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Abstract: 

 
Time-resolved photoacoustic imaging has been used to characterize breast tissue for the 
purpose of discriminating between normal and maligned areas of the tissue. Ultrasonic 
thermoelastic waves were generated in breast tissue by the absorption of nanosecond 
laser pulses at 193 nm produced by Q-switched Excimer laser in conjunction with a 
Michelson interferometer used to detect the thermoelastic waves and plot the 2-D and the 
3-D image through IR- CCD. The concepts behind the use of photo-acoustic techniques 
for off-line detection of breast cancer tumor features were presented in earlier research 
papers [1][2]. This paper illustrates the application of multivariate image analysis (MIA) 
techniques to detect the presence of tumor features of breast cancer. MIA is used to 
rapidly detect the presence and quantity of common tumor features as they scanned by an 
RGB camera. Multiway principal component analysis is used to decompose the acquired 
three-channel tumor images into a two dimensional principal components (PC) space. 
Masking score point clusters in the score space and highlighting corresponding pixels in 
the image space of the two dominant PCs enables isolation of tumor defect pixels based 
on contrast and color information. The technique provides a qualitative result that can be 
used for early tumor detection. The proposed technique can potentially be used on-line to 
prescreen the existence of tumors through vision based systems. 
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1-Introduction 
 
Recent studies indicate that breast cancer affects one of every eight women in the unit 
states (American Cancer Society 1991)[17]. Early detection can greatly improve a 
woman‟s chances for survival. It is estimated that approximately 20% of breast cancers 
are missed in conventual‟s mammography screening. Several risk factors for breast 
cancer have been identified. 
 
1-1    Physiology of malignant breast masses: 

 
It is believed that cancer cells in the breast stimulate the growth of fibrous tissues. This 
pattern of growth, termed thermoplastic reaction, is what gives malignant breast masses a 
dense or hard consistency. Carcinoma cells grow in the path of least resistance. When the 
surrounding tissues are firm and have a mostly glandular constituency, as found in 
younger women, the tumor cells tend to grow in clefts between fibrous regions. When the 
surrounding tissues are soft and have are soft and have a more fatty consistency, tumor 
cells grow in all directions. Many primary malignancies exhibit a satellite (star-shaped) 
pattern or speculated appearance. The degree of desmoplastic reaction or deformation of 
surrounding tissues due to bonding between the tumor and connective tissues will alter 
the tumor and connective tissue response to palpation. Thermoelstic deformation 
measurement of local tissue provides a means of quantifying tumor and connective tissue 
response to palpation. This information could be potentially used in the early detection and 
classification of many developing breast cancer. 
 
In this paper we used the photoacoustic imaging techniques for visualizing the internal 
structure of soft biological tissues is currently exciting much interest. This approach to 
medical imaging relies upon low energy, sub-ablation threshold nanosecond laser pulses 
are absorbed in the tissue, producing ultrasonic thermoelastic waves. The amplitude and 
temporal characteristics of the thermoelastic waves depend strongly upon the optical 
properties of the tissue and it has been suggested that, by exploiting the preferential 
optical attenuation in abnormal tissues, the photoacoustic signature could be used to 
identify tumor location for breast tissue. In addition, the reflection and generation of 
subsurface thermoelastic waves can provide information about the structure and thickness 
of it.   
 
The photoacoustic signals are then non-contact detected and spatially resolved to 
reconstruct a 3D image of the internal tissue structure in much the same way that 
volumetric images. A key advantage of the technique is that it exploits the strong optical 
contrast of tissues enabling differentiation of anatomical features that would be 
indistinguishable using other radiological modalities. A broad range of potential 
applications have emerged including detection of breast [3][4], skin and oral cancers3 
The aim of the work described in this paper was to exploit the increased optical absorption 
in maligned tissue, reported by others for discrimination purposes. For this reason, laser 
pulses at 308 nm were used to generate photoacoustic signatures in tumor tissue. These 
signatures were actually multivariate images of the maligned tissue. 
 
Interpretation of multivariate images is done in a two stage procedure. After preprocessing 
the images, the content is visualized and analyzed through direct visual inspection. In a 
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subsequent step, quantitative data are extracted from the images and analyzed applying 
data mining methods. Many algorithms have been proposed in the fields of statistics, 
pattern recognition, machine learning (ML) and artificial neural networks (ANN). Although 
these techniques have been applied in numerous engineering and data mining 
applications, applications to biomedical imaging domains are still reported rather 
exceptional [18].  One of the most prominent techniques is the Principal Component 
Analysis (PCA) [19], which facilitates a projection from a higher dimensional signal space 
into a lower dimensional space according to the data variance. Multivariate image analysis 
(MIA) [20–24] involves the use of multiway PCA to decompose three-dimensional images 
and collect features in the image or scene space that have similar spectral features into 
common regions in the PCA score space. It is this spatial independence of PCA that 
makes MIA powerful at analyzing images for spectrally similar features. 
 
This paper illustrates the application of multivariate image analysis (MIA) techniques to 
detect the presence of tumor signatures of breast cancer. MIA is used to rapidly detect the 
presence and quantity of common tumor signatures as they scanned by an RGB camera. 
Multiway principal component analysis is used to decompose the acquired three-channel 
tumor images into a two dimensional principal component (PC) space. 
 
The paper is structured as follows. Some imaging system details are presented in 
section2. Section 3 reviews the main concepts of MIA using the multiway PCA. This is 
followed by an off-line MIA technique through an example of tumor detection from a 
human sample image.  
 
 
1-2 Review of multivariate Image Analysis 
 
 
This paper assumes that the reader has a basic understanding of PCA as it is applicable 
to MIA [25]. This section provides a brief review of PCA and MIA and illustrates their use 
with an off-line study of tumor identification from an RGB image of one tumor sample. 
MIA techniques, first introduced by Esbensen et al. [26], consist of extracting feature 
information from multivariate images using Multiway PCA (MPCA). A multivariate image 
consists of a group of matched images, with each image in the group representing a 
unique variable. Such an image can be represented as a three dimensional data set , 
where first two dimensions represent pixels in the image plane and the third dimension 
represents the variable index. For example, a low resolution image from a digital camera 
typically consists of 640 by 480 pixels over three colour channels, forming a three 
dimensional array. The entries in this array are integers between 0 and 255.  
 
These images are often referred to as RGB images, corresponding to the red, green and 
blue channels. Converting this 3-D array to a two–dimensional matrix is termed “unfolding” 
or “reshaping”. There are six possible ways to unfold a 3–way array into a 2-D matrix. We 
slice along each dimension of the 3–way array and place these slices next to each side–
by–side or top–to–bottom. Only two of these reshaping operations are useful for image 
processing and are illustrated in Figure 1. The result of either method is that one obtains a 
matrix X that has I×J rows with K columns. Simply speaking, the first case moves row–
wise across the image, the second case moves column–wise up and down the image. It 
does not matter how we unfold the image matrix, as long as each pixel in the image has a 
unique row assigned to it in the unfolded matrix. We also need to do this in reverse order; 
we want to be able to refold the matrix back up into an image. Once we have a two–way 
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array or matrix X we can carry out principal component analysis. This matrix X will have N 
= I × J rows and K columns, implying that XTX is only a 3 × 3 matrix and the full loading 
matrix, P is also a 3 × 3 matrix for an RGB image. The full score matrix T has dimensions 
(I · J) × K, and performing our unfolding operation in reverse order allows us to obtain K 
matrices of size I × J, the dimensions of our original image X. So performing PCA on an 
image is equivalent to decomposing the image into K successive “score images”, the first 
one of which contains most of the original information, with a decreasing amount in the 
remaining score images.  
 
We also saw that we can obtain residuals matrices, Ei, after extracting successive 
principal components. Each of these residual matrices show how far away from the PCA 
model we are built it. All the analyses were coded using MACCMIA software developed by 
McMaster University Control Consortium, Hamilton, Ontario, Canada. 
 
1-3 Description of photoacoustic signal generation.   
 
As first proposed by Callis et al. [1], pressure pulses in the illuminated sample arise from 
the volume changes produced by radiationless relaxation (ΔVth) and structural 
rearrangements at the molecular level (ΔVr). Relaxation originates either from 

nonradiative decay of excited states or heat release (enthalpy change) in photoinitiated 
reactions, including the heat involved in the rearrangement of the sample. The structural 
volume changes reflect movements of the photoexcited molecules and/or the surrounding 
tissue in response to such events as dipole moment change, charge transfer, and 
photoisomerization.  
 

 
 

Figure1.  Converting a 3-D image structure to a 2-D matrix by unfolding [27] 

 
A theoretical model based on the theory of elasticity was developed to describe the time 
dependent deformation of a thin polymer, following absorption of a short laser pulse. A 
numerical time dependent solution of the thermoelastic wave equation has been obtained 
for laser-induced heating of a polymer film in a three-dimensional cylindrical symmetric 
geometry. This solution shows that the sample will undergo thermelastic 
expansion,[5][6][7]as the surface will reach a new equilibrium position. The time constant 
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of this expansion is governed by the ratio of the 1/e depth of laser light absorption, to the 

speed of the sound in the sample.1/eff C, and the thermal relaxation time is a/k2
eff , 

where eff is the effective attenuation coefficient, C the longitudinal sound speed, k the 
thermal diffusivity and a  numerical constant depend on geometry. 
 
The initial light distribution can be approximated by an exponentially decaying profile with 
tissue depth (z>0), and the radial profile L(r). The laser profile is 

 I(r, z)  I0 L(r) exp (-eff z).                                                                                  (1) 
 
In the turbid medium such as tissue, light is subjected to both absorption and 

scattering.The three-dimensional temperature distribution can be approximated by    
 

  T(r, z)  T0 exp (-eff z) and T0 = a/Cv                                                                     (2) 
 

where Cv is the heat capacity (constant volume),  is laser fluency (energy per unit area) 

and  is mass density. The non-zero temperature distribution results in internal stresses 
that lead to thermoelastic deformation. This deformation in a solid body is determined by 
the thermoelastic wave equation [8]    
                                                  

           2 u/t2 - E2u/2(1+v) - E(.u)/2(1+v)(1-2v)     = -E T/3(1-2v)                   (3) 
 
Subject to the appropriate initial and boundary conditions. u is the displacement Vector, E 

is Young‟s modulus; v is Poisson‟s,  is the thermal expansion and T is the laser-induced 
temperature increase above a uniform ambient level. The photoacoustic method detects 
the time dependent heat generated in a sample via interaction with pulsed or intensity 
modulated optical radiation. Such interaction also induces a number of thermal and 
thermoelastic effect in a sample. In particular it causes the generation of surface and bulk 
acoustic waves. The detection of acoustic waves is the basis of photoacoustic methods. 
The informative features of this method allow one to determine sample thermal, optical, 
and acoustical properties that depend on peculiarities of sample structure [ 9]. 
 
We design and implement an optical interferometer sensor that cam measure time-
resolved photoacoustic and photothermal response simultaneously. The sensor has great 
diagnostic power since it would be able to measure the optical, thermal, acoustical and 
physical properties of the tissue. The calibration was extrapolated to an extremely low 
intensity range where displacements of the order of magnitude of 10-14 m.  The system 
sensitivity is 0.951µv/pa over 35 MHz measurements. Coupled charge device (CCD) 
camera used to reconstruct the 3-D image for acoustic-induce surface displacements in 
the heated volume explaining the thermal response for the sample providing advantage in 
term of the spatial sampling, smaller element sizes and spacing. 

 
The system consist of a designed optical interferometric technique was used to measure 
laser-induced surface expansion, photoacoustic, photothermal of a sample with a spatial 
resolution of approximately 4nm and temporal resolution of 3ns. Q-switched excimer laser 
at a wavelength 193nm and pulse duration 8ns provides the pump laser pulse. The beam 
is focused to 8mm diameter spot on thin polymer film (1µm) placed on the sample surface 
as shown in Figure 2. The interferometric probe light from a cw He-Ne laser. A 50/50 
beamsplitter is used in a Michelson interferometer set-up. A 5 cm lens focuses the light 
onto the sample through the polymer film. The sample motion modulates the frequency of 
the fringe pattern as shown in Figure 1(b), and one can determine the sample surface 
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displacements. Due to the thermal diffusion the refractive index of thin polymer film has 
changed after thermal relaxation occur. The light is combined and directed towards 
photodiode and also to charge coupled device IR-CCD camera after passing through 
HeNe wavelength filter to remove the probe beam from the reconstructed image. The 
photodiode signal is captured and digitized at a rate of 1 giga sample/sec by a digital 
oscilloscope and transferred to a computer for analysis.  

 

 
 

(a) 

                                        
 

              Fringe mode               Speckle due to fringe modulation 
(b) 

  
Figure 2. (a) block diagram of the photoacoustic imaging backward mode, (b) The Fringe 

and Fringe modulation images results from sample surface displacements  
 

The time-resolved imagings for diagnostic measurements of thermoelastic wave 
evaluation in the samples were based on Michelson interferometer shown in Figure 2. The 
recorded images the thermoelastic wave‟s propagation about 1 µs after laser irradiation 
the actual dimension of each scene was about 5mmx5mm.  
 
Recorded images at time delays greater than 1 ps (as shown in Figure 2), when the 
surface expansion is already occurred, provide information on photoacoustic processes 
induced by laser. Images are more complex, being composed of a main dark ring, 
corresponding to the expanding front of the hemispherical thermoelastic wave, and two 
sets of fine fringes located internally and externally with respect to this dark ring. Figure 3 
illustrates how these fringe structures originate. Below the diagram of the thermelastic 
wave, we sketched a sample radial profile of the density distribution that can be 
reasonably associated with the observed thermoelastic event, according to theoretical 
models of thermoelastic wave dynamics [8]. It is composed of the front of the traveling 
thermoelastic wave. In a very schematic manner, it can be assumed that the interference 
between undisturbed probe rays passing out of the thermoelastic wave and those 
deflected by the thermoelastic rear produces the internal fine fringes, while the external 
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Unit CCD 
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ones are due to the interference between the slightly perturbed rays crossing the saddle 
behind the density peak and those deflected by the thermoelastic leading front. Assuming 
for simplicity that deflected and undisturbed rays give rise to two distinct focal rings (points 
Ft and Fr, in Figure 3) generated by the thermoelastic front and the thermoelastic rear, 
respectively, the distance between each ring and the observation plane can be calculated 
from the width of the larger fringe of each distribution, according to the relationship Lf,r, = 

df,r
2/2 [10]. This provides information about the minimum distance where the collecting 

camera can be positioned. Also worth noting is that the dark ring separating the two sets 
of fringes is not a zero of the interference pattern, but a shadowgraph corresponding to the 
peak of the density distribution. As a consequence, the radius of this ring does not depend 
on the distance between the ablation region and the observation plane, permitting direct 
measurements of the thermoelastric radius r, without scaling factors. In our experimental 
conditions we verified this behavior on values of L varying from 3 to 30 cm. In diffraction 
patterns of spherical thermoelastic, another more internal fringe structure is typically 
observed (and the so-called „grey ring‟), due to probe ray deflections on the border of the 
central vacuum region of the density distribution.  

 
Figure 3. Interpretation of the fringe pattern generated by the probe beam crossing a 

thermoelastic waves 
 
3- Results 
 
The above technique is illustrated by the following RGB image of a specimen of a breast 
tissue containing tumor traces.  Figure (4) illustrates the RGB multivariate image of size 
146 X 305 X 3 pixels of the tumor sample. The image depicts the normal tissue with the 
tumor traces. MPCA is used to decompose the three channel tumor image into two 
principal components. Feature information extracted by the two PCs and the residual, can 
be visually determined by observing the refolded score matrices T1 and T2 and the 
residual matrix E as individual gray-scale images, as shown in figure (4). It can be seen 
from the T1 image that the first principal component extracts contrast information between 
normal tissue (the main specimen with bright pixels) and tumor traces (the red traces in 
the middle of the specimen). The T2 and the residual didn't reveal any information. The 
cumulative percent sum of squares in the multivariate image as explained by the first two 
PCs is 99.871% (94.12 and 5.751% respectively). As a result, only A = 2 principal 
components are used in the analysis. 
 
The loading vectors for these two dimensions are [red green blue] 

]61.0545.0575.0[1 TP   and ]708.070.0089.0[2 TP .  From these loading values, it 

can be seen that the first PC represents almost an average of the three colors [22], 
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whereas the second PC represents mainly a contrast between green and blue colors. This 
contrast was triggered from the use of optical filter (He-Ne filter).  
 
 

 

 
 

 
  

 
 

 
 

 
 
 
 
 

Figure (4) RGB image of a breast tissue sample depicting tumor traces. Score and 

residual image representations of the multivariate image upon performing MPCA 
decomposition 
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Figure 5.  (a) t1-t2 score plot of tumor sample image with polygon masks. (b) False-color  

composite score image with overlay of highlighted pixels from the three classes outlined in 
part a. 

A scatter plot of the first two score vectors (t1 vs t2) s illustrated as a color coded two 
dimensional histogram in figure (5), where two main clusters exist, the top left represents 
the image background and the bottom right represents the image code. Also, t1 values 
increase from right to left and t2 values increase from top to bottom. Each point in this 
score plot represents a unique pixel in the image plane of the RGB multivariate image. 
Similar feature pixels in the original image yield almost identical (t1, t2) score combinations, 
which results in many overlapping points in this scatter plots.  
 
The number of overlapping pixels represented by a single point in a score plot is called the 
pixel density. A two dimensional histogram of 256 x 256 bins is constructed [28], where 
each bin is assigned a color depending on the number of pixels falling in that bin.  
It uses black to represent bins containing no pixels and light colors to represent bins 
having the highest pixel density. The color coding progresses from black to white in 
various shades of red orange and yellow [28].  
It is easy to detect outlier pixel clusters, as mentioned before, to the top-left and to the 
right of the score plot in figure (5) that are remote from the main pixel cluster in the bottom 
right. Pixels having similar spectral features in the multivariate image will have comparable 
combinations of score values and result in point clusters in the score plot. 
 
The backbone of the MIA strategy is the use of masking [25] to delineate clusters of 
interest and to map pixels falling within these masks back into the image space to 
determine the features to which they correspond. In figure (5a), two polygon masks (blue 
and green) are placed around the two minor point clusters toward the top and right, 
respectively. The pixel classes that have been masked in this score plot are highlighted in 
figure (5b), where each pixel with a t1- t2 score combination lying under the respective 
masks has been replotted as an overlaid white pixel on a false color composite RGB 
image of the two PCs and residual( T1 =red, T2=green, E=blue). 
From this figure, it is evident that the class of pixels highlighted by the green mask in the 
score space belongs to tumor traces, whereas the image background class is highlighted 
as the blue mask. By repeated use of the masking/ highlighting procedure with different 
mask sizes, a signature of feature existing in the image space can be isolated in the score 
space.  
 
The above analysis can be easily implemented as a monitoring system to detect the 
breast cancer tumor. By using the local areas masks in figure (5), along with the loading 
vectors p1 and p2, a training model could then be used to detect the tumor existence from 
RGB images. Any new image sample must be rearranged into two way array and 
multiplied with the model loading vectors to produce the corresponding score vectors. The 
second step is to project the new score vectors back into the trained scatter plot, then 
check for the amount of feature pixels, along with pixels locations.   
 
5- Conclusions 
 
 The optical generation and deflection of broadband surface acoustic wave pulses have 
been extended into the 100MHz region in the present experiment. Such a bandwidth is 
sufficient for the investigation of large number of biomedical application. The detection of 
SAW pulses has been improved considerably reaching limit of 0.2 A with interferometric 
detection scheme. This corresponds to the depth resolution of the scanning tunneling 
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microscope. The lateral resolution is in the m2 region and given by the focal width of the 
HeNe laser. The laser excitation of the SAWs is efficient enough that in most tissues the 
transient acoustic wave pulses can be monitored for laser pulse energies below the 
threshold for ablation in the thermoelastic regime. Thus, the technique is not only non-
contact but also non-distractive. 
 
The information is extractives from the shape of the acoustic wave pulse and the 
propagation of the transient acoustic pulse in the surface. In most tissues a broadening of 
acoustic wave pulse by the inherent structural properties is observed.  The SAW 
amplitude yields important information on the optical properties (e.g., absorption 
coefficient) and physical properties (e.g., thermal expansion) of the sample. The 
measurement of the dispersion phase velocity in sample, which may perform with 
accuracy of several m/s allows characterization of the sample by its elastic properties. 
In time-resolved photoacoustic imaging, thermoelastic waves are generated by absorption 
of short laser pulses. The abrupt thermal expansion in the target produces an ultrasonic 
wave that‟s temporal and amplitude characteristics depend on the optical and acoustic 
properties of the tissue. A thermoelastic waves represents the photoacoustic signature of 
the target tissue. Time-resolved photoacoustic imaging suited to the detection and 
assessment malignant. 
 
Measurements will first be made to validate experimental work that has identified specific 
differences in the optical properties of cancers compared to normal healthy tissues, and 
determine the wavelengths at which the differences in the photoacoustic and photothermal 
signatures are likely to be greatest. The thermal properties of these same tissues will be 
also measured since differences in the thermal diffusivity are affected on the photothermal 
response.  
 
The designed optical sensors have very great diagnostic power since it would be able to 
measure simultaneously the optical, thermal, and acoustic properties of the tissue. It 
would also be able to measure the thickness of tissue layers.  
Multivariate image analysis for the off-line detection of breast cancer have been presented 

and applied to a 150 m human breast tissues sample. The technique provides a 
qualitative result that can be used for early tumor detection. The proposed technique can 
potentially be used on-line to prescreen the existence of tumors through vision based 
systems. 
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