K
 ; 

Ki  = Stiffness of adhesive in the i direction. 
 
Solutions to the problem must also satisfy the prescribed displacement boundary conditions. 
With respect to a composite plate subjected to edgewise loads, the relevant boundary 
conditions are 

at x = 0, 2a fx = fxo cx = cxo  (12) 

at y = 0, 2b fy = fyo cy = cyo  (13) 

at x = a   fxy = cxy = 0 uc = uf = 0 (14) 

at y = b  fyx = cyx = 0 vc = vf = 0 (15) 
in which  

fxo  =  pfxo / tf 

fyo  =  pfyo / tf 
u and v =  displacements in the x and y directions, respectively. 
 
For the plate in Figure 1, a solution for normal stress components in the core satisfying the 
boundary conditions in Equations 12 and 13 is considered as (14, 15, 16, 17, 18) 
 

cx x x cxomnσ = S S + σA

m =1, 3, .. n =1, 3, ..

 

  y  (16) 

cy y x cyomnσ = S S + σC

m =1, 3, .. n =1, 3, ..

 

  y  (17) 

in which 

cxo, cyo = Edge stresses in the core in the x and y directions, respectively; 
2

2 2 m
x x x x x c x c x x xx x

α
= θ (2 θ coshθ z + z θ sinhθ z - t θ cothθ t coshθ z ) - cos zαk

2
  ; 

2

2 2 n
y y y y y c y c y y yy y

β
= θ (2 θ coshθ z + z θ sinhθ z - t θ cothθ t coshθ z ) - cos zαk

2
  ; 
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x c

x c x cx
x c

θ t
= - + θ t coshθ tk

sinh θ t
 ; 

y c
y c y cy

y c

θ t
= - + θ t cosh θ tk

sinh θ t
 ; 

cx
x m

cxz

E
=θ α

G
; 

cy

y n

cyz

E
= βθ

G
; 

x  =  
c

m

2 t


; 

y  =  
c

n

2 t


; 

Sx, Sy = sin m x and sin n y, respectively; 

m, n = 
m

2 a


and 

n

2 b


, respectively; 

Amn, Cmn = Unknown coefficients; 
m, n =  Integers. 
 
Using Equations 16 and 17, expressions for the displacement of the core that satisfy the 
boundary conditions in Equations 14 and 15 are derived as follow 

x x y cxy y x ymn mn
c

cx m cy m

cxo cxy cyo

cx cy

1 C S ν C SCA
u = - +

E α E α
m =1, 3, .. n =1, 3, .. m =1 n =1

σ ν σ
(x - a ) ( - )

E E

   
   

 

 (18) 

 

y x y cyx x x ymnmn
c

cy n cx n

cyo cxy cxo

cy cx

1 S C ν S CC A
v = - + +

E β E β
m =1, 3, .. n =1, 3, .. m =1 n =1

σ ν σ
(y - b ) ( - )

E E

   

   
 

 (19) 

in which 

  = Poisson’s ration; 
Cx, Cy = cos m x and cos n y, respectively. 
 
The shear strain in the core is obtained by differentiating Eqs. 18 and 19; thus 
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n m
cxy x cyx x ymn

cx m n

m n
y cxy x ymn

cy n m

1 β α
γ = ( - + ν ) C C +A

E α β
m =1, 3, .. n =1, 3, ..

1 α β
( - + ν ) C CC

E β α
m =1, 3, .. n =1, 3, ..

 

 

 

 





 (20) 

 
By substituting Equations 16, 17 and 20 in Equations 3 and 4, the shear stresses are 

cxy n m
cxz x m n cyx x ymn

cx m n

cxy m n
y n cxy x ymn

cy n m

z
G β α

τ = dz [ -α + β (- + ν ) ]C S +A
E α β

m =1, 3, .. n =1, 3, .. z=0

z
G α β

dz β (- + ν ) C SC
E β α

m =1, 3, .. n =1, 3, .. z=0

 

 

  

  





 (21) 

cxy m n
cyz y m m cxy x ymn

cy n m

cxy n m
x m cyx x ymn

cx m n

z
G α β

τ = dz [ -β + α (- + ν ) ] S C +C
E β α

m =1, 3, .. n =1, 3, .. z=0

z
G β α

dz α (- + ν ) S CA
E α β

m =1, 3, .. n =1, 3, .. z=0

 

 

  

  





 (22) 

 
The interlayer shear stresses are obtained from Equations 21 and 22 as follow 

gn1 gn2 x ymn mnx
= ( λ + λ ) C Sq CA

m =1, 3, .. n =1, 3, ..

 

   (23) 

gk1 gk2 x ymnmny
= ( λ + λ ) S Cq C A

m =1, 3, .. n =1, 3, ..

 

   (24) 

in which 
 

cxy n m
gn1 m n cyxx

cx m n

c

z
G β α

λ = [-α + β (- + ν ) ]dz
E α β

z=0 z=t

   

cxy m n
gn2 n cxyy

cy n m

c

z
G α β

λ = β (- + ν )dz
E β α

z=0 z=t

   

cxy m n
gk1 n m cxyy

cy n m

c

z
G α β

λ = [-β + α (- + ν ) ]dz
E β α

z=0 z=t

   
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cxy n m
gk2 m cyxx

cx m n

c

z
G β α

λ = α (- + ν )dz
E α β

z=0 z=t

   

 
Expressions for the shear stresses in the facings are obtained from Eqs 11 and 20 as 

c

c

fxy n m
fxy cyxxmn

z=tcx m nm=1, 3, .. n =1, 3, ..

fxy n fxy m
x y

gn1 gk2
x y

fxy m n
cxyymn

z=tcy n mm=1, 3, .. n =1, 3, ..

fxy n fxy m
x y

gn2 gk1
x y

G β α
τ = [ ( - + ν ) +A

E α β

G β G α
+ ] C C +

K K

G α β
[ ( - + ν ) +C

E β α

G β G α
+ ] C C

K K

λ λ

λ λ

 

 

 

 





 (25) 

 
An expression for the normal stress in the facings is obtained by from Eqs. 23, 25 and 1; 

fx x ymn mnz1 z2
σ = ( + ) S S + f(x,y)CA

m =1, 3, .. n=1, 3, ..
λ λ

 

   (26) 

in which 
2

fxyfxy n n m gn1 2n
cyxxz1

ccx m m n m fx

G βG β β α 1λ
= (- + ν ) + ( + )

z = tE α α β α tK
λ 

fxy ngk

y

G

K


  

2
fxy nfxyfxy n m n gn2 gk1n

cxyyz2
ccy m n m m fx y

G βG βG β α β 1λ λ
= (- + ν ) + ( + ) +

z = tE α β α α tK K
λ   

f(x,y)  = A function representing the constant of integration. 
 
The function f(x, y) is obtained by using Eqs. 5; 16, and 26, thus 

c' '
fx x y xo cxo x ymn mnz1 z2

f m n

t 2 2
σ = [ + ]S S +(σ σ ) S SCA

t a α bβ
m =1, 3, .. n=1, 3, .. m =1 n=1

λ λ
   

     (27) 

in which 
tc

x
0

z1 2 2 2z1 2
f

n n

2 dz2'
= (1- ) -λ

tβ b βb
λ


 

z2 2z2 2

n

2'
= (1- )λ

βb
λ  

 
Similarly, an expression for the normal stress is obtained from Eqs. 2, 6, 17 and 24 as 

c' '
fy x y yo cyo x ymn mnz3 z4

f m n

t 2 2
σ = [ + ]S S +(σ σ ) S SCA

t a α bβ
m =1, 3, .. n=1, 3, .. m =1 n=1

λ λ
   

     (28) 

in which 
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z3z3 2 2
m

2'
= (1- )λ

a α
λ  

c
y

0
z4 2 2z4 2 2

fn m

t
2 dz2'

= (1- ) -λ
t a αa α

λ


 

2
fxy mfxy m n m fxygk2 gn1m

cyxxz3
ccx n m n n fy x

G αG α β α 1G αλ λ
= (- + ν ) + ( + ) +

z = tE β α β β tK K
λ   

2
fxy mfxy m m n fxygk1 gn2n

cxyyz4
ccy n n m n fy x

G αG α α β 1G αλ λ
= (- + ν ) + ( + ) +

z = tE β β α β tK K
λ   

 
Finally, the coefficients Amn and Cmn can be determined using Eqs. 9 and 10 as 

y3 y6

y2 y5

mn
y1 y4

y2 y5

λ λ
-

λ λ
=A

λ λ
-

λ λ

 (29) 

y3 y6

y1 y4

mn
y2 y5

y1 y4

λ λ
-

λ λ
=C

λ λ
-

λ λ

 (30) 

in which 

'' x
mfxy z= tc gn1z1 z3

y1
fx fy cx x

λλ ανλ
= - - +

E E E K
λ


 

'' ycxy mfxy z=tc gn2z2 z4

y2
fx fy cy x

ν λλ ανλ
= - + +

E E E K
λ


 

c c
xo cxo yo cyo

cxo cyof f
fxy cxyy3

m n fx fy cx cy

t t
σ σ σ σ

2 2 σ σt t= [ ]ν ν
a α bβ E E E E

λ
 

    

'' xcyxfyx nz=tc gk2z3 z1

y4
fy fx cx y

ν λβλνλ
= - + +

E E E K
λ


 

'' y
fyx nz= tc gk1z4 z2

y5
fy fx cy y

λβλνλ
= - - +

E E E K
λ


 

c c
yo cyo xo cxo

cyo cxof f
fyx cyxy6

m n fy fx cy cx

t t
σ σ σ σ

2 2 σ σt t= [ - + ]ν ν
a α bβ E E E E

λ
 

  

 
3. Examples 
 
To demonstrate the effects of bonding, a square plate is considered with general properties 



Proceeding of the 14th AMME Conference, 25 -27 May 2010 Paper   MS - 16 9 

 
used in order to represent a wide range of biocomposite components. 
a = b  = 20 in. (1219.2 mm) 
tf = 0.04 in. (1.016 mm); 
Efx = Efy = 107 psi (68.9 GPa); 

fxy = fyx = 0.33 
tc = 1.0 in. (50.8 mm); 
Ecx = Ecy = 2 x 106 psi (137.8 MPa) 
Gcxy = Gcxz = Gcyz = 104 psi (68.9 MPa) 

cxy = cyx = 0.20 
 
Two loading cases are considered. In the first case a biaxial uniformly distributed stress of 

intensity fxo = fyo = 208.3 psi is used. In the second case a uniaxial uniformly distributed 

stress of intensity fxo = 208.3 psi is applied. In each loading case, the load is applied 
independently first to the face and core, and then concurrently to face and core as shown in 
Figures 3, 4 and 5. The normal stress in the facings at the plate center and the shear stress 
in the facings at the plate corner are shown in Figures 6 to 11. It is seen that the face normal 
stress shows greater sensitivity to the variation of bond stiffness value when the latter is in 
the lower range; and beyond a certain level of stiffness, the adhesive can be practically 
considered as rigid. A change in Kx (or Ky) value for example from 103 to 2 x 103 psi/in 
induces a stress decrease almost 6 times in the uniaxial case and 5 times in the biaxial case 
greater than when Kx (or Ky) changes from 9 x 103-104 psi/in. The changes are 24 and 27 due 
to uniaxial core and combined edge loads, respectively, 32 and 22 due to biaxial core and 
combined edge loads, respectively. In all load cases, the face shear stress is practically 
independent of bonding stiffness. Unlike the mechanical behavior of other plates with non-
rigid adhesive (9, 10, 11, 12, 13, 14, 15, 16 and 18), this study reveals that interlayer shears 
are insignificant. This is due to the absence of transverse loads which induce high transverse 
shear forces. This analysis has yet to bring up an important point. By using existing theories 
(1, 24), stress components in composite plates may be determined only at high values of 
bond stiffness with a small margin of error, otherwise the K values must be included in the 
analysis. Another important point has yet to come out of this analysis. By common sense, it 
can be felt that a very stiff adhesive would be unnecessary if the core was too soft, and the 
converse would be unwise. This is quantitatively shown in Figures 6 to 11 which show that 
the ratio of core stiffness to bonding stiffness is one of the main parameters influencing the 
behavior of composite plates. 
 
4. Conclusions: 
 
An analysis of orthotropic composite plates taking into account the effects of the finite 
bonding stiffness has been presented in this paper. The edgewise load can be uniaxial or 
biaxial; applied to the facings only, core only, or to both components. The solution satisfies 
the equilibrium equations of the face and core, the compatibility equations of stresses and 
strains at the interfaces, and the boundary conditions. The numerical results have shown that 
the bonding stiffness, up to a certain level, has a strong effect on the plate response. Beyond 
this level, the usual assumption of perfect bonding in the literature is quite acceptable. The 
answer to what constitute perfect bonding may be best answered in terms of the ratio of core 
stiffness to the bond stiffness, rather than on the individual constituent material. 
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