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Abstract 

Trajectory tracking is a fundamental requirement for wheeled mobile robots, particularly in industrial 

applications that demand precise motion control. This experimental study presents a trajectory-tracking 

control strategy for a four-wheeled mecanum robot. The work begins with the derivation of the robot 

kinematic model. Following this, a system identification approach is employed to capture the robot's 

dynamic behavior accurately. This involves collecting and analyzing input-output data to develop a 

comprehensive dynamic model of the robot. A deep neural network (DNN) is utilized as a black-box 

model to effectively learn and represent the complex nonlinear behavior of the system. The DNN is 

trained on extensive input-output data, ensuring it can generalize well to various operational scenarios. 

Once the dynamic model is established, a separate DNN-based controller is designed. This controller 

leverages the insights gained from the dynamic model to generate precise control signals, enabling the 

robot to follow the desired trajectory accurately. The proposed system identification method 

demonstrates remarkable accuracy, achieving a 99.98% fit to the training data, which is indicative of 

the model's robustness and reliability. To validate the effectiveness of the approach, experimental tests 

are conducted using an infinity-shaped trajectory. The results are highly promising, with the controller 

achieving precise tracking marked by a mean squared error of 0.0005 meter. This level of precision 

highlights the potential of deep learning techniques in addressing complex control challenges in 

wheeled mobile robots. The combination of system identification and deep learning offers a powerful 

toolset for developing advanced control systems.  

Keywords: Wheeled Mobile Robots, Trajectory Tracking, Mecanum Robot, System Identification, 

Deep Neural Networks.
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1. Introduction 

Robotics is a key technology in Industry 4.0, revolutionizing the manufacturing industry by 

enhancing automation systems. It enables precise and cost-effective execution of repetitive tasks, 

significantly improving efficiency and productivity [1]. The integration of advanced robotics into 

industrial processes has led to the development of smarter and more adaptive manufacturing 

environments. These systems can operate continuously with minimal human intervention, reducing 

labor costs and minimizing human error. Wheeled mobile robots (WMRs) are an integral 

component of this robotic revolution, finding a wide range of applications across various industries. 

Their ability to navigate both static and dynamic environments enhances their utility. These robots 

are equipped with sophisticated sensors and control algorithms, allowing them to perform complex 

maneuvers and navigate through cluttered spaces with high precision. This flexibility makes them 

suitable for a variety of tasks. In agricultural applications, WMRs are utilized for activities such as 

planting, harvesting, and monitoring crop health, thereby increasing agricultural productivity and 

sustainability [2]. In manufacturing lines, these robots streamline production processes by 

transporting materials and components between different stages of production, enhancing overall 

workflow efficiency [3]. Warehouses employ WMRs in storage and retrieval systems, where they 

autonomously manage inventory, optimize space utilization, and expedite order fulfillment [4-6].  

Furthermore, WMRs assist humans in hospitality and healthcare settings by providing services such 

as room delivery, patient monitoring, and mobility assistance, thereby improving service quality 

and patient care [7]. In material handling, these robots are used to transport heavy loads, reducing 

the physical strain on human workers and increasing operational safety [8- 11]. The versatility of 

WMRs in these diverse applications underscores their importance in modern industrial and service 

sectors, driving continuous innovation and development in the field of robotics. 

System identification is crucial for understanding the dynamics of linear and nonlinear systems. 

Through this process, accurate representations of how systems respond to inputs can be built. 

System identification techniques are broadly categorized into black-box and gray-box approaches. 

Black-box methods rely only on input/output data, assuming no prior knowledge of the system 

internal dynamics [12]. 

In contrast, gray-box approaches combine knowledge of the system dynamics with data-driven 

insights, leveraging both existing understanding and information extracted from input/output data 

[13]. Parameters can be estimated by first defining the equations of motion for the system. Then, a 

simulation is created using Simscape physics-based components, and the output data from the 

model is compared to experimental data. Finally, a least squares estimation technique is employed 

to determine the optimal parameter values [14]. 

Neural networks have become increasingly important in robotics, particularly in the areas of system 

identification and control. Their ability to learn and generalize complex nonlinear system dynamics 
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from sensor data has proven highly effective, enabling more sophisticated and adaptive robotic 

systems [10]. The versatility of neural networks allows them to be applied in various configurations 

and architectures, each suited to different aspects of robotic control and identification. One of the 

most widely used neural network structures in robotics is the feed-forward neural network. These 

networks are trained using back-propagation algorithms and are adept at identifying model systems 

by learning the underlying patterns in data [15-17]. The back-propagation algorithm iteratively 

adjusts the network weights to minimize the error between the predicted and actual outputs, thereby 

enhancing the model accuracy.  

A notable modification of the traditional multilayer feed-forward neural network is the PID neural 

network. This architecture incorporates dynamic characteristics into the hidden layer units, making 

it particularly suitable for both control and identification tasks [18]. The PID neural network 

leverages the principles of proportional-integral-derivative control, integrating these with neural 

network learning capabilities to manage dynamic systems more effectively. With the advent of 

deep learning, more advanced neural network structures have been developed. Deep recurrent 

neural networks (RNNs), for instance, have shown great promise in accurately identifying complex 

system behaviors due to their ability to capture temporal dependencies in data [19]. RNNs, with their 

feedback loops, are particularly useful in scenarios where the system past states significantly influence its 

future states. 

Moreover, the combination of recurrent neural networks with state estimation techniques, such as 

the extended Kalman filter, has yielded promising results. This hybrid approach enhances the 

neural network ability to control and identify single-input single-output systems by effectively 

estimating the system states and improving the overall control accuracy [20 - 21]. The integration 

of these advanced neural networks into robotic systems represents a significant step forward in 

achieving more autonomous and intelligent robotic behavior, capable of adapting to a wide range 

of dynamic and complex environments. 

In the context of wheeled mobile robots, different strategies can be used for control based on deep 

neural networks. For example, one approach utilizes a neural network to learn robot kinematics, 

specifically the relationship between wheel rotations, and base movement. By using sensor 

feedback to adjust the control signals, the system enables the robot to accurately follow a specific 

trajectory [22]. Another method leverages two interconnected Artificial Neural Networks to 

achieve optimal path planning and obstacle avoidance. The first ANN processes raw data from a 

LIDAR sensor to identify obstacles and determine their positions. The second ANN then takes this 

obstacle information, combines it with the robot current position and desired goal position, and 

generates an optimal trajectory for the robot to follow [23]. Finally, a hybrid controller for trajectory 

tracking combines two main components: a Neural Network-Based Kinematic Controller, which 

determines the gains of a kinematic controller, and a Model Reference Adaptive Controller, which 

ensures that the robot actual behavior matches that of a desired reference model [24]. 

The inherent challenges in trajectory tracking for Wheeled Mobile Robots are often addressed 
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through the implementation of advanced controllers. However, the complexity and computational 

demands of such controllers can pose significant obstacles in hardware realization. Consequently, 

the development of controllers characterized by simplified structures and reduced computational 

burdens is essential to enhance tracking accuracy without necessitating sophisticated hardware. In 

this context, a neural network controller for Mecanum-Wheel Mobile Robots has been proposed 

[25]. This approach utilizes a two-layer feedforward neural network, trained to minimize 

discrepancies between its output and a predetermined reference control signal. Through continuous 

adaptation, the controller achieves rapid convergence to desired trajectories. Trajectory tracking in 

mobile robotics, particularly within unstructured and uncertain environments, remains a persistent 

area of concern. Interval type-2 fuzzy-like PID controllers, employing type-2 fuzzy logic sets, have 

demonstrated superior robustness and performance compared to their traditional type-1 

counterparts. The optimization of these controllers is often achieved through the firefly 

optimization algorithm, resulting in minimized tracking errors and smooth velocity profiles, even 

in the presence of disturbances [26]. Omni-directional mobile robots equipped with Mecanum 

wheels exhibit exceptional maneuverability due to their independent rotational and translational 

capabilities. 

Model predictive control algorithms have proven effective for trajectory tracking in such systems, 

as evidenced by simulation results [27]. For nonholonomic mobile robots, neural adaptive 

controllers based on dynamic models have been developed to ensure precise trajectory tracking [28 

- 29]. These controllers incorporate global tracking errors into learning laws, guaranteeing 

asymptotic stability. Furthermore, a novel machine learning technique has been introduced to 

enhance trajectory tracking through neural networks [30]. This approach facilitates automatic 

online gain tuning, thereby reducing the need for manual adjustments. Consequently, enhanced 

precision and performance are achieved across diverse trajectories without requiring pre-learning 

phases, demonstrating significant improvements over conventional control methodologies. 

Despite these advancements, there remains a relatively limited number of comprehensive studies 

applying neural network-based control strategies to multi-input, multi-output (MIMO) systems, 

particularly in the realm of wheeled mobile robots, leaving a need for more robust solutions capable 

of handling the intricacies of MIMO systems. This experimental research proposes to address this 

by developing a deep learning-based control framework tailored for MIMO wheeled mobile robots. 

The primary aim is to derive a dynamic model using deep neural networks that can accurately 

capture the complex interactions between multiple input and output variables. Subsequently, the 

research will design a neural network controller that leverages this dynamic model to achieve 

precise trajectory tracking and robust performance in various operational conditions. By doing so, 

this study seeks to advance the field of robotic control, providing a scalable and adaptable solution 

for the next generation of industrial and service robots. 

2. Kinematics of Wheeled Mobile Robot 

The robot is equipped with four mecanum wheels, each featuring passive rollers capable of 
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spinning freely around their axes. These rollers are positioned at an angle relative to the wheel axis 

of rotation, allowing the robot to perform sideways movements without requiring traditional 

turning. This unique design endows the robot with exceptional maneuverability as shown in fig.1. 

 
Fig. 1.a front view and top view of Wheeled mobile robot with mecanum wheels. 

1 dc motor with encoder,2 mecanum wheel,3 mpu6050 imu sensor,4 arm robot,5 Cytron motor 

driver,6power supply,7 teensy3.2 microcontroller  

In the world frame {I}, the robot position is denoted by the coordinates [x, y, ψ], where x 

indicates the forward position, y represents the lateral position, and ψ denotes the angular 

orientation. Conversely, the robot velocity in the robot frame {B} is expressed by the vector 

[u, v, r], where u is the forward velocity, v is the lateral velocity, and r is the angular velocity. 

Fig.1.b illustrates the relationship between the world frame {I} and the robot frame {B}. 

 

[

𝑥̇
𝑦̇

𝜓̇
] = [

ucos(𝜓) − vsin(𝜓)

usin(𝜓) + vcos(𝜓)
𝑟

] = [

cos(𝜓) − sin(𝜓) 0
sin(𝜓) cos(𝜓) 0

0 0 1

] [
𝑢
𝑣
𝑟

] (1) 
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The relationship between the robot input velocity command 𝝃  and the derivative of its generalized 

coordinates 𝜂̇ is given by 𝜼̇ = 𝑱(𝝍)𝝃. Here, 𝜼 is a vector representing the robot generalized coordinates, 

which include its position and orientation. The vector 𝝃 contains the robot input velocity commands. The 

Jacobian matrix 𝑱(𝝍), which depends on the robot′s current orientation 𝝍, maps these input 

commands to the corresponding changes in the generalized coordinates. The parameters 𝜶𝒊, and 𝝆𝒊  

denote the radius of the wheel and the roller, respectively. The variables 𝝎𝒊, and 𝜷̇𝒊 represent the angular 

velocity of the wheel and the rate of change of the roller angle, respectively. Moreover, 𝝓𝒊 the angle 

between roller and 𝑥-frame. 𝜽𝑩𝒊 the angle between frame {𝑩} and {𝑪} as shown in Fig. 2. 

Equation 2 describes the velocity of the ith roller in the 𝑦-direction of frame {𝐶} 

𝑌̇𝐶𝑖
= 𝛽̇𝑖 𝜌𝑖 cos (𝜙𝑖) (2) 

Equation 3 describes the velocity of the ith roller in the x-direction of frame {C} 

𝑋̇𝐶𝑖
= 𝜔𝑖 𝑎𝑖 − 𝛽̇𝑖 𝜌𝑖 sin (𝜙𝑖) (3) 

𝜔𝑖 = [1/𝑎𝑖 1/𝑎𝑖 tan(𝜙𝑖)] [
𝑋̇𝐶𝑖

𝑌̇𝐶𝑖

] (4) 

 
Fig. 1.b Geometry and coordinate frames of the wheeled mobile robot. 
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The velocity of the frame {𝐶} relative to frame {𝐵} 

(
𝐵

𝑐𝑖
) 𝑣 = [

cos (θ𝐵𝑖) −sin (θ𝐵𝑖)

sin (θ𝐵𝑖) cos (θ𝐵𝑖)
] [

𝑋̇𝑐𝑖

𝑌̇𝑐𝑖

] = [
1 0 −𝑑𝑦𝑖

0 1 𝑑𝑥𝑖
] [

𝑢
𝑣
𝑟

] (5) 

[
𝑋̇𝑐𝑖

𝑌̇𝑐𝑖

] = [
cos (θ𝐵𝑖) sin (θ𝐵𝑖)

−sin (θ𝐵𝑖) cos (θ𝐵𝑖)
] [

1 0 −𝑑𝑦𝑖

0 1 𝑑𝑥𝑖
] [

𝑢
𝑣
𝑟

] (6) 

General wheel kinematics can be derived from equation 7. 

 

𝜔𝑖 = [
1

𝑎𝑖

1

𝑎𝑖
 tan (𝜙𝑖)] [

cos (θ𝐵𝑖) sin (θ𝐵𝑖)

−sin (θ𝐵𝑖) cos (θ𝐵𝑖)
] [

1 0 −𝑑𝑦𝑖

0 1 𝑑𝑥𝑖
] [

𝑢
𝑣
𝑟

] (7) 

Using the parameters listed in Table 1 for the wheeled mobile robot, we apply the general wheel 

kinematics to derive the inverse kinematics. This derivation yields the mathematical relationship between 

the wheel velocities and the robot linear and angular Velocities. 

 

Fig. 2: Geometry of the mecanum wheel with the roller 
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[

𝜔1

𝜔2

𝜔3

𝜔4

] =
1

𝑎
[

1 −1 −(𝑑 + 𝐿)
1 1 −(𝑑 + 𝐿)
1 −1 𝑑 + 𝐿
1 1 𝑑 + 𝐿

] [
𝑢
𝑣
𝑟

] (8) 

 
Table 1: kinematic parameter of the wheeled mobile robot 

Furthermore, from the derived inverse kinematics equation, we can obtain the forward kinematics. 

[
𝑢
𝑣
𝑟

] = 𝜉 =
𝑎

4
[

1 1 1  
−1 1 −1      
−1

𝑑 + 𝐿

−1  

𝑑 + 𝐿

1

𝑑 + 𝐿
   

1
1
1

𝑑 + 𝑙

] [

𝜔1

𝜔2

𝜔3

𝜔4

] (9) 

3. System Identification using Artificial neural network  

System identification is the process by which a mathematical model for a dynamic system is developed 

through the analysis of observed data. In this domain, artificial neural networks (ANNs) have emerged 

as a powerful tool due to their capability to approximate complex nonlinear relationships and learn from 

data. In the context of robotics, the effectiveness of ANNs in learning intricate nonlinear dynamics from 

sensor data has been demonstrated, significantly enhancing system identification and control capabilities. 

By utilizing these networks, complex behaviors of robotic systems can be captured, allowing for more 

precise modeling and control. This capability is particularly crucial for applications such as the 

identification and management of the dynamics of wheeled mobile robots, where accurate modeling 

directly impacts the robot performance and maneuverability. 

ANNs are structured with distinct layers: input, hidden, and output. Within each layer, fundamental 

mathematical operations are executed by each node. These operations involve the matrix multiplication 

of the input with associated weights, to which a bias term is added. Subsequently, a nonlinear activation 

function is applied to the result, a procedure known as forward propagation as shown in equation 10. 

𝑎(𝑙+1) = 𝜎(𝑊(𝑙) ⋅ 𝑎(𝑙) + 𝑏(𝑙)) (10) 

where 𝑎(𝑙) is the activation vector of the current layer, 𝑎(𝑙+1) the activation vector of the next layer, 

𝑊(𝑙) the weight matrix of the current layer, 𝜎 is the nonlinear activation function, 𝑏(𝑙) the bias 

Wheel number dx dy a Θ 𝜙 

1  L  d a 0∘ −45∘ 

2 −L d a 0∘ 45∘ 

3 −L −d a 0∘ −45∘ 

4  L −d a 0∘ 45∘ 
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vector of the current layer. Subsequently, the output of the final layer is compared with the actual 

output to compute the error, the mean square error of the last neuron given by. 

MSE =
1

𝑁
 ∑  

𝑛

𝑖=1

  (𝑦𝑖 − 𝑎𝑖)2 (11) 

where N is the number of data points, 𝑦𝑖 is the target value of the data point i, 𝑎𝑖 is the predicted value 

for data point i. This error is then backpropagated through the network, necessitating adjustments to the 

weights and biases across each layer to minimize the error based on the gradient function iteratively. 

𝑊(𝑙) ∶= 𝑊(𝑙) − 𝛼 ⋅  
∂𝑀𝑆𝐸

∂𝑊(𝑙)
(12) 

𝑏(𝑙) ∶= 𝑏(𝑙) − 𝛼 ⋅  
∂𝑀𝑆𝐸

∂𝑏(𝑙)
(13) 

where 𝛼 is the learning rate, 
∂𝑀𝑆𝐸

∂𝑊(𝑙) and 
∂𝑀𝑆𝐸

∂𝑏(𝑙)  are the partial derivatives of the error function with respect 

to the weights and biases, respectively. The partial derivatives can be calculated using the chain rule.  

 

Fig. 3: system identification setup for a wheeled mobile robot 

∂ 𝑀𝑆𝐸

∂ 𝑊(𝑙)
 = (

∂ 𝑀𝑆𝐸

∂ 𝑎(𝑙+1)
) ⋅ (

∂ 𝑎(𝑙+1)

∂ 𝑊(𝑙)
) (14) 

∂ 𝑀𝑆𝐸

∂ 𝑏(𝑙)
 = (

∂ 𝑀𝑆𝐸

∂ 𝑎(𝑙+1)
) ⋅ (

∂ 𝑎(𝑙+1)

∂ 𝑏(𝑙)
) (15) 

where (
∂ 𝑀𝑆𝐸

∂ 𝑎(𝑙+1)) can be calculated using mean square error and (
∂ 𝑀𝑆𝐸

∂ 𝑎(𝑙+1)) can be calculated using the 

activation function and forward propagation.  

 

The process of system identification entails data collection from the real system, as shown in Fig. 3. The 

system comprises pulse-width modulation (PWM) signals as a sine wave with different frequencies and 
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amplitude from -255 to 255 generated by the teensy 3.2 microcontroller. At the same time, the output is 

represented by the velocity (RPM) of the DC motor measured using the encoder attached to the shaft of 

the DC motor sampled at 10 MS, as shown in Fig. 4. 

 

Following data collection, preprocessing steps are implemented, which involve removing any outliers 

present in the dataset. Subsequently, the dataset is split into training and testing subsets. Typically, the 

testing data constitutes 10% of the entire dataset, while the remaining portion is allocated to training. 

Within the training subset, the data is further divided into batches, with each batch containing 16 samples. 

This batching process aids in enhancing computational efficiency during the training phase and facilitates 

better convergence of the model. The data consists of 5959 data points, the artificial neural network 

(ANN) architecture comprises an input layer with five inputs, namely 𝑢(𝑘), 𝑢(𝑘 − 1), u(k − 2), y(k −

1), and y(k − 2). This is followed by two hidden layers, each containing ten neurons. Finally, the 

network concludes with an output layer consisting of a single neuron representing the output y(k) as 

shown in figure 5, Input Layer ∈ ℝ5  Hidden Layer ∈ ℝ10  Hidden Layer ∈ ℝ10  Output Layer ∈ ℝ1. 

 

Fig. 4: Input-Output sine wave for the system 

 

Fig. 5: structure of the ANN 
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The annotation model was trained for 5 epochs using the Mean Square Error loss function and the Adam 

optimization algorithm. A learning rate of 0.001 was employed, with Beta1 and Beta2 values set to 0.9 

and 0.999, respectively. An epsilon value of 1e-8 was utilized. The hidden layers employed the ReLU 

activation function, while no activation function was applied to the output layer. During each iteration, 

the losses for individual batches were computed, and the mean loss was derived. This methodology was 

employed to monitor the advancement of training and ascertain the model learning efficacy. Furthermore, 

the evaluation of test data loss was conducted to appraise the model performance on previously unseen 

data, serving to mitigate the risk of overfitting, as shown in Figure 6. The model exhibited a notable 

alignment with the dataset, reflected in an R2 score of 99.98%. This high R2 score indicates that the 

model proficiently accounted for nearly all variability within the dataset. 

4. System control using Artificial neural network 

A PID controller is a type of feedback controller that utilizes three constants (𝐾𝑝, 𝐾𝑖, and 𝐾𝑑) to adjust 

the output based on the error between the desired and actual outputs. These constants must be carefully 

tuned to achieve optimal performance. In contrast, an ANN-based controller does not require manual 

tuning of constants. Instead, the ANN learns the relationship between the inputs and outputs of the system 

through training data, allowing it to automatically adjust its weights and biases to achieve optimal control 

performance. The system will consist of two ANNs: one dedicated to controlling the system and the other 

for simulating its behavior. The control ANN can be trained to learn the optimal control strategy based 

 

Fig. 6: the losses of train test data at each epoch of training 
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on data generated by the simulation ANN. This setup allows the control ANN to adapt to changes in the 

system dynamics and environment, leading to improved control performance, as shown in Fig. 7. 

 

Figure 7: control system using ANN 

The control mechanism is implemented via an artificial neural network (ANN) with an architecture 

consisting of an input layer with 3 neurons representing the error, integral of past errors, and derivative 

of error; two hidden layers, each containing 10 neurons; and an output layer with 1 neuron. The ANN is 

employed to control a system by adjusting its inputs based on the error between the desired and actual 

outputs. Information about the state of error of the system is provided to the ANN through the input layer, 

while the hidden layers are responsible for learning the relationship between the inputs and outputs. The 

control signal, used to adjust the system input, is generated by the output layer. The control model was 

trained for 2 epochs using the Mean Square Error loss function and the Adam optimization algorithm. A 

learning rate of 0.001 was set, with Beta1 and Beta2 values of 0.9 and 0.999, respectively. An epsilon 

value of 1X10-8 was utilized. The ReLU activation function was used in the hidden layers, while no 

activation function was applied to the output layer. 

Initially, the ANN is deployed to control the system with randomly initialized weights and biases. 

Consequently, the system output may not accurately track the desired reference signal, resulting in errors 

in the control process. However, through the backpropagation process, the ANN internal parameters 

(weights and biases) are adjusted based on the errors observed between the system output and the 

reference signal, as shown in Fig. 8. As more training data is fed into the ANN and the backpropagation 

process continues, the network gradually learns to minimize these errors, as illustrated in Fig. 9. 
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Fig. 9: ANN control losses 

5. Results 

This section provides a comprehensive summary of the results obtained from the trajectory tracking 

experiments performed with the wheeled mobile robot. The experiments involved executing a figure-

eight (∞) trajectory, as depicted in Fig. 10. The primary objective was to evaluate the robot ability to 

follow this complex path accurately. During the experiments, the robot positional deviations along the x 

and y axes were meticulously recorded at various time intervals, as shown in Fig. 11. These deviations 

were analyzed to determine the precision of the trajectory tracking and to identify any significant errors 

or drifts from the intended path. 

The evaluation focused on quantifying the difference between the desired trajectory and the actual path 

taken by the robot. This involved calculating the root mean square error (RMSE) for both the x and y 

coordinates to provide a numerical measure of the tracking accuracy. Additionally, the stability of the 

control system was assessed by examining the consistency of the robot path over multiple trials. The 

results highlighted the performance of the control algorithms in handling the dynamic aspects of the robot 

movement, offering insights into areas where further optimization might be needed. Furthermore, the 

impact of different control parameters on the tracking performance was explored. Adjustments to the 

 

Fig. 8: ANN training 
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control gains and feedback mechanisms were made to observe their effects on the robot ability to 

maintain the desired trajectory. These experiments provided valuable data on the robustness and 

adaptability of the control system under various conditions, contributing to a deeper understanding of the 

system capabilities and limitations. 

 

Fig. 10: actual and desired trajectory of inf path 

 

Fig. 11: error in x and y between desired and actual trajectory 

6. Conclusions  
The research demonstrated a highly effective trajectory-tracking control strategy for a four-wheeled 

mecanum robot, achieving precise trajectory tracking with a mean square error of 0.0005 meters using 

Deep Neural Networks (DNNs) for both system identification and control. By training on extensive 

input-output data, the DNN captured the complex nonlinear dynamics of the robot, creating a highly 
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accurate dynamic model. A separate DNN-based controller was then designed to generate precise control 

signals, leveraging insights from the dynamic model. Experimental validation using an infinity-shaped 

trajectory showed the controller remarkable accuracy. These findings highlight the potential of deep 

learning techniques for addressing complex control challenges in wheeled mobile robots. The study 

suggests that DNNs can provide robust solutions for trajectory tracking in industrial applications, and 

future research could explore scalability to other robot types and optimize neural network architectures 

for improved real-time performance. In conclusion, this research successfully demonstrated that DNNs 

could enhance precise trajectory tracking in wheeled mobile robots, laying the groundwork for future 

advancements in robotic control systems. 
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